EP0022991A1 - Antenna arrangement for masking the side lobe pattern of a highly directional main antenna and its use with a panoramic search radar antenna - Google Patents

Antenna arrangement for masking the side lobe pattern of a highly directional main antenna and its use with a panoramic search radar antenna Download PDF

Info

Publication number
EP0022991A1
EP0022991A1 EP80103989A EP80103989A EP0022991A1 EP 0022991 A1 EP0022991 A1 EP 0022991A1 EP 80103989 A EP80103989 A EP 80103989A EP 80103989 A EP80103989 A EP 80103989A EP 0022991 A1 EP0022991 A1 EP 0022991A1
Authority
EP
European Patent Office
Prior art keywords
antenna
dipole
reflector
lambda
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80103989A
Other languages
German (de)
French (fr)
Other versions
EP0022991B1 (en
Inventor
Erwin Dipl.-Ing. Kress
Nikolaus Ing.Grad. Willburger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0022991A1 publication Critical patent/EP0022991A1/en
Application granted granted Critical
Publication of EP0022991B1 publication Critical patent/EP0022991B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Definitions

  • a method for suppression of sublobe signals in which the level of a sharply focusing main antenna is compared with the level of an additionally required SLS (side lobe suppression) radiator.
  • SLS side lobe suppression
  • sub-lobe signals can be recognized since the signals received via the sub-lobes are of the same order of magnitude or lower than the signals that arrive via the SLS radiator.
  • the antenna level of the main antenna exceeds the level of the SLS emitter many times over, so that such signals can be rejected as desired.
  • SLC side lobe cancellation
  • monopole radiators which are cylindrical antennas with a height of a quarter wavelength, are used. Similar to dipole antennas, passive elements can be used to influence the radiation characteristics of the monopole emitters.
  • circular cylindrical slot antennas can also be used with vertical polarization, the slot (possibly multi-storey) rotating radially. An omnidirectional diagram recorded with horizontal polarization is obtained with a circular cylindrical slot antenna in which one or more slots run axially.
  • the object of the invention is to have available for the SLS and for the SLC technology an antenna arrangement which comprises the side lobes of a sharply focusing main antenna, e.g. a search radar antenna, well and securely covered with a largely constant, relatively high level in the entire angle range of interest, so that e.g. allows the described control to be carried out in the SLC technology, but a clear level comparison is also possible in the SLS technology.
  • an antenna arrangement which comprises the side lobes of a sharply focusing main antenna, e.g. a search radar antenna, well and securely covered with a largely constant, relatively high level in the entire angle range of interest, so that e.g. allows the described control to be carried out in the SLC technology, but a clear level comparison is also possible in the SLS technology.
  • this object is achieved in that behind a dipole primary radiator or the like.
  • a reflector is arranged, the reflection contour of which is linear throughout in a first plane and in a second, orthogonal plane consists of discontinuous polygonal successive linear sections, which in this plane are on both sides the main beam axis of the dipole are dimensioned and arranged symmetrically, and, starting from this main beam axis to one side, have the following reference angles to the main beam axis and the following length in relation to the operating wavelength:
  • central, continuously linear reflection contour which also forms a reflector symmetry axis, is perpendicular to the main beam axis of the dipole.
  • the antenna arrangement according to the invention has the advantage that electromagnetic waves of any polarization can be emitted. According to the orientation of the legs of the dipole primary radiator, any polarization can be set.
  • This particular shape of the reflector principally ensures that the radiation emitted by it prevents the energy swirls of the power radiated directly from the primary radiator and fills up minima in the radiation diagram.
  • a preferred application of the antenna arrangement according to the invention is in the suppression of sublobe signals from search radar antennas.
  • the antenna arrangement according to the invention is useful as an additional antenna structurally arranged on the radar search antenna, which forms the sharply focusing main antenna.
  • the first level already mentioned is vertical and the second horizontal.
  • the radiation pattern of the additional antenna in the vertical plane (H plane) is determined by the vertical extent of the reflection contour of the reflector.
  • the radiation diagram in the vertical plane can also be influenced by a horizontally extending base plate mounted under the reflector.
  • the antenna arrangement shown in the perspective view according to FIG. 1 consists of a dipole 1 using triplate technology, which is arranged in front of a specially shaped reflector 2.
  • the triplate dipole used in the illustrated embodiment is known from DE-PS 20 20 192 and is therefore no longer described individually below.
  • the triplate dipole 1 is positioned so that a horizontally polarized radiation diagram results.
  • coaxially fed dipoles can also be used, for example. According to the orientation of your legs, there is any one Adjustable polarization.
  • the main beam axis of dipole 1 is designated 3.
  • the dipole 1 is designed as a constructional unit and inserted into an opening 4 of the reflector 2. It is powered from the rear of the reflector 2.
  • the metallic reflector 2 has a reflection contour which is continuously linear in each vertical plane and consists in each horizontal plane of discontinuously polygonally successive, respectively linear sections 5 to 11 and 5 'to 11'.
  • the central, vertically continuous reflection contour 12 which at the same time forms an edge between the two sections 5 and 5 'and a reflector axis of symmetry, is perpendicular to the main beam axis 3 of the dipole 1.
  • the sections on both sides of the main beam axis 3 of the dipole are thus dimensioned and arranged symmetrically in the horizontal cross section.
  • the width dimensions of the sections 5 to 11 and 5 'to 11' are entered in Fig. 1 below. They are ⁇ / 8 for sections 5 to 9 and 5 'to 9', ⁇ / 6 for sections 10 and 10 'and 5 / 8. ⁇ for sections 11 and 11'.
  • the height dimension of the reflector 2 is 10/8 . ⁇ .
  • FIG. 2 represents a horizontal section through one half of the reflector 2.
  • the reference angles to the main axis 3 of the dipole 1 are respectively 116 ° for sections 5 and 5, 173 ° for sections 6 and 6, 153 ° for sections 7 and 7, 110 ° for sections 8 and 8, 9 and for sections 8 and 8 9 '97 °, at sections 10 and 10' 92 °, and at sections 11 and 11 '142 °.
  • the special shape of the reflector 1 ensures that the radiation emanating from it prevents the energy swirl of the power radiated directly from the dipole 1 and fills up minima in the radiation diagram.
  • FIG. 3 shows a common representation of the schematic horizontal diagram 13 of a radar search antenna and the schematic horizontal diagram 14 of an antenna arrangement according to the invention associated with the radar antenna according to FIG. 1.
  • the azimuth angles are in each case from -180 ° to + 180 ° and the ordinate is the ordinate Level values from approximately -40dB to OdB are plotted.
  • the azimuthal radiation diagram according to FIG. 3 shows a practically constant level in a wide angular range that adjoins the main lobe 15 of the radar antenna, so that the relatively high first secondary lobes of the main antenna and, in the case of reflector antennas, the spill-over secondary lobes 16 and 16 respectively 'are covered in each case. This radiation behavior, coupled with a low standing wave ratio, can be observed in a wide frequency range with the inventive antenna arrangement shown in FIG. 1.
  • the radiation diagram in the vertical plane is primarily defined by the vertical extension of the reflector 2.
  • the horizontal diagram shown in FIG. 3 applies approximately within a vertical angular range of 30 °.
  • the antenna arrangement according to the invention is therefore particularly suitable for suppressing secondary lobes of circular radar antennas with an approximately cosec 2 -shaped vertical diagram.
  • the radiation diagram in the vertical plane is also influenced by a horizontally extending metal base plate 17 mounted under the reflector 2.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

1. An antenna arrangement for covering the radiation levels of all the side lobes of a sharp focussing main antenna, consisting of a dipole primary radiator (1) or the like, and of a reflector (2) there behind whose reflection contour is formed continuously linear in a first plane, and in a second plane, orthogonal to the first, consists of linear sections (5 to 11'; 5' to 11') which follow one another in an inconstant polygonal formation, symmetrical on both sides of the main radiation axis (3) of the dipole (1) and arranged at obtuse angles to the main radiation direction, characterised in that commencing from this main radiation axis (3) towards a side the sections possess in turn approximately the following reference angles to the main radiation direction and approximately the following lengths relative to the operating wavelength : first section : ( 5, 5') : 116 degrees ; lambda/8 second section : ( 6, 6') : 173 degrees ; lambda/8 third section : ( 7, 7') : 153 degrees ; lambda/8 fourth section : ( 8, 8') : 110 degrees ; lambda/8 fifth section : ( 9, 9') : 97 degrees ; lambda/8 sixth section : (10, 10') : 92 degrees ; lambda/6 seventh section : (11, 11') : 142 degrees ; 5/8 . lambda, where the central continuously linear reflection contour (12) forms an axis of symmetry for the reflector and is at right angles to the main radiation axis (3) of the dipole (1).

Description

In der Mikrowellenantennentechnik wird zur Nebenzipfelsignalunterdrückung,vielfach ein Verfahren verwendet, bei dem der Pegel einer scharf bündelnden Hauptantenne mit dem Pegel eines zusätzlich notwendigen SLS(Side-Lobe-Suppression)-Strahlers verglichen wird. Bei diesem Amplitudenvergleich können Nebenzipfelsignale erkannt werden, da die über die Nebenzipfel empfangenen Signale pegelmäßig in der gleichen Größenordnung oder niedriger sind als die Signale, die über den SLS-Strahler ankommen. Im Bereich der Hauptkeule der Hauptantennen übersteigt dagegen der Antennenpegel der Hauptantenne den Pegel des SLS-Strahlers um ein Vielfaches, so daß sich solche Signale als gewünschte aussondern lassen.In microwave antenna technology, a method is often used for suppression of sublobe signals in which the level of a sharply focusing main antenna is compared with the level of an additionally required SLS (side lobe suppression) radiator. In this amplitude comparison, sub-lobe signals can be recognized since the signals received via the sub-lobes are of the same order of magnitude or lower than the signals that arrive via the SLS radiator. In the area of the main lobe of the main antennas, on the other hand, the antenna level of the main antenna exceeds the level of the SLS emitter many times over, so that such signals can be rejected as desired.

Neben diesem bekannten Verfahren setzt sich im steigenden Maße ein Konzept durch, bei dem sogenannte SLC(Side-Lobe-Cancellation)-Antennen zur adaptiven Nebenzipfelsignalunterdrückung Verwendung finden. Dabei werden mit Hilfe von Regelschleifen unerwünschte, über Nebenzipfel der Hauptantenne ankommende Signale mit den über den SLC-Strahler empfangenen und passend gedämpften Signalen kompensiert. Ein konstruktiver Unterschied zwischen einer SLC-Antenne und einer SLS-Antenne besteht prinzipiell nicht.In addition to this known method, a concept is increasingly being used in which so-called SLC (side lobe cancellation) antennas are used for adaptive suppression of the sidelobes. With the help of control loops, unwanted signals arriving via secondary lobes of the main antenna are combined with those via the SLC emitter received and appropriately attenuated signals compensated. In principle, there is no design difference between an SLC antenna and an SLS antenna.

Auf dem Gebiet der Sekundärradartechnik sind Lösungen bekannt, die sich jedoch hauptsächlich auf Zusatzstrahler für vertikale Polarisation beschränken. Dabei werden sogenannte Monopolstrahler, das sind Zylinderantennen mit einer-Höhe von einer Viertelwellenlänge, verwendet. Ähnlich wie bei Dipolantennen kann man mit passiven Elementen die Strahlungscharakteristik der Monopolstrahler beeinflussen. Neben.den Monopolantennen können bei vertikaler Polarisation auch kreiszylindrische Schlitzantennen eingesetzt werden, wobei der Schlitz (evtl. mehrstöckig) radial umläuft. Ein mit horizontaler Polarisation aufgenommenes Rundstrahldiagramm erhält man mit einer kreiszylindrischen Schlitzantenne, bei welcher ein oder mehrere Schlitze axial verlaufen.Solutions are known in the field of secondary radar technology, but these are mainly limited to additional radiators for vertical polarization. So-called monopole radiators, which are cylindrical antennas with a height of a quarter wavelength, are used. Similar to dipole antennas, passive elements can be used to influence the radiation characteristics of the monopole emitters. In addition to the monopole antennas, circular cylindrical slot antennas can also be used with vertical polarization, the slot (possibly multi-storey) rotating radially. An omnidirectional diagram recorded with horizontal polarization is obtained with a circular cylindrical slot antenna in which one or more slots run axially.

Aufgabe der Erfindung ist es, für die SLS-und für die SLC-Technik eine Antennenanordnung verfügbar zu haben, welche'die Nebenzipfel einer scharf bündelnden Hauptantenne, z.B. einer Rundsuchradarantenne, im gesamten interessierenden Winkelbereich gut und sicher mit weitgehend konstantem, relativ hohen Pegel überdeckt, so daß sich z.B. in der SLC-Technik die beschriebene Regelung durchführen läßt, aber in der SLS-Technik auch ein eindeutiger Pegelvergleich möglich ist.The object of the invention is to have available for the SLS and for the SLC technology an antenna arrangement which comprises the side lobes of a sharply focusing main antenna, e.g. a search radar antenna, well and securely covered with a largely constant, relatively high level in the entire angle range of interest, so that e.g. allows the described control to be carried out in the SLC technology, but a clear level comparison is also possible in the SLS technology.

Gemäß der Erfindung wird diese Aufgabe dadurch gelöst, daß hinter einem Dipol-Primärstrahler o..dgl. ein Reflektor angeordnet ist, dessen Reflexionskontur in. einer ersten Ebene durchgehend linear ausgebildet ist und in einer zweiten, dazu orthogonalen Ebene aus unstetig polygonal aufeinander folgenden linearen Abschnitten besteht, die in dieser Ebene auf beiden Seiten der Hauptstrahlachse des Dipols symmetrisch bemessen und angeordnet sind, sowie ausgehend von dieser Hauptstrahlachse zu einer Seite hin der Reihe nach etwa folgende Bezugswinkel zur Hauptstrahlachse und etwa folgende Länge in bezug auf die Betriebswellenlänge aufweisen:

Figure imgb0001
According to the invention, this object is achieved in that behind a dipole primary radiator or the like. a reflector is arranged, the reflection contour of which is linear throughout in a first plane and in a second, orthogonal plane consists of discontinuous polygonal successive linear sections, which in this plane are on both sides the main beam axis of the dipole are dimensioned and arranged symmetrically, and, starting from this main beam axis to one side, have the following reference angles to the main beam axis and the following length in relation to the operating wavelength:
Figure imgb0001

und daß die zentrale, durchgehend lineare Reflexionskontur, welche zugleich eine Reflektorsymmetrieachse bildet, senkrecht auf der Hauptstrahlachse des Dipols steht.and that the central, continuously linear reflection contour, which also forms a reflector symmetry axis, is perpendicular to the main beam axis of the dipole.

Die Antennenanordnung nach der Erfindung weist den Vorteil auf, daß sich elektromagnetische Wellen beliebiger Polarisation abstrahlen lassen. Entsprechend der Ausrichtung der Schenkel des Dipolprimärstrahlers läßt sich nämlich jede beliebige Polarisation einstellen.The antenna arrangement according to the invention has the advantage that electromagnetic waves of any polarization can be emitted. According to the orientation of the legs of the dipole primary radiator, any polarization can be set.

Durch diese besondere Formung des Reflektors wird prinzpiell erreicht, daß die von ihm ausgehende Strahlung die Endergiewirbel der direkt vom Primärstrahler abgestrahlten Leistung verhindert und Minima im Strahlungsdiagramm auffüllt.This particular shape of the reflector principally ensures that the radiation emitted by it prevents the energy swirls of the power radiated directly from the primary radiator and fills up minima in the radiation diagram.

Eine bevorzugte Anwendung der Antennenanordnung nach der Erfindung besteht bei der Nebenzipfelsignalunterdrückung von Rundsuchradarantennen. Hierbei ist die Antennenanordnung nach der Erfindung zweckmäßig als Zusatzantenne baulich auf der Radarrundsuchantenne angeordnet, welche die scharf bündelnde Hauptantenne bildet. In diesem Fall verläuft die bereits angesprochene erste Ebene vertikal und die zweite horizontal. Das Strahlungsdiagramm der Zusatzantenne in der vertikalen Ebene (H-Ebene) ist dabei durch die vertikale Ausdehnung der Reflexionskontur des Refklektors.bestimmt. Das Strahlungsdiagramm in der-vertikalen Ebene läßt sich zusätzlich noch durch eine unter dem Reflektor angebaute, horizontal verlaufende Grundplatte beeinflussen.A preferred application of the antenna arrangement according to the invention is in the suppression of sublobe signals from search radar antennas. Here, the antenna arrangement according to the invention is useful as an additional antenna structurally arranged on the radar search antenna, which forms the sharply focusing main antenna. In this case, the first level already mentioned is vertical and the second horizontal. The radiation pattern of the additional antenna in the vertical plane (H plane) is determined by the vertical extent of the reflection contour of the reflector. The radiation diagram in the vertical plane can also be influenced by a horizontally extending base plate mounted under the reflector.

.Die Erfindung wird im folgenden anhand eines in zwei Figuren gezeigten Ausführungsbeispiels und eines Strahlungsdiagramms erläutert. Es zeigen:

  • Fig. 1 die perspektivische Ansicht einer Antennenanordnung nach der Erfindung,
  • Fig. 2 einen horizontalen Querschnitt durch einen halben Reflektor nach Fig. 1, und
  • Fig. 3 ein schematisches Horizontaldiagramm der Antenne nach Fig. 1 zusammen mit dem hinsichtlich seiner Nebenzipfel zu überdeckenden Horizontaldiagramm einer Rundsuch-Radarantenne.
The invention is explained below with reference to an embodiment shown in two figures and a radiation diagram. Show it:
  • 1 is a perspective view of an antenna arrangement according to the invention,
  • Fig. 2 shows a horizontal cross section through a half reflector according to Fig. 1, and
  • FIG. 3 shows a schematic horizontal diagram of the antenna according to FIG. 1 together with the horizontal diagram of a search radar antenna to be covered with regard to its secondary peaks.

Die in der perspektivischen Darstellung nach Fig. 1 gezeigte Antennenanordung besteht aus einem Dipol 1 -in Triplate-Technik, der vor einem speziell geformten Reflektor 2 angeordnet ist. Der in der dargestellten Ausführung verwendete Triplate-Dipol ist aus der DE-PS 20 20 192 bekannt und wird deswegen im folgenden nicht mehr einzeln beschrieben. Der Triplate-Dipol 1 ist lagemäßig so angeordnet, daß sich ein horizontal polarisiertes Strahlungsdiagramm ergibt. Alternativ zu dem hier verwendeten Triplate-Dipol lassen sich beispielsweise auch koaxial gespeiste Dipole verwenden. Entsprechend der Ausrichtung ihrer Schenkel ist dabei eine beliebige Polarisation einstellbar. Die Hauptstrahlachse des Dipols 1 ist mit 3 bezeichnet. Der Dipol 1 ist als bau- .liche Einheit ausgeführt und in eine Öffnung 4 des Re - flektors 2 eingeschoben. Seine Speisung erfolgt von der Rückseite des Reflektors 2 her. Der metallische Reflektor 2 weist eine Reflexionskontur auf, die in jeder Vertikalebene durchgehend linear ausgebildet ist und in jeder horizontalen Ebene aus unstetig polygonal aufeinanderfolgenden, jeweils linearen Abschnitten 5 bis 11 sowie 5' bis 11' besteht. Die zentrale,vertikal durchgehend verlaufende Reflexionskontur 12, welche zugleich eine Kante zwischen den beiden Abschnitten 5 und 5' und eine Refktorsymmetrieachse bildet, steht senkrecht auf der Hauptstrahlachse 3 des Dipols 1.The antenna arrangement shown in the perspective view according to FIG. 1 consists of a dipole 1 using triplate technology, which is arranged in front of a specially shaped reflector 2. The triplate dipole used in the illustrated embodiment is known from DE-PS 20 20 192 and is therefore no longer described individually below. The triplate dipole 1 is positioned so that a horizontally polarized radiation diagram results. As an alternative to the triplate dipole used here, coaxially fed dipoles can also be used, for example. According to the orientation of your legs, there is any one Adjustable polarization. The main beam axis of dipole 1 is designated 3. The dipole 1 is designed as a constructional unit and inserted into an opening 4 of the reflector 2. It is powered from the rear of the reflector 2. The metallic reflector 2 has a reflection contour which is continuously linear in each vertical plane and consists in each horizontal plane of discontinuously polygonally successive, respectively linear sections 5 to 11 and 5 'to 11'. The central, vertically continuous reflection contour 12, which at the same time forms an edge between the two sections 5 and 5 'and a reflector axis of symmetry, is perpendicular to the main beam axis 3 of the dipole 1.

Die Abschnitte auf beiden Seiten der Hauptstrahlachse 3 des Dipols sind im Horizontalquerschnitt somit symmetrisch bemessen und angeordnet. Die Breitenabmessungen der.Abschnitte 5 bis 11 bzw. 5' bis 11' sind in Fig. 1 jeweils unten eingetragen. Sie betragen für die Abschnitte 5 bis 9 bzw. 5' bis 9' jeweils λ/8, für die Abschnitte 10 und 10' jeweils λ/6 und für die Abschnitte 11 und 11' 5/8.λ. Die Höhenabmessung des Reflektors 2 beträgt 10/8 .λ.The sections on both sides of the main beam axis 3 of the dipole are thus dimensioned and arranged symmetrically in the horizontal cross section. The width dimensions of the sections 5 to 11 and 5 'to 11' are entered in Fig. 1 below. They are λ / 8 for sections 5 to 9 and 5 'to 9', λ / 6 for sections 10 and 10 'and 5 / 8.λ for sections 11 and 11'. The height dimension of the reflector 2 is 10/8 .λ.

Die winkelmäßige Lage der einzelnen Abschnitte 5 bis 11 ist aus Fig. 2 zu entnehmen, welche einen Horizontalschnitt durch die eine Hälfte des Reflektors 2 darstellt. Die Bezugswinkel zur Hauptsrahlachse 3 des Dipols 1 betragen jeweils beim Abschnitt 5 und 5' 116°, beim Abschnitt 6 und 6' 173°, beim Abschnitt 7 und 7' 153°, beim Abschnitt 8 und 8' 110°, beim Abschnitt 9 und 9' 97°, beim Abschnitt 10 und 10' 92°, und beim Abschnitt 11 und 11' 142°.The angular position of the individual sections 5 to 11 can be seen in FIG. 2, which represents a horizontal section through one half of the reflector 2. The reference angles to the main axis 3 of the dipole 1 are respectively 116 ° for sections 5 and 5, 173 ° for sections 6 and 6, 153 ° for sections 7 and 7, 110 ° for sections 8 and 8, 9 and for sections 8 and 8 9 '97 °, at sections 10 and 10' 92 °, and at sections 11 and 11 '142 °.

Durch die spezielle Formung des Reflektors 1 wird erreicht, daß die von ihm ausgehende Strahlung die Energiewirbel der direkt vom Dipol 1 abgestrahlten Leistung verhindert und Minima im Strahlungsdiagramm auffüllt.The special shape of the reflector 1 ensures that the radiation emanating from it prevents the energy swirl of the power radiated directly from the dipole 1 and fills up minima in the radiation diagram.

Fig. 3 zeigt in einer gemeinsamen Darstellung das schematische Horizontaldiagramm 13 einer Radarrundsuchantenne und das schematische Horizontaldiagramm 14 einer der Radarantenne zugeordneten erfindungsgemäßen Antennenanordnung nach Fig. 1. Über die Abszisse sind jeweils die Azimutwinkel von -180° bis +180° und an der Ordinate die Pegelwerte von etwa -40dB bis OdB aufgetragen. Das azimutale Strahlungsdiagramm nach Fig. 3 zeigt in einem weiten Winkelbereich, der sich an die Hauptkeule 15 der Radarantenne anschließt, einen praktisch konstanten Pegel, so daß die relativ hohen ersten Nebenzipfel der Hauptantenne und bei Reflektorantennen der Spill-over-Nebenzipfel 16 bzw. 16' jeweils überdeckt werden. Dieses Strahlungsverhalten, gekoppelt mit einem niedrigen Stehwellenverhältnis, ist mit der in Fig. 1 dargestellten erfindungsgemäßen Antennenanordnung in einem weiten Frequenzbereich zu beobachten.3 shows a common representation of the schematic horizontal diagram 13 of a radar search antenna and the schematic horizontal diagram 14 of an antenna arrangement according to the invention associated with the radar antenna according to FIG. 1. The azimuth angles are in each case from -180 ° to + 180 ° and the ordinate is the ordinate Level values from approximately -40dB to OdB are plotted. The azimuthal radiation diagram according to FIG. 3 shows a practically constant level in a wide angular range that adjoins the main lobe 15 of the radar antenna, so that the relatively high first secondary lobes of the main antenna and, in the case of reflector antennas, the spill-over secondary lobes 16 and 16 respectively 'are covered in each case. This radiation behavior, coupled with a low standing wave ratio, can be observed in a wide frequency range with the inventive antenna arrangement shown in FIG. 1.

Das Strahlungsdiagramm in der vertikalen Ebene ist in erster Linie durch -die vertikale Ausdehnung des Reflektors 2 definiert. In dem hier gezeigten Ausführungsbeispiel gilt das in Fig. 3 dargestellte Horizontaldiagramm etwa innerhalb eines vertikalen Winkelbereiches von 30°. Damit ist die Antennenanordnung nach .der Erfindung zur Nebenzipfelunterdrückung von Rundsüchradarantennen mit etwa cosec2 -förmigen Vertikaldiagramm besonders geeignet. Das Strahlungsdiagramm in der vertikalen Ebene wird darüber hinaus noch durch eine unter dem Reflektor 2 angebaute, horizontal verlaufende Grundplatte 17 aus Metall beeinflußt.The radiation diagram in the vertical plane is primarily defined by the vertical extension of the reflector 2. In the exemplary embodiment shown here, the horizontal diagram shown in FIG. 3 applies approximately within a vertical angular range of 30 °. The antenna arrangement according to the invention is therefore particularly suitable for suppressing secondary lobes of circular radar antennas with an approximately cosec 2 -shaped vertical diagram. The radiation diagram in the vertical plane is also influenced by a horizontally extending metal base plate 17 mounted under the reflector 2.

Claims (6)

1. Antennenanordnung zur strahlungspegelmäßigen Überdeckung aller Nebenzipfel einer scharf bündelnden Hauptantenne, dadurch gekennzeichnet, daß hinter einem Dipol-Primärstrahler (1) oder dergl. ein Reflektor (2) angeordnet ist, dessen Reflexionskontur in einer ersten Ebene durchgehend linear ausgebildet ist und in einer zweiten, dazu orthogonalen Ebene aus unstetig polygonal aufeinanderfolgenden linearen Abschnitten (5 bis 11; 5' bis 11') besteht-, die in dieser Ebene auf beiden Seiten der Hauptstrahlachse (3) des Dipols (1) symmetrisch bemessen und angeordnet sind sowie.ausgehend von dieser Hauptstrahlachse (3).zu einer Seite hin der Reihe nach etwa folgende Bezugswinkel zur Hauptstrahlachse (3) und etwa folgende Länge in bezug auf die Betriebswellenlänge aufweisen:
Figure imgb0002
und daß die zentrale, durchgehend lineare Reflexionskontur (12), welche zugleich eine Reflektorsymmetrieachse bildet, senkrecht auf der Hauptstrahlachse (3) des Dipols (1) steht.
1. Antenna arrangement for the radiation level coverage of all the side lobes of a sharply focusing main antenna, characterized in that behind a dipole primary radiator (1) or the like. A reflector (2) is arranged, the reflection contour of which is linear throughout in a first plane and in a second , orthogonal plane consists of discontinuous polygonal successive linear sections (5 to 11; 5 'to 11') - which are dimensioned and arranged symmetrically in this plane on both sides of the main beam axis (3) of the dipole (1) and this main beam axis (3). To one side, in turn, have approximately the following reference angles to the main beam axis (3) and approximately the following length in relation to the operating wavelength:
Figure imgb0002
and that the central, continuously linear reflection contour (12), which also forms a reflector symmetry axis, is perpendicular to the main beam axis (3) of the dipole (1).
2. Antennenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Länge der durchgehend linearen Reflexionskontur etwa 10/8 · λ beträgt.2. Antenna arrangement according to claim 1, characterized in that the length of the continuously linear reflection contour is about 10/8 · λ. 3. Antennenanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet , daß der Reflektor (2) eine Öffnung (4)aufweist, in welche der als steckbares Bauteil ausgebildete Dipolprimärstrahler (1) einsteckbar ist.3. Antenna arrangement according to claim 1 or 2, characterized in that the reflector (2) has an opening (4) into which the dipole primary radiator (1) designed as a pluggable component can be inserted. 4. Antennenanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die erste Ebene vertikal und die zweite Ebene horizontal verläuft.4. Antenna arrangement according to one of the preceding claims, characterized in that the first level is vertical and the second level is horizontal. 5. Antennenanordnung nach Anspruch 4, dadurch gekennzeichnet, daß unter dem Reflektor (2) eine horizontal verlaufende Grundplatte (17) angeordnet ist.5. Antenna arrangement according to claim 4, characterized in that a horizontally extending base plate (17) is arranged under the reflector (2). 6. Antennenanordnung nach Anspruch 4 oder 5, gekennzeichnet durch eine baulich vereinigte Anordnung auf einer rotierenden Radarrundsuchantenne, welche die scharf bündelnde Hauptantenne bildet.6. Antenna arrangement according to claim 4 or 5, characterized by a structurally combined arrangement on a rotating radar search antenna, which forms the sharply focusing main antenna.
EP80103989A 1979-07-13 1980-07-10 Antenna arrangement for masking the side lobe pattern of a highly directional main antenna and its use with a panoramic search radar antenna Expired EP0022991B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2928370 1979-07-13
DE19792928370 DE2928370C2 (en) 1979-07-13 1979-07-13 Antenna arrangement for the radiation level coverage of all secondary lobes of a sharply bundling main antenna

Publications (2)

Publication Number Publication Date
EP0022991A1 true EP0022991A1 (en) 1981-01-28
EP0022991B1 EP0022991B1 (en) 1983-06-22

Family

ID=6075660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103989A Expired EP0022991B1 (en) 1979-07-13 1980-07-10 Antenna arrangement for masking the side lobe pattern of a highly directional main antenna and its use with a panoramic search radar antenna

Country Status (2)

Country Link
EP (1) EP0022991B1 (en)
DE (1) DE2928370C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178568A1 (en) * 2000-03-10 2002-02-06 Nippon Antena Kabushiki Kaisha Cross dipole antenna and composite antenna
WO2003043128A1 (en) * 2001-11-16 2003-05-22 Lg Electronics Inc. Wireless communications antenna assembly generating minimal back lobe radio frequency (rf) patterns
US7489282B2 (en) 2005-01-21 2009-02-10 Rotani, Inc. Method and apparatus for an antenna module
US9496931B2 (en) 2006-02-28 2016-11-15 Woodbury Wireless, LLC Methods and apparatus for overlapping MIMO physical sectors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1241499B (en) * 1964-10-09 1967-06-01 Siemens Ag Directional antenna made of a broadband dipole or unipole and two side walls forming a reflector
DE1948104A1 (en) * 1969-09-23 1971-03-25 Siemens Ag Process for achieving a broadband uniform directional beam diagram and arrangement for carrying out the process
US3803622A (en) * 1973-05-03 1974-04-09 Us Navy Hf dual-feed corner reflector antenna
US3881177A (en) * 1974-03-12 1975-04-29 Us Army Frequency agile-baseband sidelobe canceller
US4162497A (en) * 1963-09-18 1979-07-24 The United States Of America As Represented By The Secretary Of The Navy Side lobe suppression device for a directional receiving system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2284997A1 (en) * 1974-09-13 1976-04-09 Thomson Csf COMMON ANTENNA FOR PRIMARY RADAR AND SECONDARY RADAR WITH INTERROGATION CONTROL MEANS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4162497A (en) * 1963-09-18 1979-07-24 The United States Of America As Represented By The Secretary Of The Navy Side lobe suppression device for a directional receiving system
DE1241499B (en) * 1964-10-09 1967-06-01 Siemens Ag Directional antenna made of a broadband dipole or unipole and two side walls forming a reflector
DE1948104A1 (en) * 1969-09-23 1971-03-25 Siemens Ag Process for achieving a broadband uniform directional beam diagram and arrangement for carrying out the process
US3803622A (en) * 1973-05-03 1974-04-09 Us Navy Hf dual-feed corner reflector antenna
US3881177A (en) * 1974-03-12 1975-04-29 Us Army Frequency agile-baseband sidelobe canceller

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178568A1 (en) * 2000-03-10 2002-02-06 Nippon Antena Kabushiki Kaisha Cross dipole antenna and composite antenna
EP1178568A4 (en) * 2000-03-10 2003-03-26 Nippon Antenna Kk Cross dipole antenna and composite antenna
US6741220B2 (en) 2000-03-10 2004-05-25 Nippon Antena Kabushiki Kaisha Cross dipole antenna and composite antenna
WO2003043128A1 (en) * 2001-11-16 2003-05-22 Lg Electronics Inc. Wireless communications antenna assembly generating minimal back lobe radio frequency (rf) patterns
US7489282B2 (en) 2005-01-21 2009-02-10 Rotani, Inc. Method and apparatus for an antenna module
US9525468B2 (en) 2006-02-28 2016-12-20 Woodbury Wireless, LLC Methods and apparatus for overlapping MIMO physical sectors
US9496930B2 (en) 2006-02-28 2016-11-15 Woodbury Wireless, LLC Methods and apparatus for overlapping MIMO physical sectors
US9503163B2 (en) 2006-02-28 2016-11-22 Woodbury Wireless, LLC Methods and apparatus for overlapping MIMO physical sectors
US9496931B2 (en) 2006-02-28 2016-11-15 Woodbury Wireless, LLC Methods and apparatus for overlapping MIMO physical sectors
US9584197B2 (en) 2006-02-28 2017-02-28 Woodbury Wireless, LLC Methods and apparatus for overlapping MIMO physical sectors
US10063297B1 (en) 2006-02-28 2018-08-28 Woodbury Wireless, LLC MIMO methods and systems
US10069548B2 (en) 2006-02-28 2018-09-04 Woodbury Wireless, LLC Methods and apparatus for overlapping MIMO physical sectors
US10211895B2 (en) 2006-02-28 2019-02-19 Woodbury Wireless Llc MIMO methods and systems
US10516451B2 (en) 2006-02-28 2019-12-24 Woodbury Wireless Llc MIMO methods
US11108443B2 (en) 2006-02-28 2021-08-31 Woodbury Wireless, LLC MIMO methods and systems
US12015457B2 (en) 2006-02-28 2024-06-18 Woodbury Wireless, LLC MIMO methods and systems

Also Published As

Publication number Publication date
DE2928370A1 (en) 1981-01-15
EP0022991B1 (en) 1983-06-22
DE2928370C2 (en) 1982-04-15

Similar Documents

Publication Publication Date Title
DE69024756T2 (en) Slot antenna with controllable polarization
DE2505375A1 (en) ANTENNA SYSTEM CONSISTS OF A PARABOLIC MIRROR AND AN EXCITER
DE2262495A1 (en) ELECTRONIC SCANNING ANTENNA SYSTEM
DE60302041T2 (en) PHASENARRAY ANTENNA WITH ARCHIMEDIC SPIRAL ELEMENT ARRAY AND ASSOCIATED METHODS
DE69833070T2 (en) Group antennas with a large bandwidth
DE60019412T2 (en) ANTENNA WITH VERTICAL POLARIZATION
DE69212378T2 (en) Antenna with shaped radiation beam and high gain
DE2810483C2 (en) Antenna with a feed waveguide having slots and a radiator line enclosing an angle with this
DE69308036T2 (en) REFLECTOR FOR POLARIMETRIC RADAR, IN PARTICULAR FOR USE AS TEACHING OR BAKE
EP0022991B1 (en) Antenna arrangement for masking the side lobe pattern of a highly directional main antenna and its use with a panoramic search radar antenna
DE3840451C2 (en) Lens antenna
DE4014133A1 (en) PLANAR ANTENNA
DE2540763C3 (en) Control antenna for the interrogation channel of a secondary radar
WO1999028993A1 (en) Transmission polarizer
DE19848722B4 (en) Microwave reflector antenna
DE602004009460T2 (en) Ultra-wideband antenna
EP0976173B1 (en) Microwave reflector antenna
DE1296221B (en) Directional antenna, consisting of a main reflector illuminated by a catch reflector
EP0135742B1 (en) Omnidirectional antenna
DE2416718C3 (en) Directional antenna with a single exciter arranged in the area of the focal plane of a parabolic mirror
DE69727748T2 (en) Versatile group antenna
DE2342882C3 (en) Horn or horn parabolic antenna
EP1665464A1 (en) Reflector antenna
DE2702677A1 (en) ANTENNA REFLECTOR FOR CONSTANT DIRECTIONAL BEAM WIDTH
DE1941713C3 (en) Adapted exciter for reflector antennas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH FR GB IT NL

17P Request for examination filed

Effective date: 19810630

RBV Designated contracting states (corrected)

Designated state(s): BE CH FR GB IT LI NL

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH FR GB IT LI NL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840720

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841023

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890731

Ref country code: CH

Effective date: 19890731

Ref country code: BE

Effective date: 19890731

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19890731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST