EP0017221A1 - Procédé et appareil pour la coordination temporelle et spatiale du déroulement d'une ionisation à désorption par effet de champ - Google Patents

Procédé et appareil pour la coordination temporelle et spatiale du déroulement d'une ionisation à désorption par effet de champ Download PDF

Info

Publication number
EP0017221A1
EP0017221A1 EP19800101759 EP80101759A EP0017221A1 EP 0017221 A1 EP0017221 A1 EP 0017221A1 EP 19800101759 EP19800101759 EP 19800101759 EP 80101759 A EP80101759 A EP 80101759A EP 0017221 A1 EP0017221 A1 EP 0017221A1
Authority
EP
European Patent Office
Prior art keywords
field
ionization
field electrode
electrodes
process steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19800101759
Other languages
German (de)
English (en)
Inventor
Hans Bernhard Linden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0017221A1 publication Critical patent/EP0017221A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission

Definitions

  • the field desorption ionization technique is a well-known, worldwide developed method for the gentle ionization of thermolabile, hardly volatile substances developed for mass spectrometry.
  • the main disadvantage of the method is that the method is time-consuming and requires a lot of intervention by the operating personnel.
  • the field electrodes must be prepared in a separate device by means of a chemical process called “activation” (cultivation of the dendrites) which, depending on the method, takes from 10 minutes to several hours. After activation, the field electrode must be removed from the activation apparatus and loaded with the analysis substance to be examined outside the apparatus. Then the loaded field electrode has to be introduced into the ion source, the vacuum is high and the analysis of the analyte is initiated. After the examination, the field electrode used must be removed from the ion source and can be reactivated after thorough cleaning.
  • activation cultivation of the dendrites
  • the field desorption ionization method requires not only a lot of time for a measurement process from the activation of a field electrode to its cleaning for the next activation, but also a large number of actions and measures by the personnel performing the analysis. In this form, the process cannot be fully automated. A direct coupling to a repetitive (e.g. fraction collector or automatic sampler) or continuous (e.g. high pressure liquid chromatograph) device is not possible.
  • the object of the invention is to provide a method for the temporal and spatial coordination of the process sequences of the field desorption ionization method with the aid of a device in which all process sequences of the field desorption ionization method are integrated.
  • a device in which at least four chambers are arranged in a housing, such that these chambers have at their lower end an opening to an axial bore in the housing, that a body in the axial bore simultaneously supports the field electrodes for sealing the chambers can be inserted against each other, and that all chambers are assigned connections for evacuation and gas introduction.
  • a cylindrical body 1 for example a ceramic tube, serves as a transport body, the outer jacket surface 2 of which acts as an “endless” transport surface, in the recess 3 of which the field electrodes 4 with their holders 5 are embedded.
  • the body 1 and the cylindrical bore 6 of a compact housing 7 are dimensioned so that the body 1 before commissioning took the device can be inserted sliding into the bore 6 and lies tight against the wall 8 of the bore 6.
  • the housing 7 has numerous bores 9 to 16, which differ significantly in their dimensions and functions and are described in principle below.
  • the large bores 9 to 12 represent the individual process rooms in which the processes described in the four following sections run simultaneously.
  • a field electrode 4 previously cleaned in bore 12 is activated in that particles of the gas phase are deposited on electrode 4 from a supplied gas phase in a manner known per se as dendritic microneedles.
  • the aids for the deposition and the current supply to the individual electrodes 4 are not shown for the sake of clarity.
  • a field electrode 4 previously activated in bore 9 is dripped with the liquid analysis solution, while at the same time another electrode 4 is activated in bore 9.
  • the analyte remains on the dendrites of the activated electrode 4, so that the electrode 4 is loaded with the analyte in this way.
  • the analysis substance previously deposited in bore 10 on the activated field electrode 4 is made accessible to the analysis by ionization.
  • the ionization is carried out by field desorption ionization, laser ionization, chemical ionization or a suitable other solid-state ionization method.
  • a field electrode 4 previously used in bore 11 for ionization is freed of the dendritic microneedles and any residues of the analytical substance adhering to them.
  • This so-called cleaning of the field electrode 4 can be carried out mechanically by stripping the dendrites or, more appropriately, by burning off the dendrites in an electrical discharge.
  • the body 1 is rotated through 90 o so that the activated in bore 9 electrode 4 to the load compartment of the bore 10, in bore 10 with analyte loaded electrode 4 into the ionization chamber of bore 11, the electrode 4 used for bore ionization in bore 11 into the cleaning chamber of bore 12 and the electrode 4 cleaned in bore 12 again into the activation chamber of bore 9.
  • control of the individual processes, their interruption and the rotational movement of the body 1 between the repetitive process sequences can be carried out in a simple manner, for example by means of a suitable time switch or electronically.
  • the bore 6 is closed on both sides during operation by a fixed closure or by a cover, into which the passage for driving the rotary movement of the body 1 and bushings for electrical leads can be integrated.
  • a device for electron impact ionization and / or chemical ionization is introduced in one or more recesses 3 of the body 1. The same can also be done according to FIG. 2 in the depressions 29; 30; 31; Introduce 32 of the body 21.
  • the second exemplary embodiment shown in FIGS. 2 and 3 does not differ in principle from the one described above, but only in the type of field electrodes.
  • the different tasks which the four field electrodes 4 master in the process spaces are performed in the second exemplary embodiment by discrete segments 41 of a coherent thin wire 24 in the process spaces 29 to 32.
  • the wire 24 is guided by the stationary, cylindrical, laterally slotted body 21 in a radially circumferential notch 23 through the process spaces 29 to 32.
  • the body 21 does not act as the transport body, but rather the wire 24, which is unwound, for example, from a supply spool 20 and wound onto an empty spool 25 which can be driven by a motor, or according to Fig. 3 is drawn in the form of an endless wire loop from the guide and drive rollers 17 to 19 around the tube 21 in the direction of the arrow through the notch 23.
  • Room 29 acts as an activation room
  • room 30 acts as a loading room
  • room 31 is the ionization room
  • room 32 is the cleaning room. These rooms have the same effect as the corresponding rooms in the first example.
  • any segment 41 of the wire 24, for example about 1 mm long, is successively activated in this way in room 29, loaded with analysis substance in room 30, used in room 31 for ionizing the analysis substance and finally in room 32 of the dendrites and possible substance leftovers free.
  • the spaces 29 to 32 need not be arranged at right angles or at equal distances from one another. It is sufficient if the distances between the spaces 29 to 32 correspond to whole multiples of the wire segments 41 serving as field electrodes and leave enough space for the suction bores 33 to 40.
  • the bores 33 to 38 are evacuated together by a pump system and are intended to prevent gases from one of the process spaces 29 to 32 from reaching the adjacent process space.
  • the bores 39 and 40 are pumped differentially from the bores 33 to 38 by a further pump system, so that the high vacuum which is generally required for the ionization can be maintained in space 31 despite a certain leak rate through the notch 23.
  • the wall 22 of the body 21 lies tightly against the wall 28 of the bore 26 of the metal block 27.
  • the body 21 is inserted into the bore 26.
  • the bore 26 is tightly closed during operation.
  • the passages for the drive for moving the wire 24 and bushings for electrical leads can be incorporated into the closure.
EP19800101759 1979-04-06 1980-04-02 Procédé et appareil pour la coordination temporelle et spatiale du déroulement d'une ionisation à désorption par effet de champ Withdrawn EP0017221A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792913897 DE2913897A1 (de) 1979-04-06 1979-04-06 Verfahren und vorrichtung zur zeitlichen und raeumlichen koordination der prozessablaeufe einer felddesorptions-ionisierung
DE2913897 1979-04-06

Publications (1)

Publication Number Publication Date
EP0017221A1 true EP0017221A1 (fr) 1980-10-15

Family

ID=6067640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800101759 Withdrawn EP0017221A1 (fr) 1979-04-06 1980-04-02 Procédé et appareil pour la coordination temporelle et spatiale du déroulement d'une ionisation à désorption par effet de champ

Country Status (3)

Country Link
EP (1) EP0017221A1 (fr)
JP (1) JPS55139751A (fr)
DE (1) DE2913897A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041346A (en) * 1975-10-22 1977-08-09 E. I. Du Pont De Nemours And Company Electrochemical generation of field desorption emitters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041346A (en) * 1975-10-22 1977-08-09 E. I. Du Pont De Nemours And Company Electrochemical generation of field desorption emitters

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF PHYSICS E, SCIENTIFIC INSTRUMENTS, Band 12, Nr. 2, Januar 1979, London, GB, H.D. BECKEY: "Experimental techniques in field ionisation and field desorption mass spectrometry", Seiten 72-83 * Seite 74, linke Spalte, letzter Absatz bis Seite 76, rechte Spalte, Absatz 1; Seite 78, linke Spalte, Absatz 4 bis Seite 79, linke Spalte, Absatz 5 * *
JOURNAL OF PHYSICS E, SCIENTIFIC INSTRUMENTS, Band 9, Nr. 3, Marz 1976, London, GB, B.S. PRAHALLADA RAO et al.: "Vacuum lock-sample changer for a mass spectrometer", Seiten 205-207 * Seite 206, linke Spalte, Absatz 2 bis rechte Spalte, Absatz 1 * *

Also Published As

Publication number Publication date
JPS55139751A (en) 1980-10-31
DE2913897A1 (de) 1980-10-23

Similar Documents

Publication Publication Date Title
DE69927983T2 (de) Verfahren zur trennung und anreicherung von isotopen in der gasphase
DE102005054605B4 (de) Automatische Reinigung von Ionenquellen
DE3303435A1 (de) Verfahren und vorrichtung zum niederschlagen einer schicht auf einem traeger
DD297868A5 (de) Koronaentladungsanordnung mit verbesserter beseitigung von durch die koronaentladung entstehendnen schaedlichen substanzen
DE4405747A1 (de) Magnetfeldunterstützte Zerstäubungsanordnung und hiermit ausgerüstete Vakuumbehandlungsanlage
DE2708706A1 (de) Ueberfuehrungseinrichtung zwischen einem fluessigkeits-chromatographen und einem massenspektrometer
DE3331136C2 (fr)
DE102007017055A1 (de) Messung der Mobilität massenselektierter Ionen
DE2242916B2 (de) Einrichtung zum Transportieren von zu beschichtenden Substraten durch eine Vakuumanlage
DE1914747B2 (de) H.f.-kathodenzerstaeubungsvorrichtung
DE2701606A1 (de) System zum verarbeiten positiver und negativer ionen im massenspektrometer
CH696013A5 (de) Vorrichtung zur Behandlung eines bandförmigen Materials in einem Plasma-unterstützten Prozess.
EP0017221A1 (fr) Procédé et appareil pour la coordination temporelle et spatiale du déroulement d'une ionisation à désorption par effet de champ
DE2349302A1 (de) Verfahren und vorrichtung zur abtrennung von partikeln innerhalb eines plasmas
DE2742944A1 (de) Elektrographische vorrichtung
DE2449081A1 (de) Verfahren und vorrichtung zur ermittlung des gasgehaltes von materialien
DE1298833B (de) Vorrichtung zum Vakuumaufdampfen einer Vielzahl von festhaftenden Schichten bestimmter Dicke aus verschiedenen Materialien auf eine Unterlage mittels Elektronenbeschuss
DE3002643C2 (de) Vorrichtung zum Beschichten von Werkstücksoberflächen mit reflektierenden Metall- sowie Schutzschichten
DE1107368B (de) Verfahren zum Betrieb einer Ionenpumpe und Vorrichtung zur Durchfuehrung des Verfahrens
DE2027301C3 (de) Vorrichtung zum Beschichten von Teilen von Gegenständen mittels Ionenplasmazerstäubung
DE4317749A1 (de) Massenspektrometer mit Einrichtungen zum Überwachen der Strahlung, die ausgesendet wird, wenn Ionen mit einem Zielgas kollidieren
US4311910A (en) Field desorption ionization
DE1816431A1 (de) Vorrichtung zur Kathodenzerstaeubung
DE2305359A1 (de) Anordnung zur aufdampfung duenner schichten unter gleichzeitiger einwirkung eines ionisierten gases
DE102010031259A1 (de) Stützeinrichtung für eine Magnetronanordnung mit einem rotierenden Target

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB IT NL

17P Request for examination filed

Effective date: 19810211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19830910