EP0016485B1 - Anode disc for x-ray tube with rotating anode - Google Patents

Anode disc for x-ray tube with rotating anode Download PDF

Info

Publication number
EP0016485B1
EP0016485B1 EP80200166A EP80200166A EP0016485B1 EP 0016485 B1 EP0016485 B1 EP 0016485B1 EP 80200166 A EP80200166 A EP 80200166A EP 80200166 A EP80200166 A EP 80200166A EP 0016485 B1 EP0016485 B1 EP 0016485B1
Authority
EP
European Patent Office
Prior art keywords
ring
pyrographite
axis
anode
anode disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80200166A
Other languages
German (de)
French (fr)
Other versions
EP0016485A1 (en
Inventor
Horst Dr. Hübner
Bernhard Dr.-Ing. Lersmacher
Hans Dr. Lydtin
Rof Wilden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Patentverwaltung GmbH
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung GmbH, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Patentverwaltung GmbH
Publication of EP0016485A1 publication Critical patent/EP0016485A1/en
Application granted granted Critical
Publication of EP0016485B1 publication Critical patent/EP0016485B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/108Substrates for and bonding of emissive target, e.g. composite structures

Definitions

  • the invention relates to an anode disk for a rotating anode X-ray tube with a support body which can be connected to a shaft and is connected to a ring made of pyrographite which is arranged concentrically to its axis of rotation and whose surfaces of greater thermal conductivity run at least approximately perpendicular to the focal spot path connected to it.
  • Such an anode disk is known from DE-OS 2440988.
  • the graphite carrier body of the anode disk is provided with a groove into which the pyrographite ring is inserted.
  • This pyrographite ring dissipates the heat generated in the focal spot on the outer edge of the pyrographite ring better than would be the case if the anode body consisted exclusively of (electro) graphite.
  • the heat generated in the focal spot path is dissipated inwards towards the axis of the carrier body, because the planes of greater thermal and electrical conductivity perpendicular to the growth direction of the pyrographite are perpendicular to the axis of the graphite body of the rotating anode.
  • the bearings of the shaft to which the anode disk is connected inside an X-ray tube can be thermally overloaded.
  • the object of the present invention is to design an X-ray tube of the type mentioned at the outset such that, on the one hand, the heat generated in the focal spot can be dissipated well, and on the other hand, in the operating state of an X-ray tube containing the anode disk mounted on a shaft, the bearings of the shaft are not thermally overloaded.
  • this object is achieved in that the areas of greater thermal and electrical conductivity run parallel to the axis of rotation of the carrier body.
  • rapid removal of the heat from the focal spot path is always ensured, the heat flow in the direction of at least one of the outer surfaces of the anode disk - and not only towards the axis of rotation as in DE-OS 24 40 988 - so that the heat is good on the one hand is dissipated and on the other hand the bearings are not thermally overloaded.
  • Such a pyrographite is used with particular advantage, which is obtained by deposition from the gas phase at low pyrolysis gas pressures (p - 1.33 to 13.3 mbar) and high deposition temperatures (-2000 ° C.) - cf. e.g. B. «Philips Technical Review 1977/78. No. 8, page 205 ff or “Chemie-Ingenieur-Technik”, Volume 39, H 14 (1967), pages 833-842.
  • the graphite described in DE-OS 24 40 988 is a recrystallized - i.e. thermally aftertreated - form.
  • the areas of greater thermal conductivity thus run parallel to the axis of rotation, i. H. they either enclose the axis of rotation concentrically or they lie in planes that run at least approximately radially. If the pyrographite ring is placed in a groove in the latter case, the heat generated in the focal spot path flows through three sides of the ring into the carrier body, and the bearings are protected because this heat can then be optimally stored and radiated in the carrier body. If instead the pyrographite ring is only attached to the carrier body with its inner edge, then two sides of the ring are free to radiate heat generated in the focal track.
  • the focal spot path can also be arranged on the outer circumferential surface of the pyrographite ring if the areas of greater thermal conductivity run radially. However, this presupposes that the metal of the focal spot track holds the pyrographite ring - which in this case must consist of sector-like sections - which can cause difficulties.
  • the heat is dissipated from the focal spot on the one hand to the side of the anode disk facing away from the focal spot path, and on the other hand in the direction of the axis of rotation of the anode disk.
  • the heat transport in the direction of the axis of rotation of the anode plate which could possibly lead to thermal overloading of the bearings, can be reduced according to a development of the invention in that the levels of greater thermal conductivity of the sector-like sections run at least approximately to the axis of rotation and that between the inner edge of the ring and the carrier body, a further ring is provided, the thermal conductivity of which is substantially smaller in the radial direction than that of the ring.
  • the ring made of pyrographite is designated by 1.
  • the pyrographite ring has its best thermal conductivity in the radial direction and in the axial direction.
  • Such a ring can practically not be produced in one piece. Therefore, as indicated by dashed lines, it consists of a large number of segments 10, the adjoining side surfaces of which run approximately radially and whose inner and outer surfaces have a curvature concentric to the axis 3 of the anode disk.
  • These segments can be produced by sawing and / or grinding from pyrographite bodies, the growth direction of which runs perpendicular to the side surfaces of the segments 10 indicated by dashed lines.
  • the upper end face of the ring 1 made of pyrographite, which faces the cathode when the anode disk is installed in an X-ray tube, is provided with a layer 4 made of a material which has a high atomic number and a high temperature resistance, preferably with a layer made of tungsten or Tungsten alloy.
  • This layer can either be applied by deposition from the gas phase onto the beveled end face of the pyrographite ring - it is then relatively thin - or by soldering on a thicker layer with the aid of zirconium such as z. B. described in DE-PS 21 15 896.
  • a further ring 5 is provided in the interior of the ring 1, which serves as a heat barrier and has a significantly lower thermal conductivity - at least in the direction of the axis 3.
  • the ring 5 can also be made of pyrographite for this purpose, but then the surface must be its greater conductivity run concentrically to axis 3.
  • Such a ring can be obtained by depositing a carbon-containing gas on a suitably shaped mandrel, with a direction of growth parallel to the diameter of the ring 5.
  • the pyrographite ring 1 is enclosed on its outer edge by a further one or more millimeter thick pyrographite ring 6, the surface of which has greater thermal conductivity also runs concentrically to the axis 3 of the anode disk.
  • the rings 5 and 6 can be carried out simultaneously and directly by depositing a carbon-containing gas on the pyrographite ring 1.
  • the end faces of the ring 1 are also covered with a layer of pyrographite. These layers on the end faces of the ring hinder heat dissipation and must therefore be ground down.
  • the outer ring 6 is provided with bores 7 which are uniformly distributed on its circumference and through which holes the outer surface of the pyrographite ring 1 can radiate heat.
  • the outer diameter of the pyrographite ring 4 can be 80 to 300 mm, preferably 120 mm, its thickness 10 to 40 mm, preferably 20 mm, and its height 10 to 40 mm, preferably 20 mm.
  • the heat generated in the focal spot track 4 is transported through the pyrographite ring to its lower end face, where it can be radiated, and to its outer surface, where it is also radiated.
  • the thermal conductivity and the thermal capacity of the carrier body 8, which connects the ring 1 to a shaft (not shown in FIG. 1) through the bore 9 in the carrier body only have to meet low requirements if its electrical conductivity is sufficient .
  • the carrier body can therefore consist of normal, porous or microporous glass-like carbons, foam-like carbons, with carbide-forming and non-carbide-forming metals, impregnated foam carbons, fiber-reinforced boron nitride or also from a light metal such as titanium.
  • the carrier body 8 is connected to the inner surface of the inner ring 5 by suitable measures, such as clamping, screwing, soldering or welding.
  • suitable measures such as clamping, screwing, soldering or welding.
  • the soldering can be done in a known manner by using e.g. B. a zircon solder.
  • suitable measures such as. B. the use of a carrier body in the form of a spoke wheel or two carrier bodies of equal size offset in the axial direction, it is possible to keep the anode disk stable even with large disk diameters.
  • a pyrographite ring can also be used, which is formed in one piece and whose surfaces of better thermal conductivity surround the axis 3 concentrically.
  • the outer rings 5 and 6 can be omitted.
  • Such a ring could be made by depositing a carbon-containing gas on a cylindrical mandrel. However, the heat from the focal spot path would only be transported downwards, but not to the outside.
  • the carrier body 8 is provided with a groove 11 which is approximately rectangular in cross section and in which a pyrographite ring 1 is arranged. As indicated by the arrows 2, the surfaces of the better conductivity run in the direction of the ring and in the axial direction.
  • the pyrographite layers thus form 3 hollow cylindrical surfaces concentric to the disc axis.
  • the focal spot web 4 can be applied to the beveled end face of the pyrographite ring in the manner described in connection with FIG. 1.
  • the connection between the pyrographite ring 1 and the carrier body 8 can be done by the techniques described above.
  • a ring consisting of many segments can be used and these segments can either be arranged in such a way that their levels of greater conductivity run in the radial direction or in turn enclose the axis 3 concentrically.
  • a heat barrier is required between the carrier body and the inner edge of the pyrographite ring 1 in order to prevent the heat from flowing out inwardly from the pyrographite body.

Landscapes

  • X-Ray Techniques (AREA)

Description

Die Erfindung betrifft eine Anodenscheibe für eine Drehanoden-Röntgenröhre mit einem mit einer Welle verbindbaren Trägerkörper, der mit einem konzentrisch zu seiner Rotationsachse angeordneten Ring aus Pyrographit verbunden ist, dessen Flächen größerer thermischer Leitfähigkeit wenigstens annähernd senkrecht zu der mit ihm verbundenen Brennfleckbahn verlaufen.The invention relates to an anode disk for a rotating anode X-ray tube with a support body which can be connected to a shaft and is connected to a ring made of pyrographite which is arranged concentrically to its axis of rotation and whose surfaces of greater thermal conductivity run at least approximately perpendicular to the focal spot path connected to it.

Eine solche Anodenscheibe ist aus der DE-OS 2440988 bekannt. Dabei ist der aus Graphit bestehende Trägerkörper der Anodenscheibe mit einer Nut versehen, in die der Ring aus Pyrographit eingelegt ist. Durch diesen Pyrographitring wird die Wärme, die in der auf dem Außenrand des Pyrographitrings aufgebrachten Brennfleckbahn erzeugt wird, besser abgeführt als es der Fall wäre, wenn der Anodenkörper ausschließlich aus (Elektro-) Graphit besteht.Such an anode disk is known from DE-OS 2440988. The graphite carrier body of the anode disk is provided with a groove into which the pyrographite ring is inserted. This pyrographite ring dissipates the heat generated in the focal spot on the outer edge of the pyrographite ring better than would be the case if the anode body consisted exclusively of (electro) graphite.

Die in der Brennfleckbahn erzeugte Wärme wird dabei nach innen zur Achse des Trägerkörpers hin abgeleitet, weil die senkrecht zur Wachstumsrichtung des Pyrographits befindlichen Ebenen der größeren thermischen und elektrischen Leitfähigkeit dabei senkrecht zur Achse des Graphitkörpers der Drehanode liegen. Dadurch können die Lager der Welle, mit der die Anodenscheibe im Innern einer Röntgenröhre verbunden ist, thermisch überlastet werden.The heat generated in the focal spot path is dissipated inwards towards the axis of the carrier body, because the planes of greater thermal and electrical conductivity perpendicular to the growth direction of the pyrographite are perpendicular to the axis of the graphite body of the rotating anode. As a result, the bearings of the shaft to which the anode disk is connected inside an X-ray tube can be thermally overloaded.

Aufgabe der vorliegenden Erfindung ist es, eine Röntgenröhre der eingangs genannten Art so auszugestalten, daß einerseits die im Brennfleck erzeugte Wärme gut abgeführt werden kann, andererseits im Betriebszustand einer die Anodenscheibe auf einer Welle montiert enthaltenden Röntgenröhre die Lager der Welle nicht thermisch überlastet werden.The object of the present invention is to design an X-ray tube of the type mentioned at the outset such that, on the one hand, the heat generated in the focal spot can be dissipated well, and on the other hand, in the operating state of an X-ray tube containing the anode disk mounted on a shaft, the bearings of the shaft are not thermally overloaded.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Flächen der größeren thermischen und elektrischen Leitfähigkeit parallel zur Drehachse des Trägerkörpers verlaufen. Hierbei ist stets ein schneller Abtransport der Wärme aus der Brennfleckbahn gewährleistet, wobei der Wärmestrom in Richtung auf wenigstens eine der Außenflächen der Anodenscheibe - und nicht nur zur Drehachse hin wie bei der DE-OS 24 40 988 - verläuft, so daß die Wärme einerseits gut abgeführt wird und andererseits die Lager thermisch nicht überlastet werden.According to the invention, this object is achieved in that the areas of greater thermal and electrical conductivity run parallel to the axis of rotation of the carrier body. Here, rapid removal of the heat from the focal spot path is always ensured, the heat flow in the direction of at least one of the outer surfaces of the anode disk - and not only towards the axis of rotation as in DE-OS 24 40 988 - so that the heat is good on the one hand is dissipated and on the other hand the bearings are not thermally overloaded.

Mit besonderem Vorteil wird dabei ein solcher Pyrographit verwendet, der durch Abscheidung aus der Gasphase bei niedrigen Pyrolysegasdrücken (p - 1,33 bis 13,3 mbar) und hohen Abscheidungstemperaturen (-2000°C) gewonnen wird - vgl. z. B. « Philips Technische Rundschau 1977/78. Nr. 8, Seite 205 ff oder « Chemie-Ingenieur-Technik », 39. Jahrgang, H 14 (1967), Seiten 833-842. Bei dem in der DE-OS 24 40 988 beschriebenen Graphit handelt es sich demgegenüber um eine rekristallisierte - d.h. thermisch nachbehandelte - Form.Such a pyrographite is used with particular advantage, which is obtained by deposition from the gas phase at low pyrolysis gas pressures (p - 1.33 to 13.3 mbar) and high deposition temperatures (-2000 ° C.) - cf. e.g. B. «Philips Technical Review 1977/78. No. 8, page 205 ff or “Chemie-Ingenieur-Technik”, Volume 39, H 14 (1967), pages 833-842. In contrast, the graphite described in DE-OS 24 40 988 is a recrystallized - i.e. thermally aftertreated - form.

Die Flächen der größeren thermischen Leitfähigkeit verlaufen dabei also parallel zur Drehachse, d. h. sie umschließen entweder die Drehachse konzentrisch oder sie liegen in Ebenen, die wenigstens annähernd radial verlaufen. Wird im letztgenannten Fall der Pyrographitring in eine Nut eingelegt, dann strömt die in der Brennfleckbahn erzeugte Wärme durch drei Seiten des Ringes in den Trägerkörper, und die Lager werden geschont, weil diese Wärme dann optimal in dem Trägerkörper gespeichert und abgestrahlt werden kann. Wird stattdessen der Pyrographitring nur mit seinem Innenrand an dem Trägerkörper befestigt, dann sind zwei Seiten des Ringes frei zur Abstrahlung von in der Brennfleckbahn erzeugter Wärme.The areas of greater thermal conductivity thus run parallel to the axis of rotation, i. H. they either enclose the axis of rotation concentrically or they lie in planes that run at least approximately radially. If the pyrographite ring is placed in a groove in the latter case, the heat generated in the focal spot path flows through three sides of the ring into the carrier body, and the bearings are protected because this heat can then be optimally stored and radiated in the carrier body. If instead the pyrographite ring is only attached to the carrier body with its inner edge, then two sides of the ring are free to radiate heat generated in the focal track.

Die Brennfleckbahn kann - wenn die Flächen größerer thermischer Leitfähigkeit radial verlaufen - auch auf der äußeren Mantelfläche des Pyrographitringes angeordnet sein. Dies setzt aber voraus, daß das Metall der Brennfleckbahn den Pyrographitring - der in diesem Fall aus sektorartigen Teilstücken bestehen muß - zusammenhält, was unter Umständen Schwierigkeiten mit sich bringt.The focal spot path can also be arranged on the outer circumferential surface of the pyrographite ring if the areas of greater thermal conductivity run radially. However, this presupposes that the metal of the focal spot track holds the pyrographite ring - which in this case must consist of sector-like sections - which can cause difficulties.

Geringere Probleme ergeben sich in dieser Hinsicht, wenn nach einer Weiterbildung der Erfindung die Brennfleckbahn auf einer Stirnseite des Ringes aufgebracht ist.In this respect, minor problems arise if, according to a development of the invention, the focal spot track is applied to one end face of the ring.

Wenn die Flächen der größeren thermischen Leitfähigkeit des Pyrographitringes in radial zur Drehachse verlaufenden Ebenen liegen, wird die Wärme aus dem Brennfleck einerseits zu der von der Brennfleckbahn abgewandten Seite der Anodenscheibe abgeleitet, andererseits aber auch in Richtung auf die Drehachse der Anodenscheibe. Der Wärmetransport in Richtung auf die Drehachse der Anodenscheibe, der unter Umständen zu einer thermischen Überlastung der Lager führen könnte, kann nach einer Weiterbildung der Erfindung dadurch verringert werden, daß die Ebenen größerer thermischer Leitfähigkeit der sektorartigen Teilstücke wenigstens annähernd auf die Drehachse zulaufen und daß zwischen dem Innenrand des Ringes und dem Trägerkörper ein weiterer Ring vorgesehen ist, dessen Wärmeleitfähigkeit in radialer Richtung wesentlich kleiner ist als die des Ringes.If the surfaces of the greater thermal conductivity of the pyrographite ring lie in planes running radially to the axis of rotation, the heat is dissipated from the focal spot on the one hand to the side of the anode disk facing away from the focal spot path, and on the other hand in the direction of the axis of rotation of the anode disk. The heat transport in the direction of the axis of rotation of the anode plate, which could possibly lead to thermal overloading of the bearings, can be reduced according to a development of the invention in that the levels of greater thermal conductivity of the sector-like sections run at least approximately to the axis of rotation and that between the inner edge of the ring and the carrier body, a further ring is provided, the thermal conductivity of which is substantially smaller in the radial direction than that of the ring.

Die Erfindung wird nachstehend anhand der Zeichnung näher erläutert. Es zeigen

  • Figur 1 ein erstes Ausführungsbeispiel und
  • Figur 2 ein zweites Ausführungsbeispiel einer erfindungsgemäßen durch eine parallel zur Achse der Anodenscheibe verlaufenden schnitthalbierten Anodenscheibe in einer Schrägansicht.
The invention is explained below with reference to the drawing. Show it
  • Figure 1 shows a first embodiment and
  • Figure 2 shows a second embodiment of an inventive halved by a parallel to the axis of the anode disk cut anode disk in an oblique view.

Bei der in Fig. 1 dargestellten Anodenscheibe ist der Ring aus Pyrographit mit 1 bezeichnet. Wie durch die Pfeile 2 angedeutet, hat der Pyrographitring sein bestes thermisches Leitvermögen in radialer Richtung und in axialer Richtung. Ein derartiger Ring ist praktisch nicht in einem Stück herzustellen. Er besteht daher, wie durch gestrichelte Linien angedeutet, aus einer Vielzahl von Segmenten 10, deren aneinander angrenzende Seitenflächen etwa radial verlaufen und deren Innen- und Außenflächen eine zur Achse 3 der Anodenscheibe konzentrische Krümmung aufweisen. Diese Segmente können durch Sägen und/oder Schleifen aus Pyrographitkörpern hergestellt werden, deren Wachstumsrichtung senkrecht zu den gestrichelt angedeuteten Seitenflächen der Segmente10 verläuft. Die obere Stirnfläche des Ringes 1 aus Pyrographit, die bei Einbau der Anodenscheibe in eine Röntgenröhre deren Kathode zugewandt ist, ist mit einer Schicht 4 aus einem Stoff versehen, der eine hohe Ordnungszahl und eine hohe Temperaturbeständigkeit aufweist, vorzugsweise mit einer Schicht aus Wolfram oder einer Wolframlegierung. Diese Schicht kann entweder durch Abscheidung aus der Gasphase auf die abgeschrägte Stirnfläche des Pyrographitringes aufgebracht werden - sie ist dann verhältnismäßig dünn - oder durch Anlöten einer dickeren Schicht unter Zuhilfenahme von Zirkon, wie z. B. in der DE-PS 21 15 896 beschrieben.In the anode disk shown in Fig. 1, the ring made of pyrographite is designated by 1. As indicated by the arrows 2, the pyrographite ring has its best thermal conductivity in the radial direction and in the axial direction. Such a ring can practically not be produced in one piece. Therefore, as indicated by dashed lines, it consists of a large number of segments 10, the adjoining side surfaces of which run approximately radially and whose inner and outer surfaces have a curvature concentric to the axis 3 of the anode disk. These segments can be produced by sawing and / or grinding from pyrographite bodies, the growth direction of which runs perpendicular to the side surfaces of the segments 10 indicated by dashed lines. The upper end face of the ring 1 made of pyrographite, which faces the cathode when the anode disk is installed in an X-ray tube, is provided with a layer 4 made of a material which has a high atomic number and a high temperature resistance, preferably with a layer made of tungsten or Tungsten alloy. This layer can either be applied by deposition from the gas phase onto the beveled end face of the pyrographite ring - it is then relatively thin - or by soldering on a thicker layer with the aid of zirconium such as z. B. described in DE-PS 21 15 896.

Um zu verhindern, daß die in der so gebildeten Brennfleckbahn 4 erzeugte Wärme aus dem Ring nach innen zur Achse 3 hin abfließt (der Ring 1 weist aufgrund der durch die Pfeile 2 gekennzeichneten Lage der Ebenen seiner größeren Wärmeleitfähigkeit in dieser Richtung ja eine gute Wärmeleitfähigkeit auf), ist im Innern des Ringes 1 ein weiterer Ring 5 vorgesehen, der als Wärmesperre dient und eine wesentlich geringere Wärmeleitfähigkeit aufweist - zumindest in Richtung auf die Achse 3. Der Ring 5 kann zu diesem Zweck ebenfalls aus Pyrographit bestehen, jedoch muß dann die Fläche seiner größeren Leitfähigkeit konzentrisch zur Achse 3 verlaufen. Ein solcher Ring kann durch Abscheiden eines Kohlenstoff enthaltenden Gases auf einem geeignet geformten Dorn erhalten werden, wobei sich eine Wachstumsrichtung parallel zum Durchmesser des Ringes 5 ergibt. Zur Erzielung einer ausreichenden mechanischen Festigkeit wird der Pyrographitring 1 auf seinem Außenrand von einem weiteren einen oder mehrere Millimeter dicken Pyrographitring 6 umschlossen, dessen Fläche größerer thermischer Leitfähigkeit ebenfalls konzentrisch zur Achse 3 der Anodenscheibe verläuft. Gegebenenfalls können die Ringe 5 und 6 gleichzeitig und direkt durch Abscheiden eines kohlenstoffhaltigen Gases auf dem Pyrographitring 1 erfolgen. Dabei werden allerdings auch die Stirnflächen des Ringes 1 mit einer Schicht aus Pyrographit überzogen. Diese Schichten auf den Stirnflächen des Ringes behindern die Wärmeableitung und müssen daher abgeschliffen werden.In order to prevent the heat generated in the focal spot path 4 thus formed from flowing out of the ring inwards towards the axis 3 (the ring 1 has a good thermal conductivity in this direction because of the position of the planes of its greater thermal conductivity indicated by the arrows 2) ), a further ring 5 is provided in the interior of the ring 1, which serves as a heat barrier and has a significantly lower thermal conductivity - at least in the direction of the axis 3. The ring 5 can also be made of pyrographite for this purpose, but then the surface must be its greater conductivity run concentrically to axis 3. Such a ring can be obtained by depositing a carbon-containing gas on a suitably shaped mandrel, with a direction of growth parallel to the diameter of the ring 5. To achieve sufficient mechanical strength, the pyrographite ring 1 is enclosed on its outer edge by a further one or more millimeter thick pyrographite ring 6, the surface of which has greater thermal conductivity also runs concentrically to the axis 3 of the anode disk. If necessary, the rings 5 and 6 can be carried out simultaneously and directly by depositing a carbon-containing gas on the pyrographite ring 1. However, the end faces of the ring 1 are also covered with a layer of pyrographite. These layers on the end faces of the ring hinder heat dissipation and must therefore be ground down.

Um zu erreichen, daß die vom Pyrographitring 1 aufgenommene Wärme durch den äußeren Ring 6, der in radialer Richtung eine schlechte Wärmeleitfähigkeit aufweist, nach außen transportiert werden kann, ist der äußere Ring 6 mit gleichmäßig an seinem Umfang verteilten Bohrungen 7 versehen, durch die hindurch die Außenfläche des Pyrographitringes 1 Wärme abstrahlen kann.In order to ensure that the heat absorbed by the pyrographite ring 1 can be transported to the outside through the outer ring 6, which has poor thermal conductivity in the radial direction, the outer ring 6 is provided with bores 7 which are uniformly distributed on its circumference and through which holes the outer surface of the pyrographite ring 1 can radiate heat.

Der Außendurchmesser des Pyrographitringes 4 kann 80 bis 300 mm, vorzugsweise 120mm, betragen, seine Dicke 10 bis 40 mm, vorzugsweise 20 mm, und seine Höhe 10 bis 40 mm, vorzugsweise 20 mm. Die in der Brennfleckbahn 4 erzeugte Wärme wird durch den Pyrographitring zu seiner unteren Stirnfläche transportiert, wo sie abgestrahlt werden kann und zu seiner Außenfläche, wo sie ebenfalls abgestrahlt wird. Bei Verwendung eines derartigen Ringes müssen an die Wärmeleitfähigkeit und die Wärmekapazität des Trägerkörpers 8, der den Ring 1 mit einer in Fig. 1 nicht näher dargestellten durch die Bohrung 9 im Trägerkörper verlaufenden Welle verbindet, nur geringe Anforderungen gestellt werden, wenn seine elektrische Leitfähigkeit ausreicht. Der Trägerkörper kann daher aus normalen, porösen oder mikroporösen glasartigen Kohlenstoffen, schaumartigen Kohlenstoffen, mit karbidbildenden und nicht karbidbildenden Metallen, imprägnierten Schaumkohlenstoffen, faserverstärktem Bornitrid oder auch aus einem Leichtmetall wie Titan bestehen.The outer diameter of the pyrographite ring 4 can be 80 to 300 mm, preferably 120 mm, its thickness 10 to 40 mm, preferably 20 mm, and its height 10 to 40 mm, preferably 20 mm. The heat generated in the focal spot track 4 is transported through the pyrographite ring to its lower end face, where it can be radiated, and to its outer surface, where it is also radiated. When using such a ring, the thermal conductivity and the thermal capacity of the carrier body 8, which connects the ring 1 to a shaft (not shown in FIG. 1) through the bore 9 in the carrier body, only have to meet low requirements if its electrical conductivity is sufficient . The carrier body can therefore consist of normal, porous or microporous glass-like carbons, foam-like carbons, with carbide-forming and non-carbide-forming metals, impregnated foam carbons, fiber-reinforced boron nitride or also from a light metal such as titanium.

Der Trägerkörper 8 ist mit der Innenfläche des Innenringes 5 durch geeignete Maßnahmen, wie Klemmen, Schrauben, Löten oder Schweißen verbunden. Das Löten kann in bekannter Weise durch Verwendung z. B. eines Zirkonlotes erfolgen. Durch geeignete Maßnahmen, wie z. B. die Verwendung eines Trägerkörpers in Form eines Speichenrades oder zweier gleich großer in Achsrichtung gegeneinander versetzter Trägerkörper, ist es möglich, die Anodenscheibe auch bei großen Scheibendurchmessern stabil zu halten.The carrier body 8 is connected to the inner surface of the inner ring 5 by suitable measures, such as clamping, screwing, soldering or welding. The soldering can be done in a known manner by using e.g. B. a zircon solder. Through suitable measures, such as. B. the use of a carrier body in the form of a spoke wheel or two carrier bodies of equal size offset in the axial direction, it is possible to keep the anode disk stable even with large disk diameters.

Anstelle eines aus Segmenten zusammengesetzten Ringes 1 kann auch ein Pyrographitring benutzt werden, der einstückig ausgebildet ist und dessen Flächen besserer thermischer Leitfähigkeit die Achse 3 konzentrisch umschließen. Die äußeren Ringe 5 und 6 können dabei entfallen. Ein solcher Ring könnte durch Abscheiden eines kohlenstoffhaltigen Gases auf einem zylinderförmigen Dorn erfolgen. Allerdings würde dabei die Wärme aus der Brennfleckbahn lediglich nach unten, jedoch nicht nach außen, transportiert.Instead of a ring 1 composed of segments, a pyrographite ring can also be used, which is formed in one piece and whose surfaces of better thermal conductivity surround the axis 3 concentrically. The outer rings 5 and 6 can be omitted. Such a ring could be made by depositing a carbon-containing gas on a cylindrical mandrel. However, the heat from the focal spot path would only be transported downwards, but not to the outside.

Bei der in Fig. 2, in der für die entsprechenden Teile der Anodenscheibe die gleichen Bezugszeichen verwendet sind wie in Fig. 1, dargestellten Anodenscheibe ist der Trägerkörper 8 mit einer im Querschnitt etwa rechteckigen Nut 11 versehen, in der ein Pyrographitring 1 angeordnet ist. Wie durch die Pfeile 2 angedeutet, verlaufen die Flächen der besseren Leitfähigkeit in Richtung des Ringes und in axialer Richtung. Die Pyrographitschi*chten bilden dabei also zur Scheibenachse 3 konzentrische Hohlzylinderflächen. Die Brennfleckbahn 4 kann auf die abgeschrägte Stirnfläche des Pyrographitringes in der in Verbindung mit Fig. 1 beschriebenen Weise aufgebracht werden. Die Verbindung zwischen dem Pyrographitring 1 und dem Trägerkörper 8 kann durch die vorstehend beschriebenen Techniken erfolgen. Anstelle eines einstückigen Pyrographitringes kann ein aus vielen Segmenten bestehender Ring benutzt werden und diese Segmente können entweder so angeordnet sein, daß ihre Ebenen größerer Leitfähigkeit in radialer Richtung verlaufen oder wiederum die Achse 3 konzentrisch umschließen. Im erstgenannten Fall ist, wie in Verbindung mit Fig. 1 beschrieben, zwischen dem Trägerkörper und dem Innenrand des Pyrographitringes 1 eine Wärmesperre erforderlich, um zu verhindern, daß die Wärme in radialer Richtung aus dem Pyrographitkörper nach innen abfließt.2, in which the same reference numbers are used for the corresponding parts of the anode disk as in FIG. 1, the carrier body 8 is provided with a groove 11 which is approximately rectangular in cross section and in which a pyrographite ring 1 is arranged. As indicated by the arrows 2, the surfaces of the better conductivity run in the direction of the ring and in the axial direction. The pyrographite layers thus form 3 hollow cylindrical surfaces concentric to the disc axis. The focal spot web 4 can be applied to the beveled end face of the pyrographite ring in the manner described in connection with FIG. 1. The connection between the pyrographite ring 1 and the carrier body 8 can be done by the techniques described above. Instead of a one-piece pyrographite ring, a ring consisting of many segments can be used and these segments can either be arranged in such a way that their levels of greater conductivity run in the radial direction or in turn enclose the axis 3 concentrically. In the former case, as described in connection with FIG. 1, a heat barrier is required between the carrier body and the inner edge of the pyrographite ring 1 in order to prevent the heat from flowing out inwardly from the pyrographite body.

Claims (10)

1. An anode disc for a rotary-anode X-ray tube, comprising a supporting body which can be connected to a shaft and which is connected to a ring of pyrographite which is concentric with its axis of rotation and whose surfaces of higher thermal conductivity extend at least approximated perpendicularly with respect to the focal path connected thereto, characterized in that the surface of higher thermal and electrical conductivity extend parallel to the axis of rotation (3) of the supporting body (8).
2. An anode disc as claimed in Claim 1, characterized in that the focal path (4) is provided on an end face of the ring (1).
3. An anode disc as claimed in Claim 1, characterized in that the pyrographite ring (1) surrounds the supporting body (8) (Fig. 1).
4. An anode disc as claimed in Claim 1, characterized in that the supporting body (8) comprises a groove (11) which is concentric with its axis of rotation (3) and whose outer diameter is smaller than that of the supporting body, and in that the ring (1) is inserted in this groove (11) (Fig. 2).
5. An anode disc as claimed in any of Claims 1 to 4, characterized in that the pyrographite ring is an integral unit, and in that the surfaces of higher conductivity of the ring concentrically enclose the axis of rotation.
6. An anode disc as claimed in any of Claims 1 to 4, characterized in that the pyrographite ring (1) is composed of individual, sector-like parts (10) of pyrographite.
7. An anode disc as claimed in Claim 6, characterized in that the planes of higher thermal conductivity of the sector-like parts (10) extend at least approximately towards the axis of rotation (3) and in that a further ring (5) whose thermal conductivity in the radial direction is substantially lower than that of the ring is arranged between the inner edge of the ring and the supporting body (8).
8. An anode disc as claimed in Claim 7, characterized in that the further ring (5) consists of pyrographite, and in that the surfaces of higher thermal conductivity thereof extend concentrically about the axis of rotation of the supporting body.
9. An anode disc as claimed in Claim 3 and Claim 6, characterized in that the ring (1) composed of sector-like parts (10) is enclosed by an additional ring (6) of pyrographite, whose surfaces of higher thermal conductivity concentrically enclose the axis of rotation (3) of the anode disc.
10. An anode disc as claimed in Claim 9, characterized in that the outer ring (6) is provided with bores (7) on its outer side.
EP80200166A 1979-03-15 1980-02-27 Anode disc for x-ray tube with rotating anode Expired EP0016485B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792910138 DE2910138A1 (en) 1979-03-15 1979-03-15 ANODE DISC FOR A ROTATING ANODE ROENTINE TUBE
DE2910138 1979-03-15

Publications (2)

Publication Number Publication Date
EP0016485A1 EP0016485A1 (en) 1980-10-01
EP0016485B1 true EP0016485B1 (en) 1983-02-16

Family

ID=6065437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80200166A Expired EP0016485B1 (en) 1979-03-15 1980-02-27 Anode disc for x-ray tube with rotating anode

Country Status (5)

Country Link
US (1) US4344012A (en)
EP (1) EP0016485B1 (en)
JP (2) JPS55124935A (en)
DE (2) DE2910138A1 (en)
ES (1) ES489488A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2928993C2 (en) * 1979-07-18 1982-12-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Process for the manufacture of an X-ray tube rotating anode
DE3040719A1 (en) * 1980-10-29 1982-05-19 Philips Patentverwaltung Gmbh, 2000 Hamburg X-RAY TUBE ROTATING ANODE
DE3041249A1 (en) * 1980-11-03 1982-06-09 Philips Patentverwaltung Gmbh, 2000 Hamburg BODY THAT IS AT LEAST PARTLY OF PYROLYTIC GRAPHITE, IN PARTICULAR ANODE DISC FOR A TURNING ANODE TUBE AND METHOD FOR THE PRODUCTION THEREOF
US4417175A (en) * 1981-05-15 1983-11-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ion sputter textured graphite electrode plates
FR2593638B1 (en) * 1986-01-30 1988-03-18 Lorraine Carbone SUPPORT FOR ROTATING ANTICATHODE OF X-RAY TUBES
FR2625035B1 (en) * 1987-12-22 1993-02-12 Thomson Cgr ROTATING ANODE OF COMPOSITE MATERIAL FOR X-RAY TUBE
FR2644289B1 (en) * 1989-03-07 1991-06-21 Mecanique Magnetique Sa X-RAY TUBE WITH ROTATING ANODE SUSPENDED BY ACTIVE MAGNETIC BEARINGS AND COOLED BY FLUID CIRCULATION
US5444327A (en) * 1993-06-30 1995-08-22 Varian Associates, Inc. Anisotropic pyrolytic graphite heater
US7561669B2 (en) * 2004-06-03 2009-07-14 General Electric Company Method and system for thermal control in X-ray imaging tubes
DE102005062074A1 (en) * 2005-07-25 2007-02-01 Schunk Kohlenstofftechnik Gmbh Heat sink and method for producing a heat sink
DE102006010232A1 (en) * 2006-03-02 2007-09-06 Schunk Kohlenstofftechnik Gmbh Method for producing a heat sink and heat sink
EP2188827B1 (en) * 2007-08-16 2012-04-18 Philips Intellectual Property & Standards GmbH Hybrid design of an anode disk structure for high power x-ray tube configurations of the rotary-anode type
DE102009007871B4 (en) * 2009-02-06 2012-04-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. X-ray target, X-ray tube and method for generating X-ray radiation
US9449782B2 (en) * 2012-08-22 2016-09-20 General Electric Company X-ray tube target having enhanced thermal performance and method of making same
US9504438B2 (en) * 2012-10-12 2016-11-29 Koninklijke Philips N.V. Radiographic imaging apparatus and method
WO2016023669A1 (en) * 2014-08-12 2016-02-18 Koninklijke Philips N.V. Rotating anode and method for producing a rotating anode
AT17122U1 (en) * 2020-02-10 2021-06-15 Plansee Se X-ray rotating anode
US11633168B2 (en) * 2021-04-02 2023-04-25 AIX Scan, Inc. Fast 3D radiography with multiple pulsed X-ray sources by deflecting tube electron beam using electro-magnetic field

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1764042B1 (en) * 1968-03-26 1971-05-27 Koch & Sterzel Kg ROTARY ROTARY ANODE WITH GRAPHITE ANODE BODY
AT315305B (en) * 1971-03-16 1974-05-27 Siemens Ag Rotating anode for X-ray tubes
DE2152049A1 (en) * 1971-10-19 1973-04-26 Siemens Ag ROTATING ANODE ROUND TUBE
FR2235478B1 (en) * 1973-06-29 1977-02-18 Radiologie Cie Gle
FR2242775A1 (en) * 1973-08-31 1975-03-28 Radiologie Cie Gle Rotary anode for X-ray tubes - using pseudo-monocrystalline graphite for better heat conduction
JPS511737U (en) * 1974-06-19 1976-01-08
US4037127A (en) * 1975-12-05 1977-07-19 Tokyo Shibaura Electric Co., Ltd. X-ray tube
DE2618235C3 (en) * 1976-04-26 1983-01-13 Siemens AG, 1000 Berlin und 8000 München X-ray tube rotating anode
US4227112A (en) * 1978-11-20 1980-10-07 The Machlett Laboratories, Inc. Gradated target for X-ray tubes

Also Published As

Publication number Publication date
ES489488A1 (en) 1980-09-16
US4344012A (en) 1982-08-10
JPS55124935A (en) 1980-09-26
DE2910138A1 (en) 1980-09-25
EP0016485A1 (en) 1980-10-01
DE3061956D1 (en) 1983-03-24
JPS6162347U (en) 1986-04-26

Similar Documents

Publication Publication Date Title
EP0016485B1 (en) Anode disc for x-ray tube with rotating anode
DE1951383C3 (en) X-ray tube rotating anode with a composite body made from a heavy metal part and at least one graphite part and a method for producing it
DE2252291A1 (en) ROENTINE TUBE WITH A CLEARED ANODE
DE69123554T2 (en) Rotating anode x-ray tube
AT392171B (en) TURNING ANODE TUBE TUBES
EP0292055A2 (en) Radiation source for the generation of essentially monochromatic X-rays
DE2935222A1 (en) TURNING ANODE TUBE
DE2941396A1 (en) TURNING ANODE X-RAY TUBES WITH A BASE OF GRAPHITE
DE2845007C2 (en) Rotating anode X-ray tube with a metal piston
DE3926754C2 (en) Rotor arrangement for an X-ray tube
DE1803489A1 (en) Method for manufacturing a semiconductor component
DE2237855C3 (en) X-ray tube rotating anode
DE3926752A1 (en) ROTOR ARRANGEMENT FOR AN X-RAY TUBE
DE3013441C2 (en) Anode plate for a rotating anode X-ray tube and process for its manufacture
DE2658513C3 (en) Rotating anode X-ray tube
EP0685871A1 (en) Rotating anode X-ray tube
EP0051335B1 (en) Method of manufacturing an anode disc for a rotary-anode x-ray tube
EP0166029B1 (en) Gas laser tube and method for making the same
CH652861A5 (en) X-RAY TUBE ROTATING ANODE.
EP0050893A1 (en) Rotating anode for an X-ray tube
EP3590124B1 (en) X-ray tube, x-ray device and method for manufacturing an x-ray tube and an x-ray device
DE1539111A1 (en) Semiconductor component
DE2405334C3 (en) Rotating anode X-ray tube
DE2521097A1 (en) METHOD OF MANUFACTURING AN ANODE FOR A ROENTINE TUBE AND ANODE MANUFACTURED BY THIS METHOD
DE2759148A1 (en) Soldered joints for components made of pyrolytic graphite - used esp. to mfr. electrodes for high frequency electron tubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB NL

17P Request for examination filed

Effective date: 19801210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB NL

REF Corresponds to:

Ref document number: 3061956

Country of ref document: DE

Date of ref document: 19830324

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840227

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19840229

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840425

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840522

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19850228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19850901

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19851031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19871103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT