EP0014918A1 - Apparatus for depositing ink droplets on a recording medium - Google Patents

Apparatus for depositing ink droplets on a recording medium Download PDF

Info

Publication number
EP0014918A1
EP0014918A1 EP80100647A EP80100647A EP0014918A1 EP 0014918 A1 EP0014918 A1 EP 0014918A1 EP 80100647 A EP80100647 A EP 80100647A EP 80100647 A EP80100647 A EP 80100647A EP 0014918 A1 EP0014918 A1 EP 0014918A1
Authority
EP
European Patent Office
Prior art keywords
ink
plate
holes
layer
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80100647A
Other languages
German (de)
French (fr)
Other versions
EP0014918B1 (en
Inventor
François Lange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMH Alcatel SA
Original Assignee
SMH Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMH Alcatel SA filed Critical SMH Alcatel SA
Priority to AT80100647T priority Critical patent/ATE3833T1/en
Publication of EP0014918A1 publication Critical patent/EP0014918A1/en
Application granted granted Critical
Publication of EP0014918B1 publication Critical patent/EP0014918B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14088Structure of heating means
    • B41J2/14104Laser or electron beam heating the ink

Definitions

  • the present invention relates to a device intended for depositing ink drops on a support and in particular an apparatus for printing a graphic on a support of limited dimensions such as postal items, tickets or labels.
  • the device used requires the presence of photoconductive pigments, that is to say very fine particles dispersed in the ink.
  • the phenomena involved are exclusively of an electrostatic nature, the effect of light on the photoconductive pigments triggering the movement of the particles.
  • the device only works if, in the absence of a laser beam, the ink is retained by a very low capillary force. Then the slightest shock can cause an inadvertent ejection of ink.
  • the device according to the present invention overcomes this drawback.
  • the result obtained is more reliable as a result of the use of thermal effects on a photoconductive material raising the temperature and consequently the pressure of the ink.
  • the subject of the present invention is a device intended for depositing drops of ink on a support so as to form thereon one or more graphics, said mosaics, points being chosen at each operation from a pointa network and comprising a first plate placed in a substantially parallel manner at a small distance from said support, this plate being perforated with a set of holes, a second plate fixed to the first plate d '' a manner substantially parallel to the first plate, the space between the first and second plates defining a chamber containing ink to be deposited, actuating means making it possible to eject through the selected holes of said assembly a small amount of ink, said actuating means raising the temperature of the ink in the portion of said common chamber comprised between said first and second plates, portion corresponding to the selected ejection hole, and comprising the application of an electrical voltage to at least one plate combined with illumination means sending radiation through said second plate, characterized in that said second plate com at least partially carries a layer of photoconductive material whose electrical resistivity decreases under the action of said
  • the present invention also relates to an apparatus for printing on a support of limited dimensions, in particular postal items, labels or tickets of a graphic design comprising a constant part and a variable part, characterized in that it comprises a first series of means intended for variable printing of graphics, these means making it possible to deposit drops of ink through a certain number of holes selected from a first set of holes, and a second series of means intended for printing the constant part of the graphics, these means making it possible to deposit, for each of said graphics, ink drops through the whole of a second set of holes, this second set being either determined once and for all for each device, or variable by l exchange of an interchangeable element of the device.
  • the device is shown very schematically in the figures and 2.
  • a plate 1 is pierced with a set of holes 4 and defines with a rear plate 2 a chamber 3 containing ink to be deposited,
  • a seal 6 is interposed between the two plates.
  • a print support sion 5 is placed facing the plate 1.
  • the ink is brought to the device by a conduit 7 opening into the plate 2 at one end and connected by the other end to a reservoir, not shown.
  • the free surface of this tank is connected by holes 8 to ambient atmospheric pressure and is at an approximately constant level.
  • the ink is maintained in the chamber 3 and in the holes 4 under the combined effect on the one hand of the pressure difference due to the difference in level between the free surface of the reservoir and the holes 4, on the other hand of the forces of capillarity.
  • the level of the reservoir may be below the holes 4, in which case the free surface of the ink forms a concave meniscus 9 at the end of the holes 4, as shown in FIG. 2; if, on the contrary, the level of the reservoir is located above the holes 4, the menisci are convex and project outside the plate 1.
  • the pressure difference at P on either side of a meniscus is given by Laplace's law , T being the surface tension of the ink and the radius of curvature of the meniscus.
  • T being the surface tension of the ink and the radius of curvature of the meniscus.
  • ⁇ R being the radius of hole 4.
  • the pressure difference ⁇ P can therefore theoretically have values between R and , this difference being fixed by the difference in level between the tank and the hole.
  • a safety margin measured by the quantity - ⁇ P in order to limit the risks of inadvertent ejection of ink, for example during a shock or a mechanical vibration.
  • This same quantity also represents the minimum local overpressure required for the controlled ejection of the ink, which will therefore be all the easier as - ⁇ P will be lower.
  • the shape of the outlet of the conduit 7 as well as its location in a hole in the plate 2 is only an example of embodiment. It can also be unblocked anywhere in the chamber 3 not occupied by other elements of the device.
  • the ink passage section must however be sufficient to ensure the flow rate corresponding to the maximum rate of the ejected drops. It is possible, for example, to provide an ink inlet hole in the plate 1 or in the joint 6, to provide a supply by several conduits opening out at different locations in the chamber 3. It is also possible to provide between the reservoir and the chamber 3 a or several filters intended to stop the impurities likely to clog the orifices 4.
  • the pressure in the chamber 3 varying with the drop in level of the reservoir following the consumption of the ink, it is possible to improve the device by inserting into the conduit 7 a pump with a pressure regulating system.
  • the use of a pump also allows the use of filters with greater pressure drops, and therefore more efficient filtering.
  • the ink can remain between the plates 1 and 2 by the sole effect of the surface tension, without requiring watertight walls closing the periphery of said chamber.
  • the holes 8 intended for the evacuation of air or gas bubbles which may appear in the chamber 3 are located at the highest points of said chamber. This applies as well for the case of operation in a vertical position as shown in Figure 2 as for the case of operation in another position, horizontal for example.
  • means make it possible to move all of the plates 1 and 2 relative to the support in one or two directions parallel to the plane of said plates.
  • the integral plates 1 and 2 are connected to a frame by means of two or more deformable elements comprising leaf springs or spring rods and each allowing movement in a different direction of the printing device relative to the support.
  • the movement of the device can be achieved by means of electromagnets, each of these electromagnets bringing the printing device into a determined position among several possible positions according to the directions of movement.
  • FIG. 3 shows another possible arrangement of the holes 4 of the plate 1.
  • This arrangement of the holes 4 along successive staggered lines allows, by a single displacement in the direction of the length or the width of the plate 1, to obtain on the support 5 a matrix of points regularly spaced and in number double the number of holes 4.
  • Figures 4a, 4b, 4c show three successive phases of the process of ejecting a drop of ink through a hole 11, which is part of the set of holes 4.
  • the ink is suddenly heated in the vicinity of the hole 11.
  • This heating can be obtained by directing through the plate 2 a beam of intense radiant energy towards the hole 11, for example a laser beam.
  • the plate 2 must be transparent to the radiation used, and the ink must have good absorption of the same radiation. If the ink is not found to be sufficiently well suited, it is possible to deposit on the face bathed by the ink of the plate 2 a layer of a material absorbing the radiation, the heat produced in this being transmitted to the ink by thermal conduction. Other means of selective heating will be described later.
  • the heating of the ink causes on the one hand a decrease in the viscosity and the surface tension of the ink, which decreases the energy required for ejection, and on the other hand, a start of vaporization of the ink.
  • This vaporization causes the growth of a gas bubble 13 which expels the ink in front of it through the hole 11, the pressure in the bubble increasing to overcome the forces opposing the movement of the ink, namely the surface tension, the viscosity and inertia of the ink.
  • the pressure is also transmitted by the ink contained in the chamber 3 to the hole 12 which must not eject a drop.
  • the expansion of the gas bubble 13 causes the formation of a drop 14 as well as swelling of the meniscus towards the outside of the hole 12.
  • this is achieved by choosing the ratio of the thickness of the chamber 3 to the spacing of the holes 4 sufficiently small.
  • the upper limit of this ratio is approximately 1/2. This limit can however be exceeded if the ink used has a viscosity or a surface tension varying enough with temperature. In this case the ink in the hole 11 being sufficiently heated, its ejection is facilitated, while that in the hole 12 remaining at the initial temperature, can only be ejected by greater forces.
  • Figures 5 and 6 show a variant of the device, in which protrusions 15 have been brought to the plate 2 regularly distributed between the locations of the holes 4 in the plate 1 so as to oppose the movement of the ink between holes neighbors and thus avoid the ejection of unwanted drops as described above.
  • These protuberances can be obtained by photogravures. They are not necessarily of a height equal to the thickness of the chamber 3 as shown in FIG. 6. This arrangement has the advantage, however, of ensuring correct spacing of the plates 1 and 2.
  • the protrusions 15 could also be taken in plate 1 instead of plate 2.
  • a particular use of the devices described above consists in using an ink of very high viscosity or an ink solid at normal operating temperature.
  • the sudden heating in the vicinity of the chosen ejection hole causes local liquefaction of the ink.
  • the ink in the neighboring holes remains solid or viscous, there is no danger of ejection of unwanted drops therefrom.
  • the ejection can take place following a partial vaporization as described above for a fluid ink; it can also be caused by a mechanical shock applied to the entire device in the direction of the axes of the ejection holes 4, or by a mechanical vibration applied to the same assembly, using piezoelectric ceramics for example.
  • a means for heating the entire device in order to fluidize all the ink which it contains after each ejection of a set of drops, which makes it possible to replace in the holes 4 the ink which has been ejected.
  • the holes 4 of the plate 1 are preferably cylindrical because, in this case, their manufacture is generally easier. Their diameter conditions the distensions of the ejected drops and is preferably chosen between 10 microns and 100 microns. Economic drilling techniques for drilling large quantities of small holes are, for example, laser beam drilling, electron beam drilling, ultrasonic drilling or chemical etching. One can also manufacture the plate 1 with its holes by electro-chemical forming, in which case the holes 40 have a profile similar to that of FIG. 10. The profiles of holes 4a conical as in FIG. 8, or cylindro-coni Q ues 4b, as in Figure 9 are better suited for ejection than cylindrical holes, but are more difficult to achieve.
  • Possible materials for plates 1 and 2 are for example stainless steel, glasses, nickel, alumina ceramics, tungsten, plastics.
  • Localized heating of the ink in the vicinity of the selected ejection hole by absorption of radiation is only one possibility among others.
  • the ink used can also be insulating, the passage of an electric current pulse being due to the local exceeding by the electric field of the dielectric rigidity of the ink, which causes the dielectric breakdown of the ink and thus desired heating. .
  • FIG. 11 shows a variant of an electrically heated ejection device which may include a very large number of ejection holes.
  • the plate 2 is covered with a layer 29 of electrically conductive material, the whole of the plate 2 with the layer 29 being transparent to electromagnetic radiation.
  • This layer 29 is covered with a layer 30 of a photoconductive material whose electrical resistivity is greatly reduced, ie in a ratio of 1 to 10 for example, when it is illuminated with the aid of the aforementioned radiation.
  • the ink contained in the chamber 3 is of the resistive type and the plate 1 is electrically conductive, or has a conductive layer on the side of the chamber 3, and is electrically insulated from the plate 2.
  • the resistivity of the ink must therefore be adjusted to a value depending on the electrical voltage used, the dimensions of the device and the heating required for ejection.
  • a mask 31 which is not essential for the operation of the device, facilitates the control in position and in size of the region 34.
  • This mask 31 consists of a layer of material opaque to the radiation used and in which openings 32 are formed facing each other. with respect to the holes 4 of the plate 1.
  • the duration of the current pulse can be determined either by the duration of the beam 33 or by the duration of the electrical powering up of the layer 29 relative to the plate 1.
  • Various means can be used to provide the beam 33.
  • One means consists in using a laser beam deflected in the direction of the holes selected by movable mirrors or by acousto-optical or electro-optical methods known in the techniques of using laser rays.
  • Another means consists in using an array of laser diodes or light-emitting diodes (LEDs), such that each hole 4 corresponds to one diode, or else such that, each diode corresponding to several holes 4, said array is movable relative to the plate 1 so as to cover all of the holes 4.
  • Said network can be pressed directly against the plate 2 or the mask 31, or else be placed at a certain distance. It is also possible to interpose a suitable optical system between the array of diodes and the plate 2, for example Fresnel lenses, so as to form on the layer 30 an image if necessary reduced or enlarged of said array.
  • Another means for supplying the beam 33 consists in placing a cover in front of the plate 2, this cover representing the pattern to be printed on the support 5 and in lighting the layer 30 through this cover by one or more lamps, for example lamps with incandescent, or fluorescent lamps, or electric gas discharge lamps.
  • Said cover may include fixed parts, interchangeable or not, for printing possible constant parts of the pattern, and mobile parts, with automatic adjustment or not, for the variable parts of the pattern. It is also possible to use a liquid crystal matrix, or any other optical switch with electrical control, as a cover.
  • the resistivity of the unlit photoconductive layer 30 must be sufficiently high relative to that of the ink used to ensure its isolation from the layer 29 and that the resistivity of the lit photoconductive layer 30 is rather weak compared to that of the ink so as to let the electric current pass.
  • FIG. 12 represents a variant of an ejection device comprising, as in FIG. 11, a photoconductive layer 30, this layer being in this case separated from the ink of the chamber 3 by an additional layer 35 of a material conducting the elec- t ri c i ty, the resistivity and thickness are chosen so that the heat generation by electrical current flow takes place mainly in the layer 35, or layers 30 and 35.
  • This arrangement has the advantage of widening the field of possible values for the resistivity of the ink as well as of protecting the layer 30 in the event of chemical incompatibility between the ink and the material of the layer 30.
  • the layer 35 can also be made of a good electrically conductive material, the voltage pulse being applied either between the layer 29 and the plate 1 as above, but between the layers 29 and 35, heat neces- its ry to ejecting then being generated exclusively in the layer 30, t el device permits the use of inks and materials for the plate 1 of any electrical resistivities.
  • the plate 2 itself is made of a photoconductive material, for example silicon and is covered with a layer of a conductive material of the electricity 36, on the side not bathed by the ink, this layer 36 being covered or not with the mask 31.
  • the heating of the ink in this device is done in a manner analogous to the preceding devices, the electric voltage being applied between the layer 36 and the plate 1 this plate being of an electrically conductive material and the ink contained in the chamber 3 having an electrical resistivity suitable for the generation of heat to take place mainly in the ink, or in the plate 2, or in ink and in plate 2.
  • the photoconductive material of layer 30 of FIGS. 11 and 12 can for example be cadmium sulphide deposited in a few microns in thickness, the unlighted electrical resistivity of which is greater than 10 8 Ohm.centimeter and the illuminated resistivity of the order of 100 Ohm. centimeter. This material is sensitive to radiation with a wavelength of about 0.5 microns allowing the use of a plate 2 made of ordinary glass and a source of incandescent radiation.
  • the thickness of the chamber 3 can be from 10 to 50 microns approximately, the ink having a resistivity of approximately 500 Ohm centimeter. The electrical voltage used must then be of the order of 50 volts.
  • ink drop ejection device described above are well suited for printing graphics of small dimensions, for example 30 cm 2, since the printing can then be carried out either without any relative movement of the device. printing relative to the printing medium, ie with only small amplitude displacements, for example 1 mm of amplitude.
  • These devices are more particularly suitable when the graphics have a constant part and a variable part, the constant part possibly being changed by exchanging a part or a set of parts of the device.
  • variable part of these graphics can be produced using a device according to any one of FIGS. 11 to 14, the constant part being able to be produced either in the same way, or preferably using simplified variants of the same devices.
  • a first simplified variant, illustrated in FIG. 15 consists in providing in the plate 1 only the holes 40 corresponding to the mosaic representation of the constant graphics to be printed, for example the acronym SMH represented in FIG. 15, as well as a complete network holes 39 in the area corresponding to the variable part of the graphics.
  • the ejection through the holes 40 can then be controlled from a single electrode, or from a single resistance, deposited on the plate 1 or the plate 2 and extending over the entire area corresponding to the assembly. holes 40.
  • FIG. 16 A second simplified variant is shown in FIG. 16.
  • a plate 1 normally pierced with a complete network of holes 4 corresponding to the variable and constant areas of the graphics, the printing of the constant part of the graphics being controlled using a single electrode made up of a layer of electrically conductive material 41 deposited on the plate 2, this layer itself being covered with an electrically insulating layer 42.
  • the shape of the desired constant graphics is obtained by providing in layer 42 openings 43, each opening 43 facing a hole 4, all of the openings 43 forming the mosaic image of the desired graphic.
  • Layer 41 can be divided into several electrically isolated zones with separate controls, which allows the supply of the energy required for ejection to be spread out over time.
  • the openings 43 can be obtained by photochemical etching. If the plate 2 is made of an electrically conductive material, this serves as an electrode and the layer 41 is superfluous.
  • Photoconductive devices also make it possible to obtain the impression of a graphic design comprising a constant part and a variable part, the constant part being obtained by lighting the photoconductive layer through a cover, the variable part by lighting from for example from an array of diodes, or through a laser beam, or through an array of liquid crystals.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Coating Apparatus (AREA)
  • Ink Jet (AREA)

Abstract

A device for projecting ink droplets through a set of projection holes to print a pattern under selective electrical or light pulse control. A first plate formed with a large number of holes is placed in close proximity to the surface of the printing medium. A second plate a small distance from the first defines therewith a chamber in which the ink is locally heated by electrical current controlled by light selectively impinging on a photoconductive part of said second plate in register with each hole or each group of holes so as to form a pattern with constant or variable parts.

Description

La présente invention concerne un dispositif destiné à déposer sur un support des gouttes d'encre et notamment un appareil servant à l'impression d'un graphisme sur un support de dimensions limitées tels que des objets postaux, des tickets ou des étiquettes.The present invention relates to a device intended for depositing ink drops on a support and in particular an apparatus for printing a graphic on a support of limited dimensions such as postal items, tickets or labels.

On connaît des machines à jet ou à gouttes d'encre dans lesquelles l'encre se trouve en équilibre à l'orifice, d'éjection sous l'action de la pression hydrostatique et de la tension superficielle de l'encre. L'éjection de la goutte d'encre hors de l'orifice est obtenue à partir d'une chambre contenant de l'encre et limitée par deux plaques dont l'une comporte les trous d'éjection. Les deux plaques sont soumises à une différence de potentiel électrique et la plaque ne comportant pas de trous est traversée par un rayonnement laser. L'encre soumise à un champ électrostatique comporte des pigments photoconducteurs qui se déplacent vers la plaque comportant des trous. Cet état de la technique a été décrit dans l'article américain de XEROX DISCLOSURE JOURNAL vol. 1, n° 4 avril 1976 de D.L. CAMPHAUSEN intitulé "Photoactivated ink spray" page 75.Known jet or ink drop machines in which the ink is in equilibrium at the orifice, ejecting under the action of hydrostatic pressure and the surface tension of the ink. The ejection of the drop of ink from the orifice is obtained from a chamber containing ink and limited by two plates, one of which has the ejection holes. The two plates are subjected to an electrical potential difference and the plate having no holes is crossed by laser radiation. The ink subjected to an electrostatic field comprises photoconductive pigments which move towards the plate having holes. This state of the art was described in the American article in XEROX DISCLOSURE JOURNAL vol. 1, No. 4 April 1976 by D.L. CAMPHAUSEN entitled "Photoactivated ink spray" page 75.

Cependant le dispositif utilisé exige la présence de pigments photoconducteurs c'est-à-dire de très fines particules dispersées dans l'encre. De plus les phénomènes mis en jeu sont exclusivement de nature électrostatique, l'effet de la lumière sur les pigments photoconducteurs déclenchant le mouvement des particules.However, the device used requires the presence of photoconductive pigments, that is to say very fine particles dispersed in the ink. In addition, the phenomena involved are exclusively of an electrostatic nature, the effect of light on the photoconductive pigments triggering the movement of the particles.

Comme les forces électrostatiques mises en jeu sont très faibles, le dispositif ne fonctionne que si, en l'absence de rayon laser, l'encre est retenue par une force de capillarité très faible. Alors le moindre choc peut provoquer une éjection intempestive d'encre.As the electrostatic forces involved are very low, the device only works if, in the absence of a laser beam, the ink is retained by a very low capillary force. Then the slightest shock can cause an inadvertent ejection of ink.

Le dispositif selon la présente invention remédie à cet inconvénient. Dans celui-ci en effet le résultat obtenu est plus fiable par suite de l'utilisation des effets thermiques sur un matériau photoconducteur élevant la température et par conséquent la pression de l'encre.The device according to the present invention overcomes this drawback. In this one, in fact, the result obtained is more reliable as a result of the use of thermal effects on a photoconductive material raising the temperature and consequently the pressure of the ink.

La présente invention a pour objet un dispositif destiné à déposer sur un support des gouttes d'encre de manière à former sur celle-ci par des mosaïques de points un ou des graphismes, lesdits points étant choisis à chaque opération parmi un réseau de pointa et comportant une première plaque placée d'une façon sensiblement parallèle à une distance faible dudit support, cette plaque étant perforée d'un ensemble de trous, une deuxième plaque fixée à la première plaque d'une façon sensiblement parallèle à la première plaque, l'espace entre les première et deuxième plaques définissant une chambre contenant de l'encre à déposer, des moyens d'actionnement permettant d'éjecter à travers les trous sélectionnés dudit ensemble une petite quantité d'encre, lesdits moyens d'actionnement élevant la température de l'encre de la portion de ladite chambre commune comprise entre lesdites première et deuxième plaques, portion correspondante au trou d'éjection sélectionné, et comportant l'application d'une tension électrique sur au moins une plaque combinée à des moyens d'illumination envoyant un rayonnement au travers de ladite deuxième plaque, caractérisé en ce que ladite deuxième plaque comporte au moins partiellement une couche de matériau photoconducteur dont la résistivité électrique diminue sous l'action dudit rayonnement.The subject of the present invention is a device intended for depositing drops of ink on a support so as to form thereon one or more graphics, said mosaics, points being chosen at each operation from a pointa network and comprising a first plate placed in a substantially parallel manner at a small distance from said support, this plate being perforated with a set of holes, a second plate fixed to the first plate d '' a manner substantially parallel to the first plate, the space between the first and second plates defining a chamber containing ink to be deposited, actuating means making it possible to eject through the selected holes of said assembly a small amount of ink, said actuating means raising the temperature of the ink in the portion of said common chamber comprised between said first and second plates, portion corresponding to the selected ejection hole, and comprising the application of an electrical voltage to at least one plate combined with illumination means sending radiation through said second plate, characterized in that said second plate com at least partially carries a layer of photoconductive material whose electrical resistivity decreases under the action of said radiation.

La présente invention a également pour objet un appareil pour l'impression sur un support de dimensions limitées, en particulier, objets postaux, étiquettes ou tickets d'un graphisme comportant une partie constante et une partie variable, caractérisé en ce qu'il comprend une première série de moyens destinés à l'impression variable du graphisme, ces moyens permettant de déposer des gouttes d'encre à travers un certain nombre de trous sélectionnés parmi un premier ensemble de trous, et une deuxième série de moyens destinés à l'impression de la partie constante du graphisme, ces moyens permettant de déposer pour chacun desdits graphismes des gouttes d'encre à travers la totalité d'un deuxième ensemble de trous, ce deuxième ensemble étant soit déterminé une fois pour toutes pour chaque appareil, soit variable par l'échange d'un élément interchangeable de l'appareil.The present invention also relates to an apparatus for printing on a support of limited dimensions, in particular postal items, labels or tickets of a graphic design comprising a constant part and a variable part, characterized in that it comprises a first series of means intended for variable printing of graphics, these means making it possible to deposit drops of ink through a certain number of holes selected from a first set of holes, and a second series of means intended for printing the constant part of the graphics, these means making it possible to deposit, for each of said graphics, ink drops through the whole of a second set of holes, this second set being either determined once and for all for each device, or variable by l exchange of an interchangeable element of the device.

En se référant aux figures schématiques 1 à 16 ci-jointes on va décrire ci-après un exemple de mise en oeuvre de la présente invention, exemple donné à titre purement illustratif et nullement limitatif. Les mêmes éléments représentés sur plusieurs de ces figures portent sur toutes celles-ci les mêmes références.With reference to the attached diagrammatic figures 1 to 16, an example of implementation of the present invention will be described below, an example given purely by way of illustration and in no way limiting. The same elements shown in several of these figures bear the same references on all of them.

  • La figure 1 est une vue très schématique en perspective éclatée d'un dispositif selon l'invention.Figure 1 is a very schematic exploded perspective view of a device according to the invention.
  • La figure 2 est une vue très agrandie en coupe verticale du même dispositif.Figure 2 is a greatly enlarged view in vertical section of the same device.
  • La figure 3 représente la plaque perforée du dispositif selon la figure 1 avec une autre disposition des trous.Figure 3 shows the perforated plate of the device according to Figure 1 with another arrangement of the holes.
  • Les figures 4a, 4b, 4c montrent le processus d'éjection d'une goutte.Figures 4a, 4b, 4c show the process of ejecting a drop.
  • Les figures 5 et 6 repréaentent une variante du dispositif dans laquelle des protubérances sont intercalées entre les trous d'éjection.Figures 5 and 6 represent a variant of the device in which protuberances are interposed between the ejection holes.
  • Les figures 7a, 7b, 7c décrivent une variante du processus d'éjection selon les figures 4a, 4b et 4c.Figures 7a, 7b, 7c describe a variant of the ejection process according to Figures 4a, 4b and 4c.
  • Les figures 8, 9, 10 représentent plusieurs formes de trous d'éjection vus en coupe.Figures 8, 9, 10 show several forms of ejection holes seen in section.
  • La figure 11 est la vue en coupe d'une portion d'un dispositif selon l'invention dans lequel le passage d'un courant électrique dans l'encre est commandé par l'éclairement d'une couche photoconductrice.Figure 11 is the sectional view of a portion of a device according to the invention in which the passage of an electric current in the ink is controlled by the illumination of a photoconductive layer.
  • La figure 12 est la vue en coupe d'une portion d'un dispositif selon l'invention dans lequel une couche supplémentaire est déposée sur une couche photoconductrice.Figure 12 is the sectional view of a portion of a device according to the invention in which an additional layer is deposited on a photoconductive layer.
  • La figure 13 est la vue en coupe d'une portion d'un dispositif selon l'invention utilisant une plaque photoconductrice massive.Figure 13 is the sectional view of a portion of a device according to the invention using a solid photoconductive plate.
  • La figure 14 est la vue en coupe d'une portion d'un dispositif selon l'invention utilisant une plaque photoconductrice recouverte d'une couche conductrice sur ses deux faces.Figure 14 is the sectional view of a portion of a device according to the invention using a photoconductive plate covered with a conductive layer on its two faces.
  • La figure 15 est la vue, du côté de la chambre contenant l'encre, d'une plaque perforée pour l'impression d'un graphisme comportant une partie variable et une partie constante.FIG. 15 is the view, from the side of the chamber containing the ink, of a perforated plate for printing a graphic comprising a variable part and a constant part.
  • La figure 16 est la vue en coupe d'une portion de dispositif destiné à l'impression d'un graphisme constant, dans lequel on fait passer dans l'encre une impulsion de courant électrique.Figure 16 is the sectional view of a portion of the device for printing a constant graphics, in which an electric current pulse is passed through the ink.

Le dispositif est représenté très schématiquement sur les figures et 2. Une plaque 1 est percée d'un ensemble de trous 4 et définit avec une plaque arrière 2 une chambre 3 contenant de l'encre à déposer, Un joint 6 est interposé entre les deux plaques. Un support d'impression 5 est placé face à la plaque 1. L'encre est amenée au dispositif par un conduit 7 débouchant dans la plaque 2 par une extrémité et relié par l'autre extrémité à un réservoir non représenté. La surface libre de ce réservoir est reliée par des trous 8 à la pression atmosphérique ambiante et est à un niveau approximativement constant. L'encre est maintenue dans la chambre 3 et dans les trous 4 sous l'effet combiné d'une part de la différence de pression due à la dénivellation entre la surface libre du réservoir et les trous 4, d'autre part des forces de capillarité. Le niveau du réservoir peut être en dessous des trous 4, auquel cas la surface libre de l'encre forme un ménisque concave 9 à l'extrémité des trous 4, comme représenté sur la figure 2 ; si au contraire le niveau du réservoir est situé au dessus des trous 4, les ménisques sont convexes et font saillie à l'extérieur de la plaque 1. L'écart de pression à P de part et d'autre d'un ménisque est donné par la loi de Laplace

Figure imgb0001
, T étant la tension superficielle de l'encre et
Figure imgb0002
le rayon de courbure du ménisque. Dans le cas idéal où l'encre mouille parfaitement les parois du trou 4 mais ne mouille pas la face extérieure de la plaque 1, qui devrait donc être traitée à cette fin,
Figure imgb0003
peut varier dans l'intervalle ±
Figure imgb0004
R étant le rayon du trou 4.The device is shown very schematically in the figures and 2. A plate 1 is pierced with a set of holes 4 and defines with a rear plate 2 a chamber 3 containing ink to be deposited, A seal 6 is interposed between the two plates. A print support sion 5 is placed facing the plate 1. The ink is brought to the device by a conduit 7 opening into the plate 2 at one end and connected by the other end to a reservoir, not shown. The free surface of this tank is connected by holes 8 to ambient atmospheric pressure and is at an approximately constant level. The ink is maintained in the chamber 3 and in the holes 4 under the combined effect on the one hand of the pressure difference due to the difference in level between the free surface of the reservoir and the holes 4, on the other hand of the forces of capillarity. The level of the reservoir may be below the holes 4, in which case the free surface of the ink forms a concave meniscus 9 at the end of the holes 4, as shown in FIG. 2; if, on the contrary, the level of the reservoir is located above the holes 4, the menisci are convex and project outside the plate 1. The pressure difference at P on either side of a meniscus is given by Laplace's law
Figure imgb0001
, T being the surface tension of the ink and
Figure imgb0002
the radius of curvature of the meniscus. In the ideal case where the ink perfectly wets the walls of the hole 4 but does not wet the outside face of the plate 1, which should therefore be treated for this purpose,
Figure imgb0003
may vary in the interval ±
Figure imgb0004
R being the radius of hole 4.

L'écart de pression ΔP peut donc avoir théoriquement des valeurs entre

Figure imgb0005
R et
Figure imgb0006
, cet écart étant fixé par la dénivellation entre le réservoir et le trou. En fait il est nécessaire de ménager une marge de sécurité mesurée par la quantité
Figure imgb0007
-ΔP, afin de limiter les risques d'éjection intempestive d'encre, par exemple lors d'un choc ou d'une vibration mécanique. Cette même quantité représente aussi la surpression locale minimum requise pour l'éjection commandée de l'encre, qui sera donc d'autant plus facile que
Figure imgb0008
-ΔP sera plus faible. Cependant dans la pratique il est difficile de garantir les propriétés de mouillabilité de la face extérieure de la plaque 1 du fait de l'usure et de la salissure, ce qui conduit à exiger des valeurs de
Figure imgb0009
-ΔP, avec ΔP négatif, c'est-à-dire des systèmes à dépression.The pressure difference ΔP can therefore theoretically have values between
Figure imgb0005
R and
Figure imgb0006
, this difference being fixed by the difference in level between the tank and the hole. In fact it is necessary to provide a safety margin measured by the quantity
Figure imgb0007
-ΔP, in order to limit the risks of inadvertent ejection of ink, for example during a shock or a mechanical vibration. This same quantity also represents the minimum local overpressure required for the controlled ejection of the ink, which will therefore be all the easier as
Figure imgb0008
-ΔP will be lower. However, in practice, it is difficult to guarantee the wettability properties of the external face of the plate 1 due to wear and soiling, which leads to the requirement of values of
Figure imgb0009
-ΔP, with negative ΔP, that is to say vacuum systems.

La forme du débouché du conduit 7 ainsi que sa localisation dans un trou ménagé dans la plaque 2 n'est qu'un exemple de réalisation. On peut aussi le faire déboucher en n'importe quel endroit de la chambre 3 non occupé par d'autres éléments du dispositif. La section de passage de l'encre doit cependant être suffisante pour assurer le débit correspondant à la cadence maximale des gouttes éjectées. On peut par exemple ménager un trou d'arrivée d'encre dans la plaque 1 ou dans le joint 6, prévoir une alimentation par plusieurs conduits débouchant en différents endroits de la chambre 3. On peut également prévoir entre le réservoir et la chambre 3 un ou plusieurs filtres destinés à arrêter les impuretés susceptibles d'obstruer les orifices 4.The shape of the outlet of the conduit 7 as well as its location in a hole in the plate 2 is only an example of embodiment. It can also be unblocked anywhere in the chamber 3 not occupied by other elements of the device. The ink passage section must however be sufficient to ensure the flow rate corresponding to the maximum rate of the ejected drops. It is possible, for example, to provide an ink inlet hole in the plate 1 or in the joint 6, to provide a supply by several conduits opening out at different locations in the chamber 3. It is also possible to provide between the reservoir and the chamber 3 a or several filters intended to stop the impurities likely to clog the orifices 4.

La pression dans la chambre 3 variant avec la baisse de niveau du réservoir consécutif à la consommation de l'encre, il est possible de perfectionner le dispositif par l'insertion dans le conduit 7 d'une pompe avec un système régulateur de pression. L'utilisation d'une pompe permet également l'usage de filtres présentant des pertes de charge plus importantes, et donc d'un filtrage plus efficace.The pressure in the chamber 3 varying with the drop in level of the reservoir following the consumption of the ink, it is possible to improve the device by inserting into the conduit 7 a pump with a pressure regulating system. The use of a pump also allows the use of filters with greater pressure drops, and therefore more efficient filtering.

Si l'épaisseur de la chambre 3 n'est pas trop grande, par exemple, inférieure ou égale à la moitié de l'entre-axe le plus faible des trous de la plaque 1, l'encre peut se maintenir entre les plaques 1 et 2 par le seul effet de la tension superficielle, sans nécessiter des parois étanches fermant la périphérie de ladite chambre. Les trous 8 destinés à l'évacuation des bulles d'air ou de gaz pouvant apparaître dans la chambre 3 sont situés aux points les plus hauts de ladite chambre. Cela vaut aussi bien pour le cas d'un fonctionnement en position verticale comme représenté sur la figure 2 que pour le cas d'un fonctionnement dans une autre position, horizontale par exemple.If the thickness of the chamber 3 is not too great, for example, less than or equal to half of the smallest center distance of the holes in the plate 1, the ink can remain between the plates 1 and 2 by the sole effect of the surface tension, without requiring watertight walls closing the periphery of said chamber. The holes 8 intended for the evacuation of air or gas bubbles which may appear in the chamber 3 are located at the highest points of said chamber. This applies as well for the case of operation in a vertical position as shown in Figure 2 as for the case of operation in another position, horizontal for example.

Pour imprimer un graphisme déterminé, on sélectionne certains de ces trous et on éjecte par chacun d'eux une goutte d'encre venant former un point à la surface du support 5, le graphisme désiré étant alors formé par une mosaïque de points. Si on veut améliorer la définition de cette mosaïque, on peut déplacer le dispositif par rapport au support 5 d'une distance égale à une fraction de l'espacement entre trous voisins et éjecter à nouveau des gouttes par certains des trous. On peut ainsi opérer plusieurs éjections de gouttes consécutives, chaque éjection étant précédée d'un déplacement du dispositif d'éjection par rapport au support 5, ces déplacements étant prévus le manière à ce que la matrice de points que l'on peut imprimer sur La support 5 comporte un nombre de points égal à plusieurs fois le nombre de trous 4 de la plaque 1.To print a specific graphic, some of these holes are selected and each of them ejects a drop of ink coming to form a point on the surface of the support 5, the desired graphic then being formed by a mosaic of points. If we want to improve the definition of this mosaic, we can move the device relative to the support 5 by a distance equal to a fraction of the spacing between neighboring holes and eject drops again through some of the holes. It is thus possible to operate several consecutive drop ejections, each ejection being preceded by a movement of the device. ejection with respect to the support 5, these displacements being provided so that the matrix of points which can be printed on the support 5 comprises a number of points equal to several times the number of holes 4 of the plate 1 .

Pour cela, des moyens permettent de déplacer l'ensemble des plaques 1 et 2 par rapport au support suivant une ou deux directions parallèles au plan desdites plaques. Les plaques solidaires 1 et 2 sont reliées à un bâti par l'intermédiaire de deux ou plusieurs élements déformables comportant des lames ressorts ou des tiges ressorts et permettant chacun un déplacement dans une direction différente du dispositif d'impression par rapport au support. Le déplacement du dispositif peut être réalisé au moyen d'électro-aimants, chacun des ces électro-aimants amenant le dispositif d'impression dans une position déterminée parmi plusieurs positions possibles suivant les directions de déplacement.For this, means make it possible to move all of the plates 1 and 2 relative to the support in one or two directions parallel to the plane of said plates. The integral plates 1 and 2 are connected to a frame by means of two or more deformable elements comprising leaf springs or spring rods and each allowing movement in a different direction of the printing device relative to the support. The movement of the device can be achieved by means of electromagnets, each of these electromagnets bringing the printing device into a determined position among several possible positions according to the directions of movement.

La figure 3 montre une autre disposition possible des trous 4 de la plaque 1. Cette disposition des trous 4 suivant des lignes successives en quinconce, permet par un seul déplacement suivant le sens de la longueur ou de la largeur de la plaque 1, d'obtenir sur le support 5 une matrice de points régulièrement espacés et en nombre double au nombre de trous 4.FIG. 3 shows another possible arrangement of the holes 4 of the plate 1. This arrangement of the holes 4 along successive staggered lines allows, by a single displacement in the direction of the length or the width of the plate 1, to obtain on the support 5 a matrix of points regularly spaced and in number double the number of holes 4.

Les figures 4a, 4b, 4c représentent trois phases successives du processus d'éjection d'une goutte d'encre par un trou 11, faisant partie de l'ensemble de trous 4. Pour provoquer l'éjection, on chauffe brutalement l'encre au voisinage du trou 11. Cet échauffement peut être obtenu en dirigeant à travers la plaque 2 un faisceau d'énergie rayonnante intense vers le trou 11, par exemple un faisceau laser. Dans ce but la plaque 2 doit être transparente au rayonnement utilisé, et l'encre doit présenter une bonne absorption du même rayonnement. Si on ne trouve pas d'encre suffisamment bien adaptée, il est possible de déposer sur la face baignée par l'encre de la plaque 2 une couche d'un matériau absorbant le rayonnement, la chaleur produite dans celui-ci étant transmise à l'encre par conduction thermique. D'autres moyens d'échauffement sélectif seront décrits plus loin.Figures 4a, 4b, 4c show three successive phases of the process of ejecting a drop of ink through a hole 11, which is part of the set of holes 4. To cause ejection, the ink is suddenly heated in the vicinity of the hole 11. This heating can be obtained by directing through the plate 2 a beam of intense radiant energy towards the hole 11, for example a laser beam. For this purpose the plate 2 must be transparent to the radiation used, and the ink must have good absorption of the same radiation. If the ink is not found to be sufficiently well suited, it is possible to deposit on the face bathed by the ink of the plate 2 a layer of a material absorbing the radiation, the heat produced in this being transmitted to the ink by thermal conduction. Other means of selective heating will be described later.

L'échauffement de l'encre provoque d'une part une diminution de la viscosité et de la tension superficielle de l'encre, ce qui fait décroître l'énergie requise pour l'éjection, et d'autre part, un début de vaporisation de l'encre. Cette vaporisation provoque la croissance d'une bulle de gaz 13 qui chasse l'encre devant elle par le trou 11, la pression dans la bulle augmentant pour vaincre les forces s'opposant au déplacement de l'encre, soit la tension superficielle, la viscosité et l'inertie de l'encre. L'augaentation de pression est également transmise par l'encre contenue dans la chambre 3 vers le trou 12 qui lui ne doit pas éjecter de goutte. Comme représenté sur la figure 4b, l'expansion de la bulle de gaz 13 provoque la formation d'une goutte 14 ainsi qu'un gonflement du ménisque vers l'extérieur du trou 12. Sur la figure 4c la goutte 14 s'est détachée de la plaque 1 et se déplace vers le support 5. Ensuite, la source de chaleur ayant été supprimée, le gaz de la bulle se condense ce qui provoque une aspiration faisant reculer le ménisque à l'intérieur du trou 11, de l'encre étant ensuite aspirée du réservoir par l'intermédiaire du conduit 7 et de la chambre 3, sous l'effet des forces capil- llaires, afin de compenser le volume d'encre de la goutte éjectée. Afin d'éviter l'éjection non désirée d'une goutte par un trou adjacent 12, il faut que la résistance au passage de l'encre le long du chemin de 13 à 12 soit nettement plus élevée que sur le chemin de 13 à 11, ceci étant obtenu par le choix de la forme et des dimensions du dispositif en faisant apparaître des différences dans les forces d'inertie et de viscosité selon les chemins mentionnés. Dans le dispositif de la figure 2 ceci est réalisé en choisissant le rapport de l'épaisseur de la chambre 3 à l'espacement des trous 4 suffisamment faible. La limite supérieure de ce rapport est d'environ 1/2. Cette limite peut cependant être dépassée si l'encre utilisée présente une viscosité ou une tension superficielle variant suffisamment avec la température. Dans ce cas l'encre se trouvant dans le trou 11 étant suffisamment échauffée, son éjection se trouve facilitée, alors que celle dans le trou 12 restant à la température initiale, ne peut être éjectée que par des forces plus importantes.The heating of the ink causes on the one hand a decrease in the viscosity and the surface tension of the ink, which decreases the energy required for ejection, and on the other hand, a start of vaporization of the ink. This vaporization causes the growth of a gas bubble 13 which expels the ink in front of it through the hole 11, the pressure in the bubble increasing to overcome the forces opposing the movement of the ink, namely the surface tension, the viscosity and inertia of the ink. The pressure is also transmitted by the ink contained in the chamber 3 to the hole 12 which must not eject a drop. As shown in FIG. 4b, the expansion of the gas bubble 13 causes the formation of a drop 14 as well as swelling of the meniscus towards the outside of the hole 12. In FIG. 4c the drop 14 is detached of the plate 1 and moves towards the support 5. Then, the heat source having been removed, the gas of the bubble condenses which causes a suction causing the meniscus to retreat inside the hole 11, of the ink then being sucked from the reservoir via the conduit 7 and the chamber 3, under the effect of capillary forces, in order to compensate for the ink volume of the ejected drop. In order to avoid the undesired ejection of a drop through an adjacent hole 12, the resistance to the passage of the ink along the path from 13 to 12 must be significantly higher than on the path from 13 to 11 , this being obtained by the choice of the shape and dimensions of the device by showing differences in the forces of inertia and viscosity according to the paths mentioned. In the device of Figure 2 this is achieved by choosing the ratio of the thickness of the chamber 3 to the spacing of the holes 4 sufficiently small. The upper limit of this ratio is approximately 1/2. This limit can however be exceeded if the ink used has a viscosity or a surface tension varying enough with temperature. In this case the ink in the hole 11 being sufficiently heated, its ejection is facilitated, while that in the hole 12 remaining at the initial temperature, can only be ejected by greater forces.

Les figures 5 et 6 représentent une variante du dispositif, dans lequel on a fait venir sur la plaque 2 des protubérances 15 régulièrement réparties entre les emplacements des trous 4 de la plaque 1 de manière à s'opposer au déplacement de l'encre entre trous voisins et ainsi d'éviter l'éjection de gouttes indésirées comme décrit ci-dessus. Ces protubérances peuvent être obtenues par photogravures. Elles ne sont pas obligatoirement d'une hauteur égale à l'épaisseur de la chambre 3 comme représenté sur la figure 6. Cette disposition à cependant l'avantage d'assurer un espacement correct des plaques 1 et 2. Les protubérances 15 pourraient également être prises dans la plaque 1 au lieu de la plaque 2.Figures 5 and 6 show a variant of the device, in which protrusions 15 have been brought to the plate 2 regularly distributed between the locations of the holes 4 in the plate 1 so as to oppose the movement of the ink between holes neighbors and thus avoid the ejection of unwanted drops as described above. These protuberances can be obtained by photogravures. They are not necessarily of a height equal to the thickness of the chamber 3 as shown in FIG. 6. This arrangement has the advantage, however, of ensuring correct spacing of the plates 1 and 2. The protrusions 15 could also be taken in plate 1 instead of plate 2.

En diminuant les sections de passage entre trous voisins, soit en diminuant l'épaisseur de la chambre 3, soit par un dispositif selon les figures 5 et 6, on diminue aussi le débit maximum d'encre circulant dans ladite chambre, et par conséquent la fréquence maximum d'éjection.By reducing the passage sections between neighboring holes, either by reducing the thickness of the chamber 3, or by a device according to FIGS. 5 and 6, the maximum flow rate of ink circulating in said chamber is also reduced, and consequently the maximum frequency of ejection.

Une utilisation particulière des dispositifs décrits ci-dessus consiste à utiliser une encre de très forte viscosité ou une encre solide à la température normale de fonctionnement. Dans ce cas l'échauffement brutal au voisinage du trou d'éjection choisi provoque une liquéfaction locale de l'encre. L'encre dans les trous voisins restant solide ou visqueuse, les dangers d'éjection de gouttes indésirées par ceux-ci sont nuls. L'éjection peut avoir lieu à la suite d'une vaporisation partielle comme décrit précédemment pour une encre fluide ; elle peut aussi être provoquée par un choc mécanique appliqué à l'ensemble du dispositif dans le sens des axes des trous d'éjection 4, ou par une vibration mécanique appliquée au même ensemble, à l'aide de céramiques piézo-électriques par exemple. Dans cette utilisation avec une encre solide ou très visqueuse, il est prévu un moyen pour réchauffer l'ensemble du dispositif afin de fluidifier toute l'encre qu'il contient après chaque éjection d'un ensemble de gouttes, ce qui permet de remplacer dans les trous 4 l'encre qui a été éjectée.A particular use of the devices described above consists in using an ink of very high viscosity or an ink solid at normal operating temperature. In this case, the sudden heating in the vicinity of the chosen ejection hole causes local liquefaction of the ink. Since the ink in the neighboring holes remains solid or viscous, there is no danger of ejection of unwanted drops therefrom. The ejection can take place following a partial vaporization as described above for a fluid ink; it can also be caused by a mechanical shock applied to the entire device in the direction of the axes of the ejection holes 4, or by a mechanical vibration applied to the same assembly, using piezoelectric ceramics for example. In this use with a solid or very viscous ink, a means is provided for heating the entire device in order to fluidize all the ink which it contains after each ejection of a set of drops, which makes it possible to replace in the holes 4 the ink which has been ejected.

Dans l'éjection telle que décrite sur les figures 4a, 4b, 4c, la surface du support 5 est disposée assez loin de la plaque 1, de telle manière que les gouttes aient effectivement la place de se former et de se déplacer. Dans un autre mode de fonctionnement décrit sur les figures 7a, 7b, 7c, la distance entre la plaque 1 et le support d'impression 5 est trop faible pour que la goutte d'encre 40 se détache du trou 11 avant d'atteindre le support 5. De ce fait l'énergie requise pour l'éjection de la goutte est plus faible, car dès que l'encre arrive en contact avec le support 5, elle adhère à celui- ci par capillarité. Ce mode de fonctionnement suppose que les défauts de planéité de la surface du support 5 soient inférieurs en dimension au diamètre des gouttes d'encre.In the ejection as described in Figures 4a, 4b, 4c, the surface of the support 5 is disposed far enough from the plate 1, so that the drops actually have room to form and move. In another operating mode described in FIGS. 7a, 7b, 7c, the distance between the plate 1 and the printing medium 5 is too small for the drop of ink 40 to detach from the hole 11 before reaching the support 5. As a result, the energy required to eject the drop is lower, because as soon as the ink comes into contact with the support 5, it adheres to the latter by capillarity. This operating mode assumes that the flatness defects of the surface of the support 5 are less in size than the diameter of the ink drops.

Dans le cas de fonctionnement avec de l'encre solide comme expliqué précédemment, il est également possible d'appliquer le support 5 contre la plaque 1, la fusion de l'encre suffisant alors à assurer le marquage du point.In the case of operation with solid ink as explained above, it is also possible to apply the support 5 against the plate 1, the melting of the ink then sufficient to ensure the marking of the point.

Les trous 4 de la plaque 1 sont de préférence cylindriques car, dans ce cas, leur fabrication est en général plus facile. Leur diamètre conditionne les distensions des gouttez éjectées et est choisi de préférence entre 10 microns et 100 microns. Des techniques de perçage économique permettant de percer de grandes quantités de trous de petites dimension sont, par exemple, le perçage par faisceau laser, le perçage par faisceau d'électrons, le perçage par ultrasons ou la gravure chimique . On peut également fabriquer la plaque 1 avec ses trous par formage électro-chimique, auquel cas les trous 40 ont un profil semblable à celui de la figure 10. Les profils de trous 4a coniques comme sur la figure 8, ou cylindro-coniQues 4b, comme sur la figure 9 sont mieux adaptés à l'éjection que les trous cylindriques, mais sont de réalisation plus difficile.The holes 4 of the plate 1 are preferably cylindrical because, in this case, their manufacture is generally easier. Their diameter conditions the distensions of the ejected drops and is preferably chosen between 10 microns and 100 microns. Economic drilling techniques for drilling large quantities of small holes are, for example, laser beam drilling, electron beam drilling, ultrasonic drilling or chemical etching. One can also manufacture the plate 1 with its holes by electro-chemical forming, in which case the holes 40 have a profile similar to that of FIG. 10. The profiles of holes 4a conical as in FIG. 8, or cylindro-coni Q ues 4b, as in Figure 9 are better suited for ejection than cylindrical holes, but are more difficult to achieve.

Des matériaux envisageables pour les plaques 1 et 2 sont par exemple l'acier inoxydable, les verres, le nickel, les céramiques d'alumine, le tungstène, des matières plastiques.Possible materials for plates 1 and 2 are for example stainless steel, glasses, nickel, alumina ceramics, tungsten, plastics.

Le chauffage localisé de l'encre au voisinage du trou d'éjection sélectionné par absorption de rayonnement n'est qu'une possibilité parmi d'autres. On peut également chauffer par des résistances déposées en couche sur la plaque 2, ou bien disposer des électrodes sur les plaques 1 ou 2 de manière à faire passer dans l'encre au voisinage du trou choisi une impulsion de courant électrique, l'encre devant alors présenter une résistivité électrique convenable, l'échauffement se produisant conformément à la loi d'Ohm. L'encre utilisée peut également être isolante, le passage d'une impulsion de courant électrique étant dû au dépassement local par le champ électrique de la rigidité diélectrique de l'encre, ce qui provoque le claquage diélectrique de l'encre et ainsi réchauffement désiré.Localized heating of the ink in the vicinity of the selected ejection hole by absorption of radiation is only one possibility among others. One can also heat by resistors deposited in layer on the plate 2, or else have electrodes on the plates 1 or 2 so as to make pass in the ink in the vicinity of the chosen hole an electric current pulse, the ink in front then present a suitable electrical resistivity, the heating occurring in accordance with Ohm's law. The ink used can also be insulating, the passage of an electric current pulse being due to the local exceeding by the electric field of the dielectric rigidity of the ink, which causes the dielectric breakdown of the ink and thus desired heating. .

La figure 11 représente une variante de dispositif d'éjection à chauffage électrique pouvant comporter un très grand nombre de trous d'éjection. Dans cette variante, la plaque 2 est recouverte d'une couche 29 de matériau conducteur de l'électricité, l'ensemble de la plaque 2 avec la couche 29 étant transparent à un rayonnement électromagnétique. Cette couche 29 est recouverte d'une couche 30 d'un matériau photoconducteur dont la résistivité électrique est diminuée fortement, soit dans un rapport de 1 à 10 par exemple, lorsqu'il est éclairé à l'aide du rayonnement précité. L'encre contenue dans la chambre 3 est de type résistif et la plaque 1 est électriquement conductrice, ou comporte une couche conductrice du côté de la chambre 3, et est isolée électriquement de la plaque 2. Pour éjecter une goutte d'encre, on éclaire à travers la plaque 2 la région 34 de la couche photoconductrice 30 faisant face au trou sélectionné par un faisceau étroit 33 du rayonnement précité. Par suite la résistivité de la zone 34 diminue fortement, ce qui permet le passage d'une impulsion de courant électrique dans l'encre, si on applique une tension électrique entre la plaque 1 et la couche 29. L'éjection se produit ensuite comme décrit précédemment.FIG. 11 shows a variant of an electrically heated ejection device which may include a very large number of ejection holes. In this variant, the plate 2 is covered with a layer 29 of electrically conductive material, the whole of the plate 2 with the layer 29 being transparent to electromagnetic radiation. This layer 29 is covered with a layer 30 of a photoconductive material whose electrical resistivity is greatly reduced, ie in a ratio of 1 to 10 for example, when it is illuminated with the aid of the aforementioned radiation. The ink contained in the chamber 3 is of the resistive type and the plate 1 is electrically conductive, or has a conductive layer on the side of the chamber 3, and is electrically insulated from the plate 2. To eject a drop of ink, illuminates through the plate 2 the region 34 of the photoconductive layer 30 facing the selected hole by a narrow beam 33 of the aforementioned radiation. As a result, the resistivity of the zone 34 decreases sharply, which allows the passage of an electric current pulse in the ink, if an electric voltage is applied between the plate 1 and the layer 29. The ejection then occurs as described previously.

La résistivité de l'encre doit pour cela être ajustée à une valeur dépendant de la tension électrique utilisée, des dimensions du dispositif et de l'échauffement requis pour l'éjection. On peut par exemple utiliser des encres comprenant une proportion importante d'eau et dont la résistivité est ajustée par addition de chlorure de sodium ou d'acide chlorhydrique. On peut ainsi obtenir des encres de résistivité comprise entre 50 Ohm.mètre et 0,05 Ohm.mètre.The resistivity of the ink must therefore be adjusted to a value depending on the electrical voltage used, the dimensions of the device and the heating required for ejection. One can for example use inks comprising a significant proportion of water and whose resistivity is adjusted by adding sodium chloride or hydrochloric acid. One can thus obtain inks with resistivity between 50 Ohm.meter and 0.05 Ohm.meter.

Un masque 31 non indispensable au fonctionnement du dispositif, facilite le contrôle en position et en dimension de la région 34. Ce masque 31 est constitué par une couche d'un matériau opaque au rayonnement utilisé et dans laquelle des ouvertures 32 sont ménagées en vis-à-vis des trous 4 de la plaque 1. La durée de l'impulsion de courant peut être déterminée soit par la durée du faisceau 33 soit par la durée de la mise sous tension électrique de la couche 29 par rapport à la plaque 1. Divers moyens peuvent être utilisés pour fournir le faisceau 33. Un moyen consiste à utiliser un rayon laser dévié en direction des trous sélectionnés par des miroirs mobiles ou par des procédés acousto-optiques ou électro-optiques connus dans les techniques d'utilisation des rayons laser. Un autre moyen consiste à utiliser un réseau de diodes laser ou de diodes électroluminescentes (LED), tel que à chaque trou 4 corresponde une diode, ou bien tel que, chaque diode correspondant à plusieurs trous 4, ledit réseau soit déplacable par rapport à la plaque 1 de manière à recouvrir la totalité des trous 4. Ledit réseau peut être plaqué directement, contre la plaque 2 ou le masque 31, ou bien être disposé à une certaine distance. On peut également intercaler un système optique convenable entre le réseau de diodes et la plaque 2, par exemple des lentilles de Fresnel, de manière à former sur la couche 30 une image si nécessaire réduite ou agrandie dudit réseau. Un autre moyen pour fournir le faisceau 33 consiste à disposer un cache devant la plaque 2, ce cache représentant le motif à imprimer sur le support 5 et à éclairer la couche 30 à travers ce cache par une ou plusieurs lampes, par exemple des lampes à incandescence, ou des lampes à fluorescence, ou des lampes à décharge électrique dans un gaz. Ledit cache peut comporter des parties fixes, interchangeables ou non, pour l'impression d'éventuelles parties constantes du motif, et des parties mobiles, à réglage automatique ou non, pour les parties variables du motif. On peut également utiliser comme cache une matrice à cristaux liquides, ou tout autre commutateur optique à commande électrique.A mask 31 which is not essential for the operation of the device, facilitates the control in position and in size of the region 34. This mask 31 consists of a layer of material opaque to the radiation used and in which openings 32 are formed facing each other. with respect to the holes 4 of the plate 1. The duration of the current pulse can be determined either by the duration of the beam 33 or by the duration of the electrical powering up of the layer 29 relative to the plate 1. Various means can be used to provide the beam 33. One means consists in using a laser beam deflected in the direction of the holes selected by movable mirrors or by acousto-optical or electro-optical methods known in the techniques of using laser rays. Another means consists in using an array of laser diodes or light-emitting diodes (LEDs), such that each hole 4 corresponds to one diode, or else such that, each diode corresponding to several holes 4, said array is movable relative to the plate 1 so as to cover all of the holes 4. Said network can be pressed directly against the plate 2 or the mask 31, or else be placed at a certain distance. It is also possible to interpose a suitable optical system between the array of diodes and the plate 2, for example Fresnel lenses, so as to form on the layer 30 an image if necessary reduced or enlarged of said array. Another means for supplying the beam 33 consists in placing a cover in front of the plate 2, this cover representing the pattern to be printed on the support 5 and in lighting the layer 30 through this cover by one or more lamps, for example lamps with incandescent, or fluorescent lamps, or electric gas discharge lamps. Said cover may include fixed parts, interchangeable or not, for printing possible constant parts of the pattern, and mobile parts, with automatic adjustment or not, for the variable parts of the pattern. It is also possible to use a liquid crystal matrix, or any other optical switch with electrical control, as a cover.

Pour que le système fonctionne convenablement, il faut que la résistivité de la couche photoconductrice 30 non éclairée soit suffisamment élevée par rapport à celle de l'encre utilisée pour assurer l'isolement de celle-ci par rapport à la couche 29 et que la résistivité de la couche photoconductrice 30 éclairée soit assez faible par rapport à celle de l'encre de manière à laisser passer le courant électrique. On peut également utiliser une couche photcconduc- trice dont la résistivité sous éclairement est du même ordre de grandeur que celle de l'encre, auquel cas la couche photoconductrice 30 participe à l'échauffement en même temps que l'encre, la chaleur produite dans cette couche étant transmise à l'encre comme dans le cas d'utilisation d'une résistance chauffante. On peut même choisir la résistivité de la couche photoconductrice 30 éclairée assez grande pour que la chaleur engendrée par le courant électrique le soit essentiellement dans ladite couche.For the system to function properly, the resistivity of the unlit photoconductive layer 30 must be sufficiently high relative to that of the ink used to ensure its isolation from the layer 29 and that the resistivity of the lit photoconductive layer 30 is rather weak compared to that of the ink so as to let the electric current pass. One can also use a photoconductive layer whose resistivity under illumination is of the same order of magnitude as that of the ink, in which case the photoconductive layer 30 takes part in the heating at the same time as the ink, the heat produced in this layer being transmitted to the ink as in the case of using a heating resistor. We can even choose the resistivity of the illuminated photoconductive layer 30 large enough so that the heat generated by the electric current is essentially in said layer.

La figure 12 représente une variante de dispositif d'éjection comportant comme sur la figure 11 une couche photoconductrice 30, cette couche étant dans ce cas séparée de l'encre de la chambre 3 par une couche supplémentaire 35 d'un matériau conducteur de l'élec- tricité dont la résistivité et l'épaisseur sont choisies de manière à ce que la création de chaleur par passage du courant électrique se fasse principalement dans la couche 35, ou dans les couches 30 et 35. Cette disposition présente l'avantage d'élargir le champ des valeurs possibles pour la résistivité de l'encre ainsi que de protéger la couche 30 en cas d'incompatibilité chimique entre l'encre et le matériau de la couche 30. La couche 35 peut également être en un matériau bon conducteur de l'électricité, l'impulsion de tension électrique étant appliquée non plus entre la couche 29 et la plaque 1 comme précédemment, mais entre les couches 29 et 35, la chaleur néces- saire à l'éjection étant alors engendrée exclusivement dans la couche 30, un tel dispositif permettant d'utiliser des encres et des matériaux pour la plaque 1 de résistivités électriques quelconques.FIG. 12 represents a variant of an ejection device comprising, as in FIG. 11, a photoconductive layer 30, this layer being in this case separated from the ink of the chamber 3 by an additional layer 35 of a material conducting the elec- t ri c i ty, the resistivity and thickness are chosen so that the heat generation by electrical current flow takes place mainly in the layer 35, or layers 30 and 35. This arrangement has the advantage of widening the field of possible values for the resistivity of the ink as well as of protecting the layer 30 in the event of chemical incompatibility between the ink and the material of the layer 30. The layer 35 can also be made of a good electrically conductive material, the voltage pulse being applied either between the layer 29 and the plate 1 as above, but between the layers 29 and 35, heat neces- its ry to ejecting then being generated exclusively in the layer 30, t el device permits the use of inks and materials for the plate 1 of any electrical resistivities.

La figure 13 représente une autre variante de dispositif d'éjec- tion à photoconducteur dans lequel la plaque 2 elle-même est en un matériau photoconducteur, par exemple du silicium et est recouverte d'une couche d'un matériau conducteur de l'électricité 36, du côté non baigné par l'encre, cette couche 36 étant recouverte ou non du masque 31. L'échauffement de l'encre dans ce dispositif se fait d'une manière analogue-aux dispositifs précédents, la tension électrique étant appliquée entre la couche 36 et la plaque 1 cette plaque étant en un matériau conducteur de l'électricité et l'encre contenue dans la chambre 3 ayant une résistivité électrique appropriée pour que la génération de chaleur ait lieu principalement dans l'encre, ou dans la plaque 2, ou dans l'encre et dans la plaque 2.13 shows another variant of the photoconductor to éjec- ti on device in which the plate 2 itself is made of a photoconductive material, for example silicon and is covered with a layer of a conductive material of the electricity 36, on the side not bathed by the ink, this layer 36 being covered or not with the mask 31. The heating of the ink in this device is done in a manner analogous to the preceding devices, the electric voltage being applied between the layer 36 and the plate 1 this plate being of an electrically conductive material and the ink contained in the chamber 3 having an electrical resistivity suitable for the generation of heat to take place mainly in the ink, or in the plate 2, or in ink and in plate 2.

On peut également recouvrir la face de la plaque 2 du côté de la chambre 3 d'une couche conductrice de l'électricité 37 comme représenté sur la figure 14. Dans ce cas on peut appliquer la tension électrique entre les couches 36 et 37, l'encre et le matériau de la plaque 1 pouvant avoir des résistivités électriques quelconques.It is also possible to cover the face of the plate 2 on the side of the chamber 3 with an electrically conductive layer 37 as shown in FIG. 14. In this case, the electric voltage can be applied between the layers 36 and 37, l ink and the material of the plate 1 may have any electrical resistivities.

Le matériau photoconducteur de la couche 30 des figures 11 et 12 peut par exemple être du sulfure de cadmium déposé en quelques microns d'épaisseur, dont la résistivité électrique non éclairée est plus grande que 108 Ohm.centimètre et la résistivité éclairée de l'ordre de 100 Ohm. centimètre. Ce matériau est sensible à un' rayonnement de longueur d'onde d'environ 0,5 microns permettant l'usage d'une plaque 2 en verre ordinaire et d'une source de rayonnement à incandescence. L'épaisseur de la chambre 3 peut être de 10 à 50 microns environ, l'encre présentant une résistivité de 500 Ohm centimètre environ. La tension électrique utilisée doit alors être de l'ordre de 50 volts.The photoconductive material of layer 30 of FIGS. 11 and 12 can for example be cadmium sulphide deposited in a few microns in thickness, the unlighted electrical resistivity of which is greater than 10 8 Ohm.centimeter and the illuminated resistivity of the order of 100 Ohm. centimeter. This material is sensitive to radiation with a wavelength of about 0.5 microns allowing the use of a plate 2 made of ordinary glass and a source of incandescent radiation. The thickness of the chamber 3 can be from 10 to 50 microns approximately, the ink having a resistivity of approximately 500 Ohm centimeter. The electrical voltage used must then be of the order of 50 volts.

Les différentes variantes de dispositif à éjection de gouttes d'encre décrites ci-dessus sont bien adaptées à l'impression de graphismes de faibles dimensions, par exemple 30 cm2, car l'impression peut alors être effectuée soit sans aucun déplacement relatif du dispositif d'impression par rapport au support d'impression, soit avec seulement des déplacements de faible amplitude, par exemple 1mm d'amplitude. Ces dispositifs conviennent de plus particulièrement lorsque le graphisme comporte une partie constante et une partie variable, la partie constante pouvant éventuellement être changée par échange d'une pièce ou d'un ensemble de pièces du dispositif.The different variants of the ink drop ejection device described above are well suited for printing graphics of small dimensions, for example 30 cm 2, since the printing can then be carried out either without any relative movement of the device. printing relative to the printing medium, ie with only small amplitude displacements, for example 1 mm of amplitude. These devices are more particularly suitable when the graphics have a constant part and a variable part, the constant part possibly being changed by exchanging a part or a set of parts of the device.

La partie variable de ces graphismes peut être réalisée à l'aide d'un dispositif selon l'une quelconque des figures 11 à 14, la partie constante pouvant être réalisée soit de la même manière, soit de préférence à l'aide de variantes simplifiées des mêmes dispositifs.The variable part of these graphics can be produced using a device according to any one of FIGS. 11 to 14, the constant part being able to be produced either in the same way, or preferably using simplified variants of the same devices.

Une première variante simplifiée, illustrée sur la figure 15 consiste à ne prévoir dans la plaque 1 que les trous 40 correspondant à la représentation mosaique du graphisme constant à imprimer, par exemple le sigle SMH représenté sur la figure 15, ainsi qu'un réseau complet de trous 39 dans la zone correspondant à la partie variable du graphisme. L'éjection par les trous 40 peut alors être commandée à partir d'une seule électrode, ou d'une seule résistance, déposée sur la plaque 1 ou la plaque 2 et s'étendant sur la totalité de la zone correspondant à l'ensemble de trous 40.A first simplified variant, illustrated in FIG. 15 consists in providing in the plate 1 only the holes 40 corresponding to the mosaic representation of the constant graphics to be printed, for example the acronym SMH represented in FIG. 15, as well as a complete network holes 39 in the area corresponding to the variable part of the graphics. The ejection through the holes 40 can then be controlled from a single electrode, or from a single resistance, deposited on the plate 1 or the plate 2 and extending over the entire area corresponding to the assembly. holes 40.

Une deuxième variante simplifiée est représentée sur la figure 16. Dans cette variante on utilise une plaque 1 percée normalement d'un réseau de trous complet 4 correspondant aux zones variables et constantes du graphisme, l'impression de la partie constante du graphisme étant commandée à l'aide d'une électrode unique constituée d'une couche de matériau conducteur de l'électricité 41 déposée sur la plaque 2, cette couche étant elle même recouverte d'une couche électriquement isolante 42. La forme du graphisme constant désiré est obtenue en ménageant dans la couche 42 des ouvertures 43, chaque ouverture 43 faisant face à un trou 4, l'ensemble des ouvertures 43 formant l'image en mosaique du graphisme désiré. La couche 41 peut être divisée en plusieurs zones électriquement isolées et à commandes séparées, ce qui permet d'étaler dans le temps la fourniture de l'énergie requise pour l'éjection. Les ouvertures 43 peuvent être obtenues par gravure photochimique. Si la plaque 2 est faite d'un matériau conducteur de l'électricité, celle-ci sert d'électrode et la couche 41 est superflue.A second simplified variant is shown in FIG. 16. In this variant, a plate 1 normally pierced with a complete network of holes 4 corresponding to the variable and constant areas of the graphics, the printing of the constant part of the graphics being controlled using a single electrode made up of a layer of electrically conductive material 41 deposited on the plate 2, this layer itself being covered with an electrically insulating layer 42. The shape of the desired constant graphics is obtained by providing in layer 42 openings 43, each opening 43 facing a hole 4, all of the openings 43 forming the mosaic image of the desired graphic. Layer 41 can be divided into several electrically isolated zones with separate controls, which allows the supply of the energy required for ejection to be spread out over time. The openings 43 can be obtained by photochemical etching. If the plate 2 is made of an electrically conductive material, this serves as an electrode and the layer 41 is superfluous.

Les dispositifs à photoconducteur permettent aussi d'obtenir l'impression d'un graphisme comprenant une partie constante et une partie variable, la partie constante étant obtenue par éclairage de la couche photoconductrice à travers un cache, la partie variable par éclairage à partir par exemple d'un réseau de diodes, ou par un rayon laser, ou à travers un réseau à cristaux liquides.Photoconductive devices also make it possible to obtain the impression of a graphic design comprising a constant part and a variable part, the constant part being obtained by lighting the photoconductive layer through a cover, the variable part by lighting from for example from an array of diodes, or through a laser beam, or through an array of liquid crystals.

Claims (12)

1/ Dispositif destiné à déposer sur un support des gouttes d'encre de manière à former sur celle-ci par des mosaïques de points un ou des graphismes, lesdits points étant choisis à chaque opération parmi un réseau de points et comportant une première plaque placée d'une façon sensiblement parallèle à une distance faible dudit support, cette plaque étant perforée d'un ensemble de trous, une deuxième plaque fixée à la première plaque d'une façon sensiblement parallèle à la première plaque, l'espace entre les première et deuxième plaques définissant une chambre contenant de l'encre à déposer, des moyens d'actionnement permettant d'éjecter à travers les trous sélectionnés dudit ensemble une petite quantité d'encre, lesdits moyens d'actionnement élevant la température de l'encre de la portion de ladite chambre commune comprise entre lesdites première et deuxième plaques, portion correspondante au trou d'éjection sélectionné, et comportant l'application d'une tension électrique sur au moins une plaque combinée à des moyens d'illumination envoyant un rayonnement au travers de ladite deuxième plaque caractérisé en ce que ladite deuxième plaque (2) comporte aumoins partiellement une couche (30) de matériau photoconducteur dont la résistivité électrique diminue sous l'action dudit rayonnement (33).1 / Device intended to deposit drops of ink on a support so as to form thereon mosaics of dots one or more graphics, said dots being chosen at each operation from a network of dots and comprising a first plate placed substantially parallel to a small distance from said support, this plate being perforated with a set of holes, a second plate fixed to the first plate substantially parallel to the first plate, the space between the first and second plates defining a chamber containing ink to be deposited, actuation means making it possible to eject through the selected holes of said assembly a small quantity of ink, said actuation means raising the temperature of the ink of the portion of said common chamber included between said first and second plates, portion corresponding to the selected ejection hole, and comprising the application of an electrical voltage to at least a plate combined with illumination means sending radiation through said second plate characterized in that said second plate (2) at least partially comprises a layer (30) of photoconductive material whose electrical resistivity decreases under the action of said radiation (33). 2/ Dispositif selon la revendication 1, caractérisé par le fait que ladite deuxième plaques (2) comporte en outre une couche (25) de matériau conducteur de l'électricité transparente audit rayonnement.2 / Device according to claim 1, characterized in that said second plates (2) further comprises a layer (25) of electrically conductive material transparent to said radiation. 3/ Dispositif selon la revendication 1, caractérisé par le fait que ladite deuxième plaque (2) comporte en outre deux couches (29, 35) de matériau conducteur, auxquelles est appliquée ladite tension électrique, et disposées de part et d'autre de ladite couche (30) de matériau photoconducteur.3 / Device according to claim 1, characterized in that said second plate (2) further comprises two layers (29, 35) of conductive material, to which is applied said electrical voltage, and arranged on either side of said layer (30) of photoconductive material. 4/ Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite première plaque (1) et/ou ladite deuxième plaque (2) portent un ensemble de protubérances (15) remplissant partiellement l'espace (3) entre lesdites plaques (1, 2) de hauteur égale ou inférieure à la distance entre les deux première et deuxième plaques et répartis régulièrement entre les axes des trous (4) de ladite première plaque (1).4 / Device according to any one of claims 1 to 3, characterized in that said first plate (1) and / or said second plate (2) carry a set of protrusions (15) partially filling the space (3) between said plates (1, 2) of height equal to or less than the distance between the two first and second plates and distributed regularly between the axes of the holes (4) of said first plate (1). 5/ Dispositif selon l'une des revendications 2 et 3, caractérisé en ce que ladite couche (29, 35) conductrice de l'électricité possède une résistivité électrique comprise entre 10-6 Ohm. mètre et 50 Ohm. mètre.5 / Device according to one of claims 2 and 3, characterized in that said layer (29, 35) electrically conductive has an electrical resistivity between 10 -6 Ohm. meter and 50 Ohm. metre. 6/ Dispositif selon la revendication 1, caractérisé en ce que ledit matériau photoconducteur (30) fait partie d'un groupe de corps comprenant le silicium, le germanium, le sulfure de cadmium.6 / Device according to claim 1, characterized in that said photoconductive material (30) is part of a group of bodies comprising silicon, germanium, cadmium sulfide. 7/ Dispositif selon la revendication 1, caractérisé en ce qu'entre la source dudit rayonnement (33) et ledit matériau photoconducteur (30) est disposé une pluralité de cellules à cristaux liquides commandées électriquement et permettant à la demande d'arrêter ou de laisser passer le rayonnement (33) vers une portion déterminée de la couche photoconductrice (30).7 / Apparatus according to claim 1, characterized in that between the source of said radiation (33) and said photoconductive material (30) is disposed a plurality of liquid crystal cells electrically controlled and allowing the request to stop or leave passing the radiation (33) to a determined portion of the photoconductive layer (30). 8/ Dispositif selon la revendication 1, caractérisé en ce qu'entre la source dudit rayonnement (33) et ledit matériau photoconducteur (30) est disposée une pluralité de caches (31) comportant des parties opaques et des parties transparentes audit rayonnement (33), ces caches pouvant être interchangeables et mobiles.8 / Device according to claim 1, characterized in that between the source of said radiation (33) and said photoconductive material (30) is disposed a plurality of covers (31) comprising opaque parts and transparent parts to said radiation (33) , these covers can be interchangeable and mobile. 9/ Dispositif selon la revendication 1, caractérisé en ce que l'encre est solide à la température normale de fonctionnement et en ce que l'élévation locale de température de l'encre provoque sa fusion.9 / Device according to claim 1, characterized in that the ink is solid at normal operating temperature and in that the local rise in temperature of the ink causes its fusion. 10/ Appareil pour l'impression d'un graphisme par dépôt de gouttes d'encre sur un support de dimensions limitées, en particulier, objets postaux, tickets ou étiquettes comportant un dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ledit support (5) reste fixe par rapport audit dispositif durant le temps nécessaire au dépôt de la totalité des gouttes formant le graphisme désiré. ' 10 / Apparatus for printing a graphic by depositing ink drops on a support of limited dimensions, in particular postal items, tickets or labels comprising a device according to any one of claims 1 to 9, characterized in that said support (5) remains fixed relative to said device during the time necessary for the deposit of all the drops forming the desired graphics. '' 11/ Appareil pour l'impression d'un graphisme par dépôt de gouttes d'encre sur un support de dimensions limitées, en particulier, objets postaux, tickets ou étiquettes comportant un dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que ledit support (5) se déplace par rapport audit dispositif durant le temps nécessaire au dépôt de la totalité des gouttes formant le graphisme désiré suivant au moins une direction parallèlement à la surface du support, d'une distance au plus égale à deux millimètres.11 / Apparatus for printing graphics by depositing ink drops on a support of limited dimensions, in particular postal items, tickets or labels comprising a device according to any one of claims 1 to 9, characterized in that said support (5) moves relative to said device during the time necessary to deposit all the drops forming the desired graphic in at least one direction parallel to the surface of the support, from a distance at most equal to two millimeters. 12/ Appareil selon l'une quelconque des revendications 10 à 11, pour l'impression sur un support de dimensions limitées, en particulier objets postaux, étiquettes ou tickets d'un graphisme comportant une partie constante et une partie variable, caractérisé en ce qu'il comprend une première série de moyens destinés à l'impression variable du graphisme (39), ces moyens permettant de déposer des gouttes d'encre à travers un certain nombre de trous sélectionnés parmi un premier ensemble de trous, et une deuxième série de moyens destinés à l'impression de la partie constante du graphisme (40), ces moyens permettant de déposer pour chacune desdits graphismes des gouttes d'encre à travers la totalité d'un deuxième ensemble de trous, ce deuxième ensemble étant soit déterminé une fois pour toutes pour chaque appareil, soit variable par l'échange d'un élément interchangeable de l'appareil.12 / Apparatus according to any one of claims 10 to 11, for printing on a medium of limited dimensions, in particular postal items, labels or tickets of a graphic comprising a constant part and a variable part, characterized in that '' it comprises a first series of means intended for variable printing of the graphics (39), these means making it possible to deposit ink drops through a certain number of holes selected from a first set of holes, and a second series of means intended for printing the constant part of the graphics (40), these means making it possible to deposit, for each of said graphics, drops of ink through the whole of a second set of holes, this second set being either determined once for all for each device, or variable by exchanging an interchangeable element of the device.
EP80100647A 1979-02-16 1980-02-08 Apparatus for depositing ink droplets on a recording medium Expired EP0014918B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80100647T ATE3833T1 (en) 1979-02-16 1980-02-08 DEVICE FOR TRANSFERRING INK DROPS TO A RECORD CARRIER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7904012A FR2448979B1 (en) 1979-02-16 1979-02-16 DEVICE FOR DEPOSITING INK DROPS ON A SUPPORT
FR7904012 1979-02-16

Publications (2)

Publication Number Publication Date
EP0014918A1 true EP0014918A1 (en) 1980-09-03
EP0014918B1 EP0014918B1 (en) 1983-06-22

Family

ID=9222084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80100647A Expired EP0014918B1 (en) 1979-02-16 1980-02-08 Apparatus for depositing ink droplets on a recording medium

Country Status (5)

Country Link
US (1) US4312009A (en)
EP (1) EP0014918B1 (en)
AT (1) ATE3833T1 (en)
DE (1) DE3063802D1 (en)
FR (1) FR2448979B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0118603A1 (en) * 1983-03-10 1984-09-19 Fuji Xerox Co., Ltd. Ink jet forming unit
EP0195863A1 (en) * 1985-03-27 1986-10-01 Elm Co., Ltd. Thermal ink jet printer
EP0202370A1 (en) * 1985-05-20 1986-11-26 Elm Co., Ltd. Printing head
EP0496490A1 (en) * 1991-01-24 1992-07-29 Amiram Carmon Ink jet printing apparatus
EP0947324A1 (en) * 1996-02-19 1999-10-06 MAXIMOVSKY, Sergei Nicolaevich Printing method and printing device for realising the same

Families Citing this family (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0063853B1 (en) * 1981-01-21 1986-03-12 Matsushita Electric Industrial Co., Ltd. Ink jet printing head utilizing pressure and potential gradients
US4403228A (en) * 1981-03-19 1983-09-06 Matsushita Electric Industrial Company, Limited Ink jet printing head having a plurality of nozzles
US4822418A (en) * 1981-03-27 1989-04-18 Dataproducts Corporation Drop on demand ink jet ink comprising dubutyl sebecate
US4450455A (en) * 1981-06-18 1984-05-22 Canon Kabushiki Kaisha Ink jet head
DE3250114C2 (en) * 1981-07-09 2000-03-02 Canon Kk Head for ink-jet printer
US4558333A (en) * 1981-07-09 1985-12-10 Canon Kabushiki Kaisha Liquid jet recording head
GB2106039A (en) * 1981-08-14 1983-04-07 Hewlett Packard Co Thermal ink jet printer
US4793264A (en) * 1981-12-07 1988-12-27 Dataproducts Corporation Low corrosion impulse ink jet ink containing anti-oxidant
US4659383A (en) * 1981-12-17 1987-04-21 Exxon Printing Systems, Inc. High molecular weight, hot melt impulse ink jet ink
US5182572A (en) * 1981-12-17 1993-01-26 Dataproducts Corporation Demand ink jet utilizing a phase change ink and method of operating
US4758276A (en) * 1981-12-17 1988-07-19 Dataproducts Corporation Stearic acid-containing ink jet inks
US4470055A (en) * 1982-03-10 1984-09-04 Fuji Xerox Co., Ltd. Photo-thermal ink transferring device
JPS59187870A (en) * 1983-04-08 1984-10-25 Canon Inc Liquid injection recorder
GB2142583B (en) * 1983-06-23 1987-03-25 Nippon Telegraph & Telephone Thermal ink transfer printer
JPS6071260A (en) * 1983-09-28 1985-04-23 Erumu:Kk Recorder
US4546360A (en) * 1983-12-16 1985-10-08 Xerox Corporation Electrothermic ink jet
US4607267A (en) * 1983-12-19 1986-08-19 Ricoh Company, Ltd. Optical ink jet head for ink jet printer
USRE34029E (en) * 1984-05-10 1992-08-11 Willett International Limited Method for applying a hot melt ink to a substrate
JPS6175227A (en) * 1984-09-20 1986-04-17 Nippon Kokan Kk <Nkk> Temperature measuring apparatus for moving body
US4667206A (en) * 1984-10-15 1987-05-19 Deyoung Thomas W Ink jet apparatus and method of operating the ink jet apparatus wherein phase change ink is supplied in solid-state form
US4631557B1 (en) * 1984-10-15 1997-12-16 Data Products Corp Ink jet employing phase change ink and method of operation
US5350446A (en) * 1984-11-05 1994-09-27 Dataproducts Corporation Hot melt impulse ink jet ink with dispersed solid pigment in a hot melt vehicle
DE3677669D1 (en) * 1985-08-13 1991-04-04 Matsushita Electric Ind Co Ltd COLOR JET PRINTER.
DE3702643A1 (en) * 1986-02-10 1987-08-13 Toshiba Kawasaki Kk INK NIBLE PEN AND WRITING HEAD AND WRITING HEAD CASSETTE DAFUER
US4931955A (en) * 1987-04-28 1990-06-05 Juki Corporation Ink jet printing apparatus with preprinting jet purging mechanism
JPS63272558A (en) * 1987-04-30 1988-11-10 Nec Corp Ink jet recorder
US5189437A (en) * 1987-09-19 1993-02-23 Xaar Limited Manufacture of nozzles for ink jet printers
US4882595A (en) * 1987-10-30 1989-11-21 Hewlett-Packard Company Hydraulically tuned channel architecture
US4829319A (en) * 1987-11-13 1989-05-09 Hewlett-Packard Company Plastic orifice plate for an ink jet printhead and method of manufacture
US4998120A (en) * 1988-04-06 1991-03-05 Seiko Epson Corporation Hot melt ink jet printing apparatus
US5208604A (en) * 1988-10-31 1993-05-04 Canon Kabushiki Kaisha Ink jet head and manufacturing method thereof, and ink jet apparatus with ink jet head
US5682187A (en) * 1988-10-31 1997-10-28 Canon Kabushiki Kaisha Method for manufacturing an ink jet head having a treated surface, ink jet head made thereby, and ink jet apparatus having such head
US4949102A (en) * 1989-05-30 1990-08-14 Eastman Kodak Company Bubble jet print head orifice construction
US5235350A (en) * 1990-01-22 1993-08-10 Dataproducts Corporation Pigmented semiconductive hot melt ink and ink jet apparatus employing same
JP3032021B2 (en) * 1990-02-02 2000-04-10 キヤノン株式会社 Ink jet recording device
US5442384A (en) * 1990-08-16 1995-08-15 Hewlett-Packard Company Integrated nozzle member and tab circuit for inkjet printhead
DE69111936T2 (en) * 1990-08-16 1996-04-11 Hewlett Packard Co Photo-ablated components for inkjet printheads.
US5469199A (en) * 1990-08-16 1995-11-21 Hewlett-Packard Company Wide inkjet printhead
US5305015A (en) * 1990-08-16 1994-04-19 Hewlett-Packard Company Laser ablated nozzle member for inkjet printhead
US5291226A (en) * 1990-08-16 1994-03-01 Hewlett-Packard Company Nozzle member including ink flow channels
JPH0564889A (en) * 1990-12-14 1993-03-19 Ricoh Co Ltd Ink fly recording method and device and production of the device
JPH05177834A (en) * 1991-06-04 1993-07-20 Seiko Epson Corp Ink jet recording head
US5648806A (en) 1992-04-02 1997-07-15 Hewlett-Packard Company Stable substrate structure for a wide swath nozzle array in a high resolution inkjet printer
US5648805A (en) * 1992-04-02 1997-07-15 Hewlett-Packard Company Inkjet printhead architecture for high speed and high resolution printing
US5297331A (en) * 1992-04-03 1994-03-29 Hewlett-Packard Company Method for aligning a substrate with respect to orifices in an inkjet printhead
US5638101A (en) * 1992-04-02 1997-06-10 Hewlett-Packard Company High density nozzle array for inkjet printhead
US5450113A (en) * 1992-04-02 1995-09-12 Hewlett-Packard Company Inkjet printhead with improved seal arrangement
US5300959A (en) * 1992-04-02 1994-04-05 Hewlett-Packard Company Efficient conductor routing for inkjet printhead
US5563642A (en) * 1992-04-02 1996-10-08 Hewlett-Packard Company Inkjet printhead architecture for high speed ink firing chamber refill
US5594481A (en) * 1992-04-02 1997-01-14 Hewlett-Packard Company Ink channel structure for inkjet printhead
US5278584A (en) * 1992-04-02 1994-01-11 Hewlett-Packard Company Ink delivery system for an inkjet printhead
US5568171A (en) * 1992-04-02 1996-10-22 Hewlett-Packard Company Compact inkjet substrate with a minimal number of circuit interconnects located at the end thereof
US5420627A (en) * 1992-04-02 1995-05-30 Hewlett-Packard Company Inkjet printhead
US5604519A (en) * 1992-04-02 1997-02-18 Hewlett-Packard Company Inkjet printhead architecture for high frequency operation
US5440332A (en) * 1992-07-06 1995-08-08 Compa Computer Corporation Apparatus for page wide ink jet printing
KR940010649A (en) * 1992-10-14 1994-05-26 오오가 노리오 Printer and Photo Paper
GB9226846D0 (en) * 1992-12-23 1993-02-17 Episys Limited Improvements in and relating to printing apparatus
GB2286157B (en) * 1994-01-31 1998-01-14 Neopost Ltd Ink jet printing device
JP3303901B2 (en) * 1994-09-16 2002-07-22 セイコーエプソン株式会社 Electric field drive type ink jet recording head and driving method thereof
US6003986A (en) * 1994-10-06 1999-12-21 Hewlett-Packard Co. Bubble tolerant manifold design for inkjet cartridge
US5736998A (en) * 1995-03-06 1998-04-07 Hewlett-Packard Company Inkjet cartridge design for facilitating the adhesive sealing of a printhead to an ink reservoir
US5852460A (en) * 1995-03-06 1998-12-22 Hewlett-Packard Company Inkjet print cartridge design to decrease deformation of the printhead when adhesively sealing the printhead to the print cartridge
US5984446A (en) * 1995-04-12 1999-11-16 Eastman Kodak Company Color office printer with a high capacity digital page image store
US5864351A (en) * 1995-04-12 1999-01-26 Eastman Kodak Company Heater power compensation for thermal lag in thermal printing systems
US5892524A (en) * 1995-04-12 1999-04-06 Eastman Kodak Company Apparatus for printing multiple drop sizes and fabrication thereof
JPH10501766A (en) * 1995-04-12 1998-02-17 イーストマン コダック カンパニー Assembly and manufacturing process of thermally actuated print head
US5825385A (en) * 1995-04-12 1998-10-20 Eastman Kodak Company Constructions and manufacturing processes for thermally activated print heads
AUPN232695A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Nozzle duplication for fault tolerance in integrated printing heads
AUPN231995A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Page image and fault tolerance routing device for lift printing systems
US5850241A (en) * 1995-04-12 1998-12-15 Eastman Kodak Company Monolithic print head structure and a manufacturing process therefor using anisotropic wet etching
AUPN230495A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Integrated four color lift print heads
AUPN229195A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company A color plotter using lift printing technology
AUPN231395A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Electrostatic drop separation in lift printing
AUPN231895A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Data distribution in monolithic lift print heads
AUPN229595A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Integrated drive circuitry in lift print heads
WO1996032284A1 (en) * 1995-04-12 1996-10-17 Eastman Kodak Company Monolithic printing heads and manufacturing processes therefor
AUPN232895A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Fault tolerance in high volume lift printing presses
AUPN231595A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Heater power compensation for thermal lag in lift printing systems
US5796418A (en) * 1995-04-12 1998-08-18 Eastman Kodak Company Page image and fault tolerance control apparatus for printing systems
WO1996032808A1 (en) * 1995-04-12 1996-10-17 Eastman Kodak Company Fax machine with concurrent drop selection and drop separation ink jet printing
DE69603057T2 (en) * 1995-04-12 2000-01-05 Eastman Kodak Co., Rochester APPARATUS AND SYSTEM FOR PRINTING WITH LIQUID INK
US6012799A (en) * 1995-04-12 2000-01-11 Eastman Kodak Company Multicolor, drop on demand, liquid ink printer with monolithic print head
AUPN232095A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company A removable pressurised liquid ink cartridge for lift printers
AUPN229495A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company A nozzle clearing procedure for liquid ink fault tolerant (lift) printing
US5880759A (en) * 1995-04-12 1999-03-09 Eastman Kodak Company Liquid ink printing apparatus and system
JPH10501763A (en) * 1995-04-12 1998-02-17 イーストマン コダック カンパニー Power connection for monolithic printhead
US5838339A (en) * 1995-04-12 1998-11-17 Eastman Kodak Company Data distribution in monolithic print heads
AUPN231695A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Heater power compensation for print density in lift printing systems
US6030072A (en) * 1995-04-12 2000-02-29 Eastman Kodak Company Fault tolerance in high volume printing presses
US6045710A (en) * 1995-04-12 2000-04-04 Silverbrook; Kia Self-aligned construction and manufacturing process for monolithic print heads
AUPN234995A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company A self-aligned manufacturing process for monolithic lift print heads
US5812162A (en) * 1995-04-12 1998-09-22 Eastman Kodak Company Power supply connection for monolithic print heads
AUPN233995A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Four level ink set for bi-level color printing
AUPN232195A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Multiple simultaneous drop sizes in proximity lift printing
US5808639A (en) * 1995-04-12 1998-09-15 Eastman Kodak Company Nozzle clearing procedure for liquid ink printing
AUPN231795A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Accurate control of temperature pulses in printing heads
AUPN229295A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company A notebook computer with integrated lift color printing system
EP0765569A1 (en) * 1995-04-12 1997-04-02 Eastman Kodak Company A color photocopier using a drop on demand ink jet printing system
AUPN230695A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company A manufacturing process for monolithic lift print heads using anistropic wet etching
US5796416A (en) * 1995-04-12 1998-08-18 Eastman Kodak Company Nozzle placement in monolithic drop-on-demand print heads
US5905517A (en) * 1995-04-12 1999-05-18 Eastman Kodak Company Heater structure and fabrication process for monolithic print heads
US5781202A (en) * 1995-04-12 1998-07-14 Eastman Kodak Company Fax machine with concurrent drop selection and drop separation ink jet printing
JPH10501765A (en) * 1995-04-12 1998-02-17 イーストマン コダック カンパニー Simultaneous particle selection, particle separation printing method and system
AUPN230795A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Nozzle placement in monolithic drop-on-demand print heads
US5815179A (en) * 1995-04-12 1998-09-29 Eastman Kodak Company Block fault tolerance in integrated printing heads
US5801739A (en) * 1995-04-12 1998-09-01 Eastman Kodak Company High speed digital fabric printer
US5856836A (en) * 1995-04-12 1999-01-05 Eastman Kodak Company Coincident drop selection, drop separation printing method and system
AUPN232595A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Block fault tolerance in integrated printing heads
US5859652A (en) * 1995-04-12 1999-01-12 Eastman Kodak Company Color video printer and a photo CD system with integrated printer
US5914737A (en) * 1995-04-12 1999-06-22 Eastman Kodak Company Color printer having concurrent drop selection and drop separation, the printer being adapted for connection to a computer
WO1996032725A2 (en) * 1995-04-12 1996-10-17 Eastman Kodak Company Color office printer with a high capacity digital page image store
WO1996032265A1 (en) * 1995-04-12 1996-10-17 Eastman Kodak Company A color video printer and a photocd system with integrated printer
AUPN233395A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company A high speed digital fabric printer
US5841449A (en) * 1995-04-12 1998-11-24 Eastman Kodak Company Heater power compensation for printing load in thermal printing systems
US5920331A (en) * 1995-04-12 1999-07-06 Eastman Kodak Company Method and apparatus for accurate control of temperature pulses in printing heads
AUPN234695A0 (en) * 1995-04-12 1995-05-04 Eastman Kodak Company Heater structure for monolithic lift print heads
WO1996032261A1 (en) * 1995-04-12 1996-10-17 Eastman Kodak Company A portable printer using a concurrent drop selection and drop separation printing system
RU2080005C1 (en) * 1995-04-21 1997-05-20 Сергей Николаевич Максимовский Inkjet Printing Method and Inkjet Printing Head for Implementing It
US5909231A (en) * 1995-10-30 1999-06-01 Hewlett-Packard Co. Gas flush to eliminate residual bubbles
JPH09216392A (en) * 1996-02-09 1997-08-19 Sharp Corp Photothermal conversion recording apparatus
KR100205745B1 (en) * 1996-06-14 1999-07-01 윤종용 Ejection apparatus and ejection method of inkjet printer
KR100205747B1 (en) * 1996-07-04 1999-07-01 윤종용 Apparatus for ejection of inkjet printer and method thereof
KR100189159B1 (en) * 1996-07-24 1999-06-01 윤종용 Ejection apparatus and method of inkjet printer
IL141904A (en) * 1998-12-09 2004-09-27 Aprion Digital Ltd Laser-initiated ink-jet print head
US6644789B1 (en) 2000-07-06 2003-11-11 Lexmark International, Inc. Nozzle assembly for an ink jet printer
US6684504B2 (en) * 2001-04-09 2004-02-03 Lexmark International, Inc. Method of manufacturing an imageable support matrix for printhead nozzle plates
US6798520B2 (en) * 2002-03-22 2004-09-28 Diversa Corporation Method for intensifying the optical detection of samples that are held in solution in the through-hole wells of a holding tray
US7169265B1 (en) 2002-12-31 2007-01-30 Albany International Corp. Method for manufacturing resin-impregnated endless belt and a belt for papermaking machines and similar industrial applications
US7005043B2 (en) * 2002-12-31 2006-02-28 Albany International Corp. Method of fabrication of a dryer fabric and a dryer fabric with backside venting for improved sheet stability
US7005044B2 (en) * 2002-12-31 2006-02-28 Albany International Corp. Method of fabricating a belt and a belt used to make bulk tissue and towel, and nonwoven articles and fabrics
US7008513B2 (en) * 2002-12-31 2006-03-07 Albany International Corp. Method of making a papermaking roll cover and roll cover produced thereby
US7014735B2 (en) 2002-12-31 2006-03-21 Albany International Corp. Method of fabricating a belt and a belt used to make bulk tissue and towel, and nonwoven articles and fabrics
US7022208B2 (en) * 2002-12-31 2006-04-04 Albany International Corp. Methods for bonding structural elements of paper machine and industrial fabrics to one another and fabrics produced thereby
US7166196B1 (en) 2002-12-31 2007-01-23 Albany International Corp. Method for manufacturing resin-impregnated endless belt structures for papermaking machines and similar industrial applications and belt
US7919173B2 (en) * 2002-12-31 2011-04-05 Albany International Corp. Method for controlling a functional property of an industrial fabric and industrial fabric
US6863382B2 (en) * 2003-02-06 2005-03-08 Eastman Kodak Company Liquid emission device having membrane with individually deformable portions, and methods of operating and manufacturing same
US8042112B1 (en) 2003-07-03 2011-10-18 Google Inc. Scheduler for search engine crawler
US7725452B1 (en) 2003-07-03 2010-05-25 Google Inc. Scheduler for search engine crawler
US7287833B2 (en) * 2004-04-13 2007-10-30 Hewlett-Packard Development Company, L.P. Fluid ejection devices and operation thereof
US7987172B1 (en) 2004-08-30 2011-07-26 Google Inc. Minimizing visibility of stale content in web searching including revising web crawl intervals of documents
US7465037B2 (en) * 2005-10-11 2008-12-16 Kia Silverbrook Printhead with rectifying valve at ink chamber inlet
US7705253B2 (en) * 2006-10-26 2010-04-27 Illinois Tool Works, Inc. Appliance lock using a motor driven linear actuator with helical spring drive
FR2990055B1 (en) * 2012-04-30 2014-12-26 Total Sa MATRIX FOR DEPOSITING AT LEAST ONE CONDUCTIVE FLUID ON A SUBSTRATE, AND DEVICE COMPRISING SAID MATRIX AND DEPOSITION METHOD
WO2018193454A1 (en) * 2017-04-19 2018-10-25 Precise Bio Inc. Microfluidic head for laser induced forward transfer
EP3663090A1 (en) * 2018-12-04 2020-06-10 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO High resolution laser induced forward transfer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533708A (en) * 1967-11-16 1970-10-13 Dainihon Bungu Co Ltd Ball point pen for water soluble ink
US3582954A (en) * 1969-02-24 1971-06-01 Stephen F Skala Printing by selective ink ejection from capillaries
FR2368362A1 (en) * 1976-10-21 1978-05-19 Ibm INFORMATION WRITING, DISPLAYING AND PRINTING DEVICE USING LASER BEAM
FR2404531A1 (en) * 1977-10-03 1979-04-27 Canon Kk METHOD AND APPARATUS FOR RECORDING BY INK DROPLET

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2556550A (en) * 1947-02-27 1951-06-12 Eastman Kodak Co Heat sensitive printing element and method
US2487865A (en) * 1947-02-27 1949-11-15 Eastman Kodak Co Photoelectric line scanning
US3179042A (en) * 1962-06-28 1965-04-20 Sperry Rand Corp Sudden steam printer
US3177800A (en) * 1962-06-28 1965-04-13 Sperry Rand Corp Immersed spark gap printer
DE1512650B2 (en) * 1966-01-26 1971-10-07 Xerox Corp , Rochester, N Y (V St A ) METHOD AND DEVICE FOR RECORDING INFORMATION WITH AN ELECTROVISCO INK
CH495590A (en) * 1968-06-21 1970-08-31 Precisa Ag Method for printing characters and apparatus for carrying out the method
BE758057A (en) * 1969-10-29 1971-04-27 Xerox Corp STEAM PROPULSION PRINTING
US3790703A (en) * 1970-06-17 1974-02-05 A Carley Method and apparatus for thermal viscosity modulating a fluid stream
US3743408A (en) * 1971-02-12 1973-07-03 G Ohno Electrostatic printing method and apparatus
CH548866A (en) * 1971-11-17 1974-05-15 Battelle Memorial Institute PRINTING DEVICE WITH LIQUID INK, CONDUCTING ELECTRICITY.
US3927410A (en) * 1974-04-30 1975-12-16 Ibm Ink jet nozzle
US4010477A (en) * 1976-01-29 1977-03-01 The Mead Corporation Head assembly for a jet drop recorder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3533708A (en) * 1967-11-16 1970-10-13 Dainihon Bungu Co Ltd Ball point pen for water soluble ink
US3582954A (en) * 1969-02-24 1971-06-01 Stephen F Skala Printing by selective ink ejection from capillaries
FR2368362A1 (en) * 1976-10-21 1978-05-19 Ibm INFORMATION WRITING, DISPLAYING AND PRINTING DEVICE USING LASER BEAM
FR2404531A1 (en) * 1977-10-03 1979-04-27 Canon Kk METHOD AND APPARATUS FOR RECORDING BY INK DROPLET

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XEROX DISCLOSURE JOURNAL, Vol. 1, No. 4, Avril 1976, page 75 D.L. CAMPHAUSEN: "Photoactivated ink spray" * En entier * *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0118603A1 (en) * 1983-03-10 1984-09-19 Fuji Xerox Co., Ltd. Ink jet forming unit
EP0195863A1 (en) * 1985-03-27 1986-10-01 Elm Co., Ltd. Thermal ink jet printer
EP0202370A1 (en) * 1985-05-20 1986-11-26 Elm Co., Ltd. Printing head
EP0496490A1 (en) * 1991-01-24 1992-07-29 Amiram Carmon Ink jet printing apparatus
EP0947324A1 (en) * 1996-02-19 1999-10-06 MAXIMOVSKY, Sergei Nicolaevich Printing method and printing device for realising the same
EP0947324A4 (en) * 1996-02-19 2001-04-11 Sergei Nicolaevich Maximovsky Printing method and printing device for realising the same

Also Published As

Publication number Publication date
EP0014918B1 (en) 1983-06-22
DE3063802D1 (en) 1983-07-28
US4312009A (en) 1982-01-19
ATE3833T1 (en) 1983-07-15
FR2448979B1 (en) 1986-05-23
FR2448979A1 (en) 1980-09-12

Similar Documents

Publication Publication Date Title
EP0014918B1 (en) Apparatus for depositing ink droplets on a recording medium
EP1913433B1 (en) Actuating device having a flexible diaphragm controlled by electrowetting
FR2493226A1 (en) INK SELECTIVE JET PRINTING DEVICE AND PRINT HEAD USING THE SAME
EP2682503B1 (en) Evaporation device for a vacuum-deposition apparatus and vacuum-deposition apparatus including such an evaporation device
FR2548964A1 (en) THERMAL PRINTING SYSTEM WITH INK TRANSFER
CA2027615C (en) Ink-jet printing head and implementation process, particularly for printing large sized characters
EP0710433A1 (en) Electrical circuits with very high conductivity and great fineness, methods of manufacture and devices comprising same
EP2576229B1 (en) Manufacture of embossed structures by printing processes
FR2484915A1 (en) PRINTER WITHOUT SHOCK
FR2821291A1 (en) PRINTHEAD AND PRINTER WITH IMPROVED DEFLECTION ELECTRODES
EP3120171B1 (en) Optical device with deformable membrane having reduced response time
NL1022269C2 (en) Method for manufacturing an organic electroluminescent display device, substrate for use in such a method, as well as an organic electroluminescent display device obtained with the method.
EP0106802A1 (en) Device for projecting droplets of an electrically conductive liquid
EP1764828A1 (en) Method for hybridizing two devices using solder balls of different size and device resulting therefrom
FR2656453A1 (en) Plasma display panel
EP2844485B1 (en) Die for depositing at least one conductive fluid onto a substrate, and device including such a matrix and deposition method
FR2833741A1 (en) Display panel formed from a matrix of electroluminescent cells with shunt resistance to improve memory effect, uses optical coupling between drivers and display with shunt resistor over each display cell to improve its memory effect
FR2758431A1 (en) THIN-LAYER ELECTROLUMINESCENT DISPLAY DEVICE WITH ALTERNATIVE EXCITATION AND ITS EMBODIMENT PROCESS
FR2754471A1 (en) METHOD AND DEVICE FOR TRANSMITTING LIQUID IN A CONTROLLED WAY, APPLICATION TO PRINTING
WO2003012869A2 (en) Image display panel consisting of a matrix of memory-effect electroluminescent cells
EP1401581B1 (en) Multi-channel fluid dispenser
EP4359194A1 (en) Mid-ir laser additive printing equipment
FR3088242A1 (en) METHOD AND DEVICE FOR FORMING DROPS USING A CAVITY WITH DEGRADED QUALITY FACTOR
FR2775625A1 (en) DEVICE FOR MOVING A FLUID
FR2936976A1 (en) Ink jet printer, has electric lines connected to each other by passive electric compensation component whose value is chosen to minimize deformation for creating breaking point of non jet to print in downstream of deflexion electrodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL SE

17P Request for examination filed

Effective date: 19801002

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMH-ALCATEL SOCIETE ANONYME DITE:

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL SE

REF Corresponds to:

Ref document number: 3833

Country of ref document: AT

Date of ref document: 19830715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3063802

Country of ref document: DE

Date of ref document: 19830728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19831222

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19831227

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19831231

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19840213

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19840229

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840331

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19850208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19850228

Ref country code: BE

Effective date: 19850228

BERE Be: lapsed

Owner name: SMH-ALCATEL S.A.

Effective date: 19850208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19850901

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19851101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 80100647.9

Effective date: 19860129