EP0011527B1 - Radiateur à convection - Google Patents

Radiateur à convection Download PDF

Info

Publication number
EP0011527B1
EP0011527B1 EP79400747A EP79400747A EP0011527B1 EP 0011527 B1 EP0011527 B1 EP 0011527B1 EP 79400747 A EP79400747 A EP 79400747A EP 79400747 A EP79400747 A EP 79400747A EP 0011527 B1 EP0011527 B1 EP 0011527B1
Authority
EP
European Patent Office
Prior art keywords
fan
air
radiator
threshold
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79400747A
Other languages
German (de)
English (en)
Other versions
EP0011527A1 (fr
Inventor
Jacques Jacob Dahan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9213996&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0011527(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to AT79400747T priority Critical patent/ATE7169T1/de
Publication of EP0011527A1 publication Critical patent/EP0011527A1/fr
Application granted granted Critical
Publication of EP0011527B1 publication Critical patent/EP0011527B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0411Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between for domestic or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/022Air heaters with forced circulation using electric energy supply

Definitions

  • the present invention relates to a convection radiator comprising a heating device and a fan, which are mounted inside a bodywork provided with opening means in the lower part and an opening in its upper part, at the '' stopping the fan the air circulating naturally through the bodywork, with admission of cold air through the lower opening means and outlet of hot air through the upper opening, the fan being arranged to cause forced circulation of air through the radiator, in the opposite direction to that of natural circulation, with admission of cold air through the upper opening and discharge of hot air through the opening means lower.
  • FR-A-2 148 408 there is known a radiator of this type which has a relatively complex internal structure. A vertical partition extends between the entrance and the exit.
  • the convectors in the form of an electrical resistance are located at the rear end of the downward passage, in front of the hot air outlet.
  • the front face of the radiator includes a second opening, located in its upper part.
  • a second vertical partition prevents air having passed through the ascending passage from exiting through the upper opening.
  • the fans are located upstream of the convectors when the radiator is operating in forced air heating mode.
  • This known radiator has the major drawback that its internal structure is relatively complex, in particular because of the need to provide two air passages, one for operation in heating mode with natural circulation and the other for heating operation. with forced circulation.
  • the convectors are located at the downstream end of the air passage through the radiator, in the shape of a U, they are not able to produce a real air circulation in the radiator when the fans are out of service.
  • radiator of the type indicated above is known from US Pat. No. 2,022,332.
  • the structure of this radiator is based practically on the same principle as the radiator known from French patent application No. 2,148,408.
  • radiator known from the US patent there are also two passages and the heating device is located partly above the fan and is formed by a vertical plate placed in the upper middle parts of the radiator. In order to reduce the power of the first heating plate, a second vertical front heating plate is provided.
  • This second known radiator has the major drawback of having a complicated internal structure without being of satisfactory performance.
  • the present invention aims to provide a radiator which has a simple internal structure while ensuring good heating conditions in the two operating modes.
  • the radiator according to the invention is characterized in that it comprises a single passage of air inside the part of the body located above the fan and in that the heating device is placed in the lower part of the body above the fan in said air passage.
  • this radiator comprises two separate automatic control systems, a system for controlling said heating device and a system for controlling the fan, each system comprising a thermostat with two thresholds, a lower threshold of activation and an upper deactivation threshold, and in that the thermostat for controlling said fan is designed to be sensitive to the temperature in an area close to the floor of the room to be heated, while the thermostat for controlling said device heating is arranged to be temperature sensitive at a higher level in the room.
  • a convection radiator 1 according to the invention comprises a body 2 equipped in its lower part with an opening 3 and in its upper part with another opening 4, the openings 3 and 4 being of appropriate dimensions and generally provided with a protective device such as a grid, gills ...
  • the radiator 1 comprises a heating element such as for example an electrical resistance 5 which can occupy the entire width of the device.
  • This electrical resistance 5 can be reacted read in various ways such as stranded wire, woven, "armored” type resistance or other.
  • an air circulation means 6 such as for example a faired fan 6, of suitable shape, dimensions and flow rate, the suction orifice 7 of which is placed at the top, that is to say in the immediate vicinity of the resistor 5, and the evacuation orifice 8 of which is situated opposite a corresponding opening 9, arranged in the bodywork 2, said opening 9 itself being provided with a device for protection such as grille, gills ...
  • an air circulation circuit by natural circulation 10, comprising a first air circulation passage 11 and a second air circulation passage 12, the electrical resistance 5 separating these two passages.
  • the first air circulation passage 11 communicates with the opening 3 corresponding to the cold air inlet, the arrows A representing the injection of cold air.
  • the second air circulation passage 12 communicates with the opening 4 corresponding to the hot air outlet, the arrows B representing the ejection of the hot air.
  • the opening 4 that is to say the hot air outlet in heating mode by natural circulation, also serves as cold air inlet in heating mode by forced circulation, as seen in fig . 3 where the arrows A represent the injection of cold air.
  • a forced air circulation circuit 13 can be defined comprising a first air circulation passage 12 which corresponds to the second passage 12 of the natural air circulation circuit 10 (fig. 2), and a second passage of air circulation 14.
  • the electrical resistance 5 also separates these two air circulation passages 12 and 14, and it is therefore common to the two air circulation circuits 10 and 13.
  • the first passage 12 of the forced circulation circuit 13 communicates with the opening 4 corresponding to the cold air inlet
  • the second air circulation passage 14 includes the streamlined fan 6 whose exhaust orifice 8 communicates with the corresponding opening 9 at the hot air outlet, the arrows B in fig. 3 showing the ejection of hot air.
  • the opening 9, that is to say the hot air outlet from the forced air circulation circuit 13 is situated substantially at ground level, preferably on the lower lateral part of the body 2 of the radiator 1.
  • the opening 4, that is to say the cold air inlet of the forced air circulation circuit 13, is located on the upper part of the radiator 1, preferably the upper horizontal face.
  • the shrouded fan 6 comprises two exhaust orifices 8 located opposite the two corresponding openings 9 arranged in the bodywork 2.
  • This embodiment makes it possible, in use in forced circulation, to simultaneously blow a layer of hot air on each side of the radiator, which increases its efficiency, in particular in the case of an auxiliary heating radiator placed in the middle of a room.
  • the electrical resistance 6 When using the radiator 1 in natural circulation, the electrical resistance 6 is put into operation without operating the fan 6. Cold air is admitted into the first passage 11 via the lower opening 3, s' heats up passing on the resistor 5, is admitted into the second passage 12 of the air circulation circuit by natural circulation 10, and is evacuated through the upper opening 4.
  • the respective dimensions and the location of the resistor 5 and the fan 6 are studied so that the air flow is well calculated and that the resistor 5 heats without blushing.
  • the electrical resistance 5 and the fan 6 are put into service simultaneously.
  • the cold air is admitted into the first passage 12 of the forced air circulation circuit 13 by means of the upper opening 4, heats up passing on the resistor 5, is admitted into the second passage 14 by entering the fan 6 through its suction orifice 7. It is evacuated therefrom through the orifice 8 and escapes through the opening 9. If the fan 6 has two exhaust orifices 8, the hot air escapes through the two openings 9.
  • Switching from one operating mode to the other, namely from the natural circulation heating regime to the forced circulation heating regime and vice versa can be done manually, for example by actuating a switch mounted respectively in the control circuit of the heating and fan resistance.
  • the temperature in the heated room is often too high or too low, but rarely has the desired value, felt to be pleasant by the people present in this room and, moreover, cannot not be maintained at this level for a certain period of time.
  • the manual control does not guarantee optimal operating conditions of the radiator, which generally results in a waste of primary energy, that is to say of energy consumed by the resistor and the fan. .
  • the switching from one operating mode to the other is carried out by an automatic control device.
  • This device comprises, in the example described and shown, a first thermostat TH e mounted in the fan control circuit 6 and advantageously a second thermostat TH s placed in the electrical circuit of the resistor 5.
  • Each thermostat comprises a lower temperature threshold which constitutes the switch-on threshold of the member to be controlled and an upper temperature threshold for stopping this member.
  • each thermostat activates and deactivates the member to be controlled with which it is associated, depending on whether the detected temperature is reached the lower temperature threshold where is below this threshold temperature, is reached the temperature threshold or is higher that this threshold temperature.
  • the thermostatTH s for controlling the fan 6 is set to ensure that the temperature at the ground is automatically maintained in a desired temperature range, while the thermostat TH s of the heating resistor 5 assures maintenance of a room temperature generally comfortable in the room to be heated.
  • the temperature thresholds of the two thermostats are adjustable.
  • the operation of the radiator controlled by the control device can easily be deduced from the description given above of the radiator and of its automatic control device.
  • the fan is out of service.
  • the thermostat TH switches on the fan 6.
  • the radiator therefore operates in forced circulation heating mode.
  • the temperature at floor level rises until the thermostat TH s noted that the upper threshold temperature is reached and switches off the fan. Following the further drop in temperature, the fan will be switched on again. Consequently, the TH thermostat 6 ensures the maintenance of a pleasant temperature at ground level, by the periodic commissioning of the fan 6.
  • the resistor 5 which is periodically put into working condition by its thermostat TH s which connects it to the electric source when the detected temperature reaches the lower threshold and cuts the current supply circuit upon reaching the upper threshold.
  • Fig. 6 illustrates well this operation by periods of the resistance 5 and of the fan 6.
  • This figure represents in the form of four curves C1 to C4 the evolution of the temperature measured at four different places inside a room in which is located the radiator.
  • Curves C1 and C2 were taken at ground level, the measurement location corresponding to curve C1 being farther from the radiator than that of taking curve C2.
  • Curve C3 represents the variation in temperature at mid-height of the room, roughly the same distance from the radiator as the point at which curve C2 was taken.
  • Curve C4 was obtained by measuring the temperature near the ceiling of the room.
  • the curves T and R below the abscissa t, illustrate the operating state of the turbine 6 (the curve T) and of the resistor 5 (curve R), in correspondence with the temperature states indicated by the curves C1 to C4.
  • the thermostats TH s and TH s have been set to lower threshold values of 19 and 20 ° respectively.
  • the resistor 5 for a duration of 51 minutes between the instants t, and t , the resistor 5 only operated for 37 minutes, which represents an electrical energy saving of approximately 27.5% compared to a speed with manual control for which, in the circumstances indicated, the resistance would probably have been left to operate permanently.
  • the primary energy saving is considerable, since the effective working time of the fan 6 is relatively short. The significant energy saving is accompanied by the perfect maintenance of the temperatures at desired values.
  • the heating element is formed by an electrical resistance. It is obvious that any other heating element could be used in place of the electrical resistance, for example a gas, oil, wood, coal, kerosene or the like heating element. Of course it might be sufficient in some cases to equip only the fan with an automatic control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Central Heating Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Gloves (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

  • La présente invention concerne un radiateur à convection comprenant un dispositif de chauffage et un ventilateur, qui sont montés à l'intérieur d'une carrosserie pourvue de moyens d'ouverture dans la partie inférieure et d'une ouverture dans sa partie supérieure, à l'arrêt du ventilateur l'air circulant de façon naturelle à travers la carrosserie, avec admission de l'air froid à travers les moyens d'ouverture inférieure et sortie de l'air chaud à travers l'ouverture supérieure, le ventilateur étant agencé pour provoquer une circulation forcée de l'air à travers le radiateur, dans la direction inverse de celle de la circulation naturelle, avec admission de l'air froid par l'ouverture supérieure et refoulement de l'air chaud à travers les moyens d'ouverture inférieure. Du FR-A-2 148 408 il est connu un radiateur de ce type qui présente une structure interne relativement complexe. Une cloison verticale s'étend entre l'entrée et la sortie. Elle délimite à l'intérieur du radiateur un passage d'air d'entrée d'écoulement ascendant de l'air et un passage de sortie d'écoulement descendant. Les convecteurs en forme de résistance électrique sont situés à l'extrémité arrière du passage descendant, devant la sortie d'air chaud. La face avant du radiateur comprend une deuxième ouverture, située dans sa partie supérieure. Une deuxième cloison verticale empêche l'air ayant traversé le passage ascendant de sortir par l'ouverture supérieure. Les ventilateurs sont situés en amont des convecteurs lors du fonctionnement du radiateur en régime de chauffage à circulation d'air forcé.
  • Ce radiateur connu a pour inconvénient majeur que sa structure interne est relativement complexe notamment en raison de la nécessité de prévoir deux passages d'air, l'un pour le fonctionnement en régime de chauffage à circulation naturelle et l'autre pour le fonctionnement de chauffage à circulation forcée. D'autre part, du fait que les convecteurs sont situés à l'extrémité aval du passage d'air à travers le radiateur, en forme d'un U, ils ne sont pas en mesure de produire une véritable circulation d'air dans le radiateur quand les ventilateurs sont hors service.
  • Un autre radiateur du type indiqué plus haut est connu par le brevet US N° 2 022 332. La structure de ce radiateur est fondée pratiquement sur le même principe que le radiateur connu par la demande de brevet français N° 2 148 408. Dans ce radiateur connu par le brevet US, il y a également deux passages et le dispositif de chauffage est situé en partie au-dessus du ventilateur et est formé par une plaque verticale placée dans les parties médianes supérieures du radiateur. Pour pouvoir réduire la puissance de la première plaque de chauffage, on a prévu une deuxième plaque chauffante verticale frontale.
  • Ce deuxième radiateur connu a pour inconvénient majeur de présenter une structure interne compliquée sans pour autant être d'un rendement satisfaisant.
  • La présente invention a pour objectif de proposer un radiateur qui présente une structure interne simple tout en assurant de bonnes conditions de chauffage dans les deux modes de fonctionnement.
  • Pour atteindre ce but, le radiateur selon l'invention est caractérisé en ce qu'il comprend un seul passage d'air à l'intérieur de la partie de la carrosserie située au-dessus du ventilateur et en ce que le dispositif de chauffage est placé dans la partie inférieure de la carrosserie au-dessus du ventilateur dans ledit passage d'air.
  • Suivant une caractéristique avantageuse de l'invention, ce radiateur comprend deux systèmes séparés de commande automatique, un système pour la commande dudit dispositif de chauffage et un système pour la commande du ventilateur, chaque système comprenant un thermostat à deux seuils, un seuil inférieur de mise en service et un seuil supérieur de mise hors service, et en ce que le thermostat de commande dudit ventilateur est agencé pour être sensible à la température dans une zone proche du sol du local à chauffer, tandis que le thermostat de commande dudit dispositif de chauffage est agencé pour être sensible à la température à un niveau plus haut dans le local.
  • D'autres caractéristiques et avantages de l'invention apparaîtront mieux dans la description détaillée qui suit et se réfère aux dessins annexés, donnés uniquement à titre d'exemple et dans lesquels:
    • La fig. 1 est une vue en perspective du radiateur électrique à convection.
    • La fig. 2 est une vue en coupe selon la ligne II-II de la fig. 1, dans le cas de fonctionnement en circulation naturelle.
    • La fig. 3 est une vue en coupe selon la ligne II-II de la fig. 1, dans le cas de fonctionnement en circulation forcée.
    • La fig. 4 est une vue similaire à la fig. 3 pour un autre mode de réalisation.
    • La fig. 5 est une vue schématique du radiateur selon l'invention équipé d'un dispositif de commande automatique et
    • La fig. 6 présente, sous forme de plusieurs courbes, les résultats de mesures de température effectuées à plusieurs endroits d'un local équipé du radiateur précité, lors du fonctionnement du dispositif de commande automatique.
  • Suivant un exemple de réalisation et se reportant aux dessins annexés, un radiateur à convection 1 conforme à l'invention comprend une carrosserie 2 équipée en sa partie inférieure d'une ouverture 3 et en sa partie supérieure d'une autre ouverture 4, les ouvertures 3 et 4 étant de dimensions appropriées et généralement dotées d'un dispositif de protection tel que grille, ouies...
  • Le radiateur 1 comporte un élément de chauffage tel que par exemple une résistance électrique 5 pouvant occuper toute la largeur de l'appareil. Cette résistance électrique 5 peut être réalisée de diverses manières telles que fil boudiné, tissé, résistance de type «blindé» ou autre.
  • Sous la résistance 5 est placé un moyen de circulation d'air 6 tel que par exemple un ventilateur caréné 6, de forme, dimensions et débit appropriés, dont l'orifice d'aspiration 7 est placé à la partie supérieure, c'est-à-dire au voisinage immédiat de la résistance 5, et dont l'orifice d'évacuation 8 est situé en face d'une ouverture correspondante 9, aménagée dans la carrosserie 2, ladite ouverture 9 étant elle-même dotée d'un dispositif de protection tel que grille, ouies...
  • Comme on le voit sur la fig. 2, on peut définir un circuit de circulation d'air par circulation naturelle 10, comprenant un premier passage de circulation d'air 11 et un second passage de circulation d'air 12, la résistance électrique 5 séparant ces deux passages. Le premier passage de circulation d'air 11 communique avec l'ouverture 3 correspondant à l'entrée d'air froid, les flèches A représentant l'injection de l'air froid. De plus, le second passage de circulation d'air 12 communique avec l'ouverture 4 correspondant à la sortie d'air chaud, les flèches B représentant l'éjection de l'air chaud.
  • L'ouverture 4, c'est-à-dire la sortie d'air chaud en mode de chauffage par circulation naturelle, sert également d'entrée d'air froid en mode de chauffage par circulation forcée, comme on le voit sur la fig. 3 où les flèches A représentent l'injection de l'air froid.
  • De plus, sur la fig. 3, on peut définir un circuit de circulation forcée d'air 13 comprenant un premier passage de circulation d'air 12 qui correspond au second passage 12 du circuit de circulation naturelle d'air 10 (fig. 2), et un second passage de circulation d'air 14. La résistance électrique 5 sépare également ces deux passages de circulation d'air 12 et 14, et elle est donc commune aux deux circuits de circulation d'air 10 et 13. Le premier passage 12 du circuit de circulation forcée d'air 13 communique avec l'ouverture 4 correspondant à l'entrée d'air froid, et le second passage de circulation d'air 14 comporte le ventilateur caréné 6 dont l'orifice d'évacuation 8 communique avec l'ouverture 9 correspondant à la sortie d'air chaud, les flèches B de la fig. 3 représentant l'éjection de l'air chaud.
  • Comme on le voit sur les figs 2 et 3, l'ouverture 9, c'est-à-dire la sortie d'air chaud du circuit de circulation forcée d'air 13, se situe sensiblement au niveau du sol, de préférence sur la partie latérale inférieure de la carrosserie 2 du radiateur 1. De plus, l'ouverture 4, c'est-à-dire l'entrée d'air froid du dircuit de circulation forcée d'air 13, est située sur la partie supérieure du radiateur 1, de préférence la face horizontale supérieure.
  • Selon un autre mode de réalisation de la présente invention représenté sur la fig. 4, le ventilateur caréné 6 comporte deux orifices d'évacuation 8 situés en face des deux ouvertures correspondantes 9 aménagées dans la carrosserie 2. Cette réalisation permet, en utilisation en circulation forcée, de souffler simultanément une nappe d'air chaud de chaque côté du radiateur, ce qui en augmente l'efficacité, en particulier dans le cas d'un radiateur de chauffage d'appoint placé au milieu d'un local.
  • Le fonctionnement et la manière d'utiliser le radiateur électrique à convection selon l'invention se déduisent de la description qui précède et seront expliqués dans ce qui suit.
  • Lorsqu'on utilise le radiateur 1 en circulation naturelle, on met en service la résistance électrique 6 sans faire fonctionner le ventilateur 6. L'air froid est admis dans le premier passage 11 par l'intermédiaire de l'ouverture inférieure 3, s'échauffe en passant sur la résistance 5, est admis dans le second passage 12 du circuit de circulation d'air par circulation naturelle 10, et est évacué par l'ouverture supérieure 4. Les dimensions respectives et l'implantation de la résistance 5 et du ventilateur 6 sont étudiés de manière à ce que le flux d'air soit bien calculé et que la résistance 5 chauffe sans rougir.
  • Lorsqu'on utilise le radiateur 1 en circulation forcée, on met en service simultanément la résistance électrique 5 et le ventilateur 6. L'air froid est admis dans le premier passage 12 du circuit de circulation forcée d'air 13 par l'intermédiaire de l'ouverture supérieure 4, s'échauffe en passant sur la résistance 5, est admis dans le second passage 14 en pénétrant dans le ventilateur 6 par son orifice d'aspiration 7. Il en est évacué par l'orifice 8 et s'échappe par l'ouverture 9. Si le ventilateur 6 possède deux orifices d'évacuation 8, l'air chaud s'échappe par les deux ouvertures 9.
  • La commutation d'un régime de fonctionnement à l'autre à savoir du régime de chauffage par circulation naturelle au régime de chauffage par circulation forcée et inversement peut être faite manuellement, par exemple en actionnant un interrupteur monté respectivement dans le circuit de commande de la résistance de chauffage et du ventilateur.
  • Mais il s'est avéré que dans ces conditions, la température dans le local chauffé est souvent trop élevée ou trop basse, mais a rarement la valeur désirée, ressentie comme étant agréable par les personnes présentes dans ce local et, de plus, ne peut pas être maintenue à ce niveau pendant une certaine durée de temps. A cet inconvénient s'ajoute que la commande manuelle ne garantit pas des conditions de fonctionnement optimales du radiateur, ce qui entraîne en général un gaspillage d'énergie primaire, c'est-à-dire d'énergie consommée par la résistance et le ventilateur.
  • Selon la fig. 5, la commutation d'un régime de fonctionnement à l'autre est effectuée par un dispositif de commandé automatique. Ce dispositif comprend, dans l'exemple décrit et représenté, un premier thermostat THe monté dans le circuit de commande du ventilateur 6 et avantageusement un deuxième thermostat THs placé dans le circuit électrique de la résistance 5.
  • Chaque thermostat comprend un seuil inférieur de température qui constitue le seuil d'enclenchement de l'organe à commander et un seuil de température supérieur d'arrêt de cet organe. Ainsi, chaque thermostat met en service et hors service l'organe à commander auquel il est associé suivant que la température détectée soit atteint le seuil de température inférieur où est inférieure à cette température de seuil, soit atteint le seuil de température ou est plus élevée que cette température de seuil.
  • Le thermostatTHs pour la commande du ventilateur 6 est réglé pour assurer que la température au niveau du sol soit automatiquement maintenue dans une plage de température désirée, tandis que le thermostat THs de la résistance de chauffage 5 assure le maintien d'une température ambiante confortable générale dans le local à chauffer. Les seuils de température des deux thermostats sont réglables.
  • Le fonctionnement du radiateur commandé par le dispositif de commande se déduit aisément de la description donnée ci-dessus du radiateur et de son dispositif de commande automatique. On suppose un état initial où le radiateur fonctionne en régime de chauffage par circulation naturelle. Le ventilateur est hors service. Lorsque la température au niveau du sol, qui diminue en raison des pertes calorifiques, atteint le seuil de température inférieur le thermostat TH, enclenche le ventilateur 6. Le radiateur fonctionne par conséquent en régime de chauffage par circulation forcée. La température au niveau du sol augmente jusqu'à ce que le thermostat THs constate que la température de seuil supérieur est atteinte et met hors service le ventilateur. A la suite de la nouvelle baisse de température, le ventilateur sera de nouveau enclenché. Par conséquent, le thermostat TH6 assure le maintien d'une température agréable au niveau du sol, par la mise en service périodique du ventilateur 6.
  • Il est de même pour la résistance 5 qui est mis périodiquement en état de travail par son thermostat THs qui la relie à la source électrique lorsque la température détectée atteint le seuil inférieur et coupe le circuit d'alimentation en courant à l'atteinte du seuil supérieur.
  • La fig. 6 illustre bien ce fonctionnement par périodes de la résistance 5 et du ventilateur 6. Cette figure représente sous forme de quatre courbes C1 à C4 l'évolution de la température mesurée à quatre endroits différents à l'intérieur d'une pièce dans laquelle se trouve le radiateur. Les courbes C1 et C2 ont été prises au niveau du sol, l'endroit de mesure correspondant à la courbe C1 étant plus éloigné du radiateur que celui de la prise de la courbe C2. La courbe C3 représente la variation de la température à la mi-hauteur de la pièce, à peu près à la même distance du radiateur que l'endroit de la prise de la courbe C2. La courbe C4 a été obtenue en mesurant la température à proximité du plafond de la pièce. Les courbes T et R, en dessous de l'abcisse t, illustrent l'état de fonctionnement de la turbine 6 (la courbe T) et de la résistance 5 (courbe R), en correspondance avec les états de température indiqués par les courbes C1 à C4. Les thermostats THs et THs ont été réglés sur des valeurs de seuil inférieur de 19 et 20° respectivement.
  • En se reportant à la fig. 6, on constate que de l'air froid est introduit dans la pièce à l'instant de temps t,. La résistance 5 et le ventilateur 6 sont hors service. A l'instant t2, les thermostats THS et TH6 détectent que la température atteint le seuil inférieur auquel ils sont réglés. Les thermostats enclenchent par conséquent la résistance 5 et le ventilateur 6. A l'instant t3 le thermostat TH6 constate l'atteinte de son seuil de température supérieur et arrête le ventilateur. Comme il ressort de la fig. 6, en correspondance avec le rythme rapide auquel évolue la température au niveau du sol (courbes C1 et C3), le ventilateur 6 ne travaille que pendant des courtes durées, qui se suivent relativement rapidement en comparaison aux périodes de fonctionnement de la résistance 5, illustrées par la courbe R qui correspond à l'allure des courbes C3 et C4. L'introduction de l'air froid cesse à l'instant tf.
  • Dans l'exemple de la fig. 6, pour une durée de 51 minutes entre les instants t, et t,, la résistance 5 n'a fonctionné que pendant 37 minutes, ce qui représente une économie d'énergie électrique d'environ 27,5% par rapport à un régime à commande manuelle pour lequel, dans les circonstances indiquées, on aurait vraisemblablement laissé fonctionner la résistance de façon permanente. En ce qui concerne le ventilateur, l'économie d'énergie primaire est considérable, puisque la durée de travail effectif du ventilateur 6 est relativement courte. L'économie d'énergie importante s'accompagne du maintien parfait des températures à des valeurs désirées.
  • Dans l'exemple décrit et représenté, l'élément de chauffage est formé par une résistance électrique. Il est évident que tout autre élément de chauffage pourrait être utilisé à la place de la résistance électrique, par exemple un élément de chauffage à gaz, mazout, bois, charbon, kérosène ou analogue. Bien entendu il pourrait être suffisant dans certain cas d'équiper seulement le ventilateur d'un dispositif de commande automatique.

Claims (5)

1. Radiateur à convection comprenant un dispositif de chauffage (5) et un ventilateur (6), qui sont montés à l'intérieur d'une carrosserie pourvue de moyens d'ouverture (3, 9) dans sa partie inférieure et d'une ouverture (4) dans sa partie supérieure, à l'arrêt du ventilateur l'air circulant de façon naturelle à travers la carrosserie, avec admission de l'air froid à travers les moyens d'ouverture inférieure (3) et sortie de l'air chaud à travers l'ouverture supérieure (4), le ventilateur (6) étant agencé pour provoquer une circulation forcée de l'air à travers le radiateur, dans la direction inverse à celle de la circulation naturelle, avec admission de l'air froid par l'ouverture supérieure (4) et refoulement de l'air chaud à travers les moyens d'ouverture inférieure (9) caractérisé en ce qu'il comprend un seul passage d'air à l'intérieur de la partie de la carrosserie (2), situé au-dessus du ventilateur (6), et en ce que le dispositif de chauffage (5) est placé dans la partie inférieure de la carrosserie (2) au-dessus du ventilateur (6) dans ledit passage d'air.
2. Radiateur selon la revendication 1, caractérisé en ce qu'il comprend deux systèmes séparés de commande automatique, un système (TH5) pour la commande du dispositif de chauffage (5) et un système (TH6) pour la commande du ventilateur (6), chaque système comprenant un thermostat à deux seuils, un seuil inférieur de mise en service et un seuil supérieur de mise hors service, et en ce que le thermostat (TH6) de commande du ventilateur est agencé pour être sensible à la température dans une zone proche du sol du local à chauffer, tandis que le thermostat (TH5) de commande du dispositif de chauffage (5) est agencé pour être sensible à la température à un niveau plus haut dans ce local.
3. Radiateur selon la revendication 1, caractérisé en ce qu'il comprend des moyens de commande automatique (TH6) au moins pour le chauffage à circulation d'air forcée, sensibles à la température et comportant un seuil inférieur d'enclenchement et un seuil supérieur d'arrêt dudit chauffage à circulation d'air forcée.
4. Radiateur selon la revendication 1, caractérisé en ce qu'il comprend des moyens de commande automatique (TH5) pour l'élément de chauffage (5), ces moyens étant sensibles à la température et comportant un seuil inférieur d'enclenchement et un seuil supérieur d'arrêt dudit élément de chauffage.
5. Radiateur selon l'une des revendications précédentes, caractérisé en ce que l'élément de chauffage est formé par une résistance électrique.
EP79400747A 1978-10-20 1979-10-15 Radiateur à convection Expired EP0011527B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79400747T ATE7169T1 (de) 1978-10-20 1979-10-15 Konvektor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7829966A FR2439368A1 (fr) 1978-10-20 1978-10-20 Radiateur electrique a convection
FR7829966 1978-10-20

Publications (2)

Publication Number Publication Date
EP0011527A1 EP0011527A1 (fr) 1980-05-28
EP0011527B1 true EP0011527B1 (fr) 1984-04-18

Family

ID=9213996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79400747A Expired EP0011527B1 (fr) 1978-10-20 1979-10-15 Radiateur à convection

Country Status (8)

Country Link
US (1) US4384189A (fr)
EP (1) EP0011527B1 (fr)
AT (1) ATE7169T1 (fr)
AU (1) AU5202879A (fr)
DE (1) DE2966922D1 (fr)
ES (1) ES485208A1 (fr)
FR (1) FR2439368A1 (fr)
ZA (1) ZA795587B (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2492064B1 (fr) * 1980-10-09 1985-10-11 Moulinex Sa Generateur d'air chaud a usage menager
US4523081A (en) * 1982-12-27 1985-06-11 M. P. Metal Products, Inc. Forced air baseboard heater and air duct diffuser
GB8431450D0 (en) * 1984-12-13 1985-01-23 Victor Mfg Ltd Heating unit
GB2261723B (en) * 1991-11-19 1995-04-05 Basic Engineering Ltd Electrical convector heater
NL9300196A (nl) * 1993-02-01 1994-09-01 Famurano Anstalt Verwarmings- en doekendrooginrichting.
US6003242A (en) * 1998-01-09 1999-12-21 Carley; Joseph C. Portable heater
CN2423537Y (zh) * 2000-05-12 2001-03-14 威昂电器发展(深圳)有限公司 一种经济型家用通风机
US7941938B2 (en) * 2006-05-26 2011-05-17 Nike, Inc. Article of footwear with lightweight sole assembly
US8720109B2 (en) * 2011-01-25 2014-05-13 Technologies Holdings Corp. Portable heating system for pest control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1886894A (en) * 1928-10-15 1932-11-08 Modine Mfg Co Heating appliance
US2022332A (en) * 1934-04-04 1935-11-26 American Radiator Co Air conditioning heating cabinet
GB523378A (en) * 1939-01-04 1940-07-12 Coldair Ltd Improvements in and relating to air heaters
ES312352A1 (es) * 1964-04-29 1966-02-16 Braun Ag Perfeccionamientos en aparatos electricos para calentar aposentos.
FR2148408B1 (fr) * 1972-03-06 1976-07-09 Boulanger Andre
US3855450A (en) * 1973-10-01 1974-12-17 Vapor Corp Locomotive electric cab heater and defrosting unit
US4110600A (en) * 1976-06-24 1978-08-29 Mcgraw-Edison Company Thermostatically controlled plural heat output portable electric space heater

Also Published As

Publication number Publication date
EP0011527A1 (fr) 1980-05-28
US4384189A (en) 1983-05-17
ES485208A1 (es) 1980-05-16
AU5202879A (en) 1980-04-24
FR2439368A1 (fr) 1980-05-16
DE2966922D1 (en) 1984-05-24
ZA795587B (en) 1980-10-29
FR2439368B1 (fr) 1982-12-31
ATE7169T1 (de) 1984-05-15

Similar Documents

Publication Publication Date Title
EP0011527B1 (fr) Radiateur à convection
FR2472142A1 (fr) Four comportant un element de chauffage de gril et au moins un autre element de chauffage ainsi qu'un ventilateur de circulation d'air
EP0292547A1 (fr) Dispositif de commande pour appareil de chauffage a deux regimes de fonctionnement
FR2509023A1 (fr) Capteur solaire, en particulier pour la climatisation
US5197111A (en) Convection heater with heating elements arranged in a stair step configuration
FR2529308A1 (fr) Groupe de ventilation pour des locaux
EP2379948B1 (fr) Appareil de cuisson avec dispositif de securite
CA1257161A (fr) Foyer ferme pour cheminees a feu ouvert
CA1258018A (fr) Recuperateur de calories a foyer ouvert pour cheminees d'appartement ou de maison individuelle
EP1967797B1 (fr) Appareil de chauffage et sa sortie d'air associée
FR3082290A1 (fr) Radiateur electrique combine a chauffage par inertie et instantane
FR2467361A2 (fr) Dispositif de commande pour un radiateur a convection adapte pour fonctionner suivant des regimes de chauffage par convection naturelle ou par convection forcee
FR2858166A1 (fr) Radiateur electrique integrant des elements chauffants a coefficient de temperature positif
FR2800853A1 (fr) Installation de climatisation pour immeubles
EP0486741A1 (fr) Appareil de chauffage au gaz par rayonnement infrarouge
FR2610089A1 (fr) Appareil de chauffage individuel direct bi-energie
EP0744582B1 (fr) Dispositif de sécurité contre le refoulement des produits de combustion dans les chauffe-bains et chaudières à gaz
EP0595083A2 (fr) Four de cuisson domestique
CA1156113A (fr) Cheminee domiciliaire avec chauffe-eau incorpores
FR2494406A2 (fr) Elements auxiliaires standards adaptables sur tous les types de radiateurs a eau chaude avec schema electrique a regulation automatique
FR2554562A1 (fr) Installation electroclimatique de chauffage a hautes performances
EP0006846B1 (fr) Poêle à accumulation de chaleur
JP2556507Y2 (ja) 電気温風機
FR2752919A1 (fr) Groupe de ventilation centralise comportant un module de base pour insuffler un debit accelere selon des conditions climatologiques precises et un module associe et intereactif pour le refroidissement complementaire du debit accelere
BE1004118A6 (fr) Structure de thermoconvecteur a chauffage par convection.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL

17P Request for examination filed

Effective date: 19801120

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19840418

Ref country code: AT

Effective date: 19840418

REF Corresponds to:

Ref document number: 7169

Country of ref document: AT

Date of ref document: 19840515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2966922

Country of ref document: DE

Date of ref document: 19840524

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841004

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19841031

Ref country code: BE

Effective date: 19841031

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: EOS-WERKE GUENTHER GMBH

Effective date: 19850116

26 Opposition filed

Opponent name: UNITED GAS INDUSTRIES LIMITED

Effective date: 19850118

26 Opposition filed

Opponent name: SUMNER PRODUCTS P.L.C.

Effective date: 19850114

BERE Be: lapsed

Owner name: DAHAN JACQUES JACOB

Effective date: 19841015

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118