EP0009603B1 - Method and apparatus for the production of metallic strips - Google Patents

Method and apparatus for the production of metallic strips Download PDF

Info

Publication number
EP0009603B1
EP0009603B1 EP79103096A EP79103096A EP0009603B1 EP 0009603 B1 EP0009603 B1 EP 0009603B1 EP 79103096 A EP79103096 A EP 79103096A EP 79103096 A EP79103096 A EP 79103096A EP 0009603 B1 EP0009603 B1 EP 0009603B1
Authority
EP
European Patent Office
Prior art keywords
cooling body
jet
molten metal
relative movement
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79103096A
Other languages
German (de)
French (fr)
Other versions
EP0009603A1 (en
Inventor
Hans-Reiner Dr. Hilzinger
Hans Dr. Hillmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19782842421 external-priority patent/DE2842421C2/en
Priority claimed from DE19782846628 external-priority patent/DE2846628C2/en
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Priority to AT79103096T priority Critical patent/ATE1086T1/en
Publication of EP0009603A1 publication Critical patent/EP0009603A1/en
Application granted granted Critical
Publication of EP0009603B1 publication Critical patent/EP0009603B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for producing metal strips, in particular from an amorphous metal alloy, wherein a jet of the molten metal hits the rapidly moving surface of a heat sink and solidifies there, and a device for carrying out this method.
  • metal strips with an amorphous structure are produced by quenching a corresponding melt so quickly, typically at a cooling rate of about 10 6 ° C./s, that solidification occurs without crystallization.
  • cooling surfaces for the jet of molten metal can. serve, for example, the inner or outer surface of a rotating roller or an endlessly rotating belt.
  • the thickness of the strips obtained in this way can be, for example, a few hundredths of a millimeter, the width can be a few millimeters (see, for example, US Pat. No. 905,758, DE-A-26 06 581, DE-A-27 19 710 and DE-A-27 46 238).
  • an increasing waviness of the heat sink surface occurs after a short operating time, which is noticeable as a surface irregularity, such as depressions and increased roughness, on the belt surface.
  • the invention has for its object to reduce the heat load of the heat sink in a method of the type mentioned. At the same time, the surface quality of the strips produced is to be improved and premature breaking due to embrittlement is to be avoided.
  • melt jet and heat sink are additionally moved relative to one another transversely to the direction of the melt jet and transversely to the direction of movement of the heat sink.
  • a device for carrying out the method according to the invention with a heat sink, the surface of which rotates around at least one axis, and a storage container for the molten metal alloy can be designed accordingly in such a way that the storage container and heat sink relative to one another transversely to the direction of the melt jet emerging from the storage container and transversely to Direction of movement of the heat sink are displaceable.
  • the heat sink is preferably a rapidly rotating cooling roller, since it is particularly easy to handle and has a relatively large mass. In the case of prolonged operation, it may be advantageous to provide additional cooling of the cooling roll. To do this, it is sufficient to direct an inert gas or air flow against the surface of the rotating cooling roll.
  • the cooling roller preferably consists of this material because of the high thermal conductivity of pure copper.
  • the cooling roller can also consist of any other material with a relatively high thermal conductivity, such as copper-beryllium or steel alloys.
  • Typical speeds for the longitudinal movement of the cooling surface of a cooling roll are generally in the range from about 10 to 60 m / s. However, a lower speed of the heat sink is generally sufficient for the production of metal strips with a polycrystalline structure.
  • the preferred speed of the relative movement between the melt jet and the cooling roll depends on the width of the metal strip produced.
  • a speed in the range between 1 mm / s and 5 cm / s is particularly suitable for narrow strips, for example up to a maximum width of 10 mm, while speeds of 5 cm / s to 30 cm / s can be used particularly advantageously with wider strips . If, on the other hand, you are working in the production of very narrow strips at a speed of Relative movement in the range of 5 to 30 cm / s, there is a risk that the bands are curved like a saber.
  • the relative speed is therefore preferably at least two orders of magnitude lower than the surface speed of the heat sink.
  • the molten jet can repeatedly drive over as large a surface area of the moving heat sink as possible, particularly in the case of larger amounts of melt, it is also advantageous if means are provided for periodically changing the direction of the relative movement.
  • correspondingly arranged electrical contacts can reverse the direction of movement when the melt jet approaches an end of the region.
  • the maximum range for the relative movement of the melt jet transverse to its direction of flow is limited by the width of the heat sink surface. However, it will generally be chosen to be somewhat smaller.
  • the method according to the invention can be carried out in a manner known per se in air, in an inert atmosphere, for example nitrogen or argon, or under vacuum.
  • an improved uniformity of the metal strip produced can be achieved because the oxidizing attack of the atmospheric oxygen is switched off.
  • the device can therefore advantageously have a vacuum chamber in which the reservoir for the melt and the heat sink are arranged.
  • the storage container 15 containing the molten metal and the moving cooling roller 11 are arranged in a vacuum chamber 10 which is connected to a vacuum pump by a feed, not shown.
  • the cooling roller 11 is driven via a shaft 12 by an electric motor 14 with speed control located outside the vacuum chamber.
  • a corresponding rotary leadthrough into the interior of the vacuum chamber is designated by 13.
  • the storage container 15, which is surrounded by an induction heating winding 16, is mounted on a subframe 17 which can move on guide rails 18 transversely to the longitudinal direction of the storage container.
  • the subframe 17 is driven via a drive spindle 19 by an electric motor 20 which is also located outside the vacuum chamber 10.
  • the respective direction of movement of the subframe 17 can be reversed, contacts 22 triggering a change in the direction of rotation of the electric motor 20 .
  • an opening 23 for example a nozzle, at the lower end of the supply. container 15, the melt stream of the liquid metal can escape and then hit the surface of the rotating cooling roller 11, where it solidifies into a continuous belt.
  • an alloy of the composition Fe 4, N 'was 40 p B I4, are used whose melting temperature is about 950 ° C and their crystallization temperature at about 360 ° C.
  • the melt in the quartz storage tank was increased to approximately by an induction heating winding. Heated 1000 ° C and then pressed through a nozzle.
  • the molten jet of this alloy hit the surface of a rapidly rotating chill roll made of oxygen-free copper, where it solidified into a solid band.
  • the longitudinal speed of the cooling roll surface was set at about 30 m / s. During the outflow, the molten jet was moved transversely to its outflow direction.
  • the maximum deflection of this movement was approximately 15 cm.
  • the speed of the melt jet moving relative to the rotating cooling roll was set at 15 cm / s.
  • the amorphous metal strip produced by the described method was 5 mm wide and had a uniform surface without any ripple.
  • the width of the metal strip to be produced should be covered in about 0.2 to 1 s by the relative movement of the melt jet to the heat sink.
  • speeds of the relative movement of 1 to 5 mm / s are advantageous for bands of 1 mm width and speeds of the relative movement of between 1 and 5 cm / s are advantageous for bands of 10 mm width.
  • the method and the device according to the invention are particularly suitable for metal alloys which, after rapid cooling from the melt, have an amorphous structure. Since these alloys are metastable, a reduced cooling rate due to increasing heating of the surface of the heat sink to a temperature near or above the so-called critical crystallization temperature inevitably leads to the embrittlement of the strips.
  • the method according to the invention and the audible device can also be applied to polycrystalline metal alloys if the advantage of strip production directly from the melt is also important.
  • the device according to the invention can also be modified in a manner known per se by using the inside of a rotating roller, two counter-rotating rollers or an endlessly rotating belt as the heat sink.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Metallbändern, insbesondere aus einer amorphen Metallegierung, wobei ein Strahl des schmelzflüssigen Metalls auf die schnell bewegte Oberfläche eines Kühlkörpers trifft und dort erstarrt, und eine Vorrichtung zur Durchführung dieses Verfahrens.The invention relates to a method for producing metal strips, in particular from an amorphous metal alloy, wherein a jet of the molten metal hits the rapidly moving surface of a heat sink and solidifies there, and a device for carrying out this method.

Verfahren, die eine Herstellung von Metallbändern direkt aus der Schmelze gestatten, sind bekannt. So werden beispielsweise Metallbänder mit amorpher Struktur dadurch hergestellt, daß man eine entsprechende Schmelze so rasch abschreckt, typischerweise mit einer Abkühlgeschwindigkeit von etwa 106 °C/s, daß ein Erstarren ohne Kristallisation eintritt. Als bekannte Kühlflächen für den Strahl des schmelzflüssigen Metalls können. beispielsweise die innere oder äußere Oberfläche einer rotierenden Walze oder eines endlos umlaufenden Bandes dienen. Die Dicke der auf diese Weise erhaltenen Bänder kann beispielsweise einige Hundertstel mm, die Breite einige mm betragen (vgl. z. B. US--A-905 758, DE-A-26 06 581, DE-A-27 19 710 und DE-A-27 46 238).Methods are known which allow metal strips to be produced directly from the melt. For example, metal strips with an amorphous structure are produced by quenching a corresponding melt so quickly, typically at a cooling rate of about 10 6 ° C./s, that solidification occurs without crystallization. As known cooling surfaces for the jet of molten metal can. serve, for example, the inner or outer surface of a rotating roller or an endlessly rotating belt. The thickness of the strips obtained in this way can be, for example, a few hundredths of a millimeter, the width can be a few millimeters (see, for example, US Pat. No. 905,758, DE-A-26 06 581, DE-A-27 19 710 and DE-A-27 46 238).

Es hat sich nun herausgestellt, daß bei der Herstellung derartiger Metallbänder, insbesondere im kontinuierlichen Betrieb, die Wärmebelastung der Kühlfläche durch das Auftreffen größerer Mengen des schmelzflüssigen Metalls auf die gleiche Umfangslinie ein großes Problem darstellt. Es besteht dabei nämlich die Gefahr, daß sich die Oberflächentemperatur des Kühlkörpers erhöht, wodurch wiederum die Abkühlungsgeschwindigkeit des schmelzflüssigen Metalls verringert wird. Dadurch kann eine Versprödung des Bandes eintreten, die zum Bruch führen kann.It has now been found that in the production of such metal strips, in particular in continuous operation, the thermal load on the cooling surface due to the impact of large amounts of the molten metal on the same circumferential line is a major problem. This is because there is a risk that the surface temperature of the heat sink increases, which in turn reduces the cooling rate of the molten metal. This can lead to embrittlement of the tape, which can lead to breakage.

Zur rascheren Abfuhr der Wärme kann man zwar eine entsprechende Wasserkühlung im Innern des Kühlkörpers vorsehen. Dies ist aber verhältnismäßig aufwendig.Appropriate water cooling can be provided inside the heat sink for faster heat dissipation. But this is relatively expensive.

Ferner tritt bei den bekannten Vorrichtungen schon nach einer kurzen Betriebszeit eine zunehmende Welligkeit der Kühlkörperoberfläche auf, die sich als eine Oberflächenunregelmäßigkeit, wie beispielsweise Vertiefungen und erhöhte Rauhigkeit, auf der Bandoberfläche bemerkbar macht.Furthermore, in the known devices, an increasing waviness of the heat sink surface occurs after a short operating time, which is noticeable as a surface irregularity, such as depressions and increased roughness, on the belt surface.

Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren der eingangs genannten Art die Wärmebelastung des Kühlkörpers zu verringern. Gleichzeitig soll die Oberflächenbeschaffenheit der hergestellten Bänder verbessert und ein vorzeitiges Brechen infolge Versprödung vermieden werden.The invention has for its object to reduce the heat load of the heat sink in a method of the type mentioned. At the same time, the surface quality of the strips produced is to be improved and premature breaking due to embrittlement is to be avoided.

Erfindungsgemäß wird dies dadurch erreicht, daß Schmelzstrahl und Kühlkorper zusätzlich relativ zueinander quer zur Richtung des Schmelzstrahls und quer zur Bewegungsrichtung des Kühlkörpers bewegt werden.This is achieved according to the invention in that the melt jet and heat sink are additionally moved relative to one another transversely to the direction of the melt jet and transversely to the direction of movement of the heat sink.

Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens mit einem Kühlkörper, dessen Oberfläche um wenigstens eine Achse umläuft, und einem Vorratsbehälter für die schmelzflüssige Metallegierung kann entsprechend derart ausgebildet werden, daß Vorratsbehälter und Kühlkörper relativ zueinander quer zur Richtung des aus dem Vorratsbehälter austretenden Schmelzstrahls und quer zur Bewegungsrichtung des Kühlkörpers verschiebbar sind.A device for carrying out the method according to the invention with a heat sink, the surface of which rotates around at least one axis, and a storage container for the molten metal alloy can be designed accordingly in such a way that the storage container and heat sink relative to one another transversely to the direction of the melt jet emerging from the storage container and transversely to Direction of movement of the heat sink are displaceable.

Es hat sich gezeigt, daß das Verfahren und die zugehörige Vorrichtung gemäß der Erfindung in vorteilhafter Weise die Wärmebelastung des Kühlkörpers bei kontinuierlichem Betrieb erheblich reduzieren, da der Strahl des schmelzflüssigen Metalls innerhalb der Zeit für eine kritische Erwärmung immer wieder auf eine neue Umfangslinie des Kühlkörpers auftrifft.It has been shown that the method and the associated device according to the invention advantageously significantly reduce the heat load on the heat sink during continuous operation, since the jet of the molten metal repeatedly hits a new circumferential line of the heat sink within the time for critical heating .

Als besonders günstig hat es sich erwiesen, wenn der Kühlkörper fest angeordnet ist und der Schmelzstrahl bewegt wird. Für die kontinuierliche Herstellung von Metallbändern ist est ferner günstig, wenn die Geschwindigkeit der Relativbewegung klein gegenüber der Oberflächengeschwindigkeit des Kühlkörpers ist. Vorzugsweise ist der Kühlkörper eine schnell rotierende Kühlwalze, da diese besonders einfach zu handhaben ist und eine relativ große Masse besitzt. Bei längerem Betrieb kann es günstig sein, eine zusätzliche Kühlung der Kühlwalze vorzusehen. Hierzu reicht es aber aus, eine Inertgas- oder Luftströmung gegen die Oberfläche der rotierenden Kühlwalze zu richten.It has proven to be particularly favorable if the heat sink is arranged in a fixed manner and the melting jet is moved. For the continuous production of metal strips, it is also favorable if the speed of the relative movement is low compared to the surface speed of the heat sink. The heat sink is preferably a rapidly rotating cooling roller, since it is particularly easy to handle and has a relatively large mass. In the case of prolonged operation, it may be advantageous to provide additional cooling of the cooling roll. To do this, it is sufficient to direct an inert gas or air flow against the surface of the rotating cooling roll.

Ferner ist es vorteilhaft, wenn die Kühlwalze wegen der hohen Wärmeleitfähigkeit reinen Kupfers bevorzugt aus diesem Material besteht. Grundsätzlich kann die Kühlwalze jedoch auch aus jedem beliebigen anderen Material mit relativ hoher Wärmeleitfähigkeit bestehen, wie beispielsweise Kupfer-Beryllium- oder Stahllegierungen.Furthermore, it is advantageous if the cooling roller preferably consists of this material because of the high thermal conductivity of pure copper. In principle, however, the cooling roller can also consist of any other material with a relatively high thermal conductivity, such as copper-beryllium or steel alloys.

Typische Geschwindigkeiten für die Längsbewegung der Kühloberfläche einer Kühlwalze liegen in der Regel im Bereich von etwa 10 bis 60 m/s. Für die Herstellung von Metallbändern mit polykristalliner Struktur genügt jedoch im allgemeinen eine geringere Geschwindigkeit des Kühlkörpers.Typical speeds for the longitudinal movement of the cooling surface of a cooling roll are generally in the range from about 10 to 60 m / s. However, a lower speed of the heat sink is generally sufficient for the production of metal strips with a polycrystalline structure.

Die vorzugsweise zu wählende Geschwindigkeit der Relativbewegung zwischen Schmelzstrahl und Kühlwalze hängt von der Breite des hergestellten Metallbandes ab. Eine Geschwindigkeit im Bereich zwischen 1 mm/s und 5 cm/s eignet sich vornehmlich für schmale Bänder, etwa bis zu einer Maximalbreite von 10 mm, während Geschwindigkeiten von 5 cm/s bis 30 cm/s besonders günstig bei breiteren Bändern angewandt werden können. Arbeitet man dagegen bei der Herstellung sehr schmaler Bänder mit einer Geschwindigkeit der Relativbewegung im Bereich von 5 bis 30 cm/s, so besteht die Gefahr, daß die Bänder säbelartig gekrümmt werden. Generell ist also die relative Geschwindigkeit vorzugsweise mindestens um zwei Größenordnungen kleiner als die Oberflächengeschwindigkeit des Kühlkörpers.The preferred speed of the relative movement between the melt jet and the cooling roll depends on the width of the metal strip produced. A speed in the range between 1 mm / s and 5 cm / s is particularly suitable for narrow strips, for example up to a maximum width of 10 mm, while speeds of 5 cm / s to 30 cm / s can be used particularly advantageously with wider strips . If, on the other hand, you are working in the production of very narrow strips at a speed of Relative movement in the range of 5 to 30 cm / s, there is a risk that the bands are curved like a saber. In general, the relative speed is therefore preferably at least two orders of magnitude lower than the surface speed of the heat sink.

Damit der schmelzflüssige Strahl insbesondere bei größeren Schmelzmengen einen möglichst großen Oberflächenbereich des bewegten Kühlkörpers wiederholt überfahren kann, ist es ferner vorteilhaft, wenn Mittel zur periodischen Richtungsänderung der Relativbewegung vorgesehen sind. So könne beispielsweise entsprechend angeordnete elektrische Kontakte bei Annäherung des Schmelzstrahls an ein Bereichsende für die Umkehrung der Bewegunsrichtung sorgen. Der maximale Bereich für die Relativbewegung des Schmelzstrahls quer zu dessen Fließrichtung ist durch die Breite der Kühlkörperoberfläche begrenzt. Er wird jedoch im allgemeinen etwas kleiner gewählt werden.So that the molten jet can repeatedly drive over as large a surface area of the moving heat sink as possible, particularly in the case of larger amounts of melt, it is also advantageous if means are provided for periodically changing the direction of the relative movement. For example, correspondingly arranged electrical contacts can reverse the direction of movement when the melt jet approaches an end of the region. The maximum range for the relative movement of the melt jet transverse to its direction of flow is limited by the width of the heat sink surface. However, it will generally be chosen to be somewhat smaller.

Das Verfahren nach der Erfindung kann in an sich bekannter Weise an Luft, in einer inerten Atmosphäre, beispielsweise Stickstoff oder Argon, oder unter Vakuum durchgeführt werden. Insbesondere bei Anwendung eines Vakuums kann eine verbesserte Gleichmäßigkeit des erzeugten Metallbandes erreicht werden, weil hierbei der oxidierende Angriff des Luftsauerstoffs ausgeschaltet ist. Die Vorrichtung kann daher vorteilhaft eine Vakuumkammer besitzen, in der der Vorratsbehälter für die Schmelze und der Kühlkörper angeordnet sind.The method according to the invention can be carried out in a manner known per se in air, in an inert atmosphere, for example nitrogen or argon, or under vacuum. In particular when using a vacuum, an improved uniformity of the metal strip produced can be achieved because the oxidizing attack of the atmospheric oxygen is switched off. The device can therefore advantageously have a vacuum chamber in which the reservoir for the melt and the heat sink are arranged.

Anhand einer Figur, die schematisch eine Ausführungsform der erfindungsgemäßen Vorrichtung darstellt, und anhand eines Ausführungsbeispiels soll die Erfindung noch näher erläutert werden.The invention is to be explained in more detail with reference to a figure which schematically represents an embodiment of the device according to the invention and with the aid of an embodiment.

Bei der in der Figur gezeigten Vorrichtung sind der das schmelzflüssige Metall enthaltende Vorratsbehälter 15 und die bewegte Kühlwalze 11 in einer Vakuumkammer 10 angeordnet, die durch eine nicht gezeigte Zuführung mit einer Vakuumpumpe verbunden ist. Die Kühlwalze 11 wird über eine Welle 12 von einem außerhalb der Vakuumkammer befindlichen Elektromotor 14 mit Drehzahlregelung angetrieben. Eine entsprechende Drehdurchführung in das Innere der Vakuumkammer ist mit 13 bezeichnet. Der Vorratsbehälter 15, der mit einer Induktionsheizwicklung 16 umgeben ist, ist auf einem Fahrschemel 17 montiert, der sich auf Führungsschienen 18 quer zur Längsrichtung des Vorratsbehälters bewegen kann. Angetrieben wird der Fahrschemel 17 über eine Antriebsspindel 19 von einem ebenfalls außerhalb der Vakuumkammer 10 befindlichen Elektromotor 20. Bei Berührung eines der Kontakte 21 kann die jeweilige Bewegungsrichtung des Fahrschemels 17 umgekehrt werden, wobei Kontakte über eine Steuerung 22 eine Änderung der Drehrichtung des Elektromotors 20 auslösen. Durch eine Öffnung 23, beispielsweise eine Düse, am unteren Ende des Vorrats- . behälters 15 kann der Schmelzstrahl des flüssigen Metalls austreten und dann auf die Oberfläche der rotierenden Kühlwalze 11 treffen, wo er sich zu einem kontinuierlichen Band verfestigt.In the device shown in the figure, the storage container 15 containing the molten metal and the moving cooling roller 11 are arranged in a vacuum chamber 10 which is connected to a vacuum pump by a feed, not shown. The cooling roller 11 is driven via a shaft 12 by an electric motor 14 with speed control located outside the vacuum chamber. A corresponding rotary leadthrough into the interior of the vacuum chamber is designated by 13. The storage container 15, which is surrounded by an induction heating winding 16, is mounted on a subframe 17 which can move on guide rails 18 transversely to the longitudinal direction of the storage container. The subframe 17 is driven via a drive spindle 19 by an electric motor 20 which is also located outside the vacuum chamber 10. When one of the contacts 21 is touched, the respective direction of movement of the subframe 17 can be reversed, contacts 22 triggering a change in the direction of rotation of the electric motor 20 . Through an opening 23, for example a nozzle, at the lower end of the supply. container 15, the melt stream of the liquid metal can escape and then hit the surface of the rotating cooling roller 11, where it solidifies into a continuous belt.

Zur Herstellung eines Metallbandes mit amorpher Struktur wurde eine Legierung der Zusammensetzung Fe4,N'40 p I4B, verwendet, deren Schmelztemperatur bei etwa 950°C und deren Kristallisationstemperatur bei etwa 360°C liegt. Die im Vorratsbehälter aus Quarz befindliche Schmelze wurde durch eine Induktionsheizwicklung auf etwa. 1000°C erhitzt und dann durch eine Düse gepreßt. Der schmelzflüssige Strahl dieser Legierung traf auf die Oberfläche einer schnell rotierenden Kühlwalze aus sauerstofffreiem Kupfer, wo er zu einem festen Band erstarrte. Die Geschwindigkeit der Kühlwalzenoberfläche in Längsrichtung war auf etwa 30 m/s eingestellt. Während des Ausfließens wurde der schmelzflüssige Strahl quer zu seiner Ausflußrichtung bewegt. Die maximale Auslenkung dieser Bewegung, deren Richtung durch Kontakte an den Bereichsgrenzen umgekehrt werden konnte, betrug etwa 15 cm. Die Geschwindigkeit des relativ zu der rotierenden Kühlwalze bewegten Schmelzstrahls war auf 15 cm/s eingestellt. Das nach dem beschriebenen Verfahren erzeugte amorphe Metallband war 5 mm breit und wies eine gleichmäßige Oberfläche ohne jegliche Welligkeit auf.For producing a metal strip with an amorphous structure, an alloy of the composition Fe 4, N 'was 40 p B I4, are used whose melting temperature is about 950 ° C and their crystallization temperature at about 360 ° C. The melt in the quartz storage tank was increased to approximately by an induction heating winding. Heated 1000 ° C and then pressed through a nozzle. The molten jet of this alloy hit the surface of a rapidly rotating chill roll made of oxygen-free copper, where it solidified into a solid band. The longitudinal speed of the cooling roll surface was set at about 30 m / s. During the outflow, the molten jet was moved transversely to its outflow direction. The maximum deflection of this movement, the direction of which could be reversed by contacts at the area boundaries, was approximately 15 cm. The speed of the melt jet moving relative to the rotating cooling roll was set at 15 cm / s. The amorphous metal strip produced by the described method was 5 mm wide and had a uniform surface without any ripple.

Bei weiteren Versuchen zeigte sich, daß gelegentlich säbelartige Krümmungen der Bänder auftraten. Es wurde dann die Relativbewegung von 15 cm/s auf 1 cm/s verringert. Die so hergestellten 5 mm breiten Bänder wiesen keine säbelartigen Krümmungen mehr auf. Weitere Versuche ergaben, daß höhere Relativgeschwindigkeiten bei der Herstellung breiterer Metallbänder günstig sind.Further tests showed that saber-like curvatures of the ligaments occasionally occurred. The relative movement was then reduced from 15 cm / s to 1 cm / s. The 5 mm wide strips produced in this way no longer had saber-like curvatures. Further tests have shown that higher relative speeds are favorable when producing wider metal strips.

In der Regel kann man also davon ausgehen, daß die Breite des herzustellenden Metallbandes in etwa 0,2 bis 1 s durch die Relativbewegung des Schmelzstrahls zum Kühlkörper überstrichen werden sollte. So sind beispielsweise für Bänder von 1 mm Breite Geschwindigkeiten der Relativbewegung von 1 bis 5 mm/s und für Bänder von 10 mm Breite Geschwindigkeiten der Relativbewegung zwischen 1 und 5 cm/s günstig.As a rule, one can assume that the width of the metal strip to be produced should be covered in about 0.2 to 1 s by the relative movement of the melt jet to the heat sink. For example, speeds of the relative movement of 1 to 5 mm / s are advantageous for bands of 1 mm width and speeds of the relative movement of between 1 and 5 cm / s are advantageous for bands of 10 mm width.

Das Verfahren und die Vorrichtung nach der Erfindung eignen sich insbesondere für Metallegierungen, die nach raschem Abkühlen aus der Schmelze eine amorphe Struktur aufweisen. Da diese Legierungen metastabil sind, führt eine verminderte Abkühlgeschwindigkeit infolge zunehmender Erwärmung der Oberfläche des Kühlkörpers auf eine Temperatur nahe oder oberhalb der sogenannten kritischen Kristallisationstemperatur unweigerlich zu der Versprödung der Bänder. Außerdem kann das erfindungsgemäße Verfahren und die zugehörige Vorrichtung auch bei polykristallinen Metallegierungen angewendet werden, wenn es ebenfalls auf den Vorteil einer Bandherstellung direkt aus der Schmelze ankommt.The method and the device according to the invention are particularly suitable for metal alloys which, after rapid cooling from the melt, have an amorphous structure. Since these alloys are metastable, a reduced cooling rate due to increasing heating of the surface of the heat sink to a temperature near or above the so-called critical crystallization temperature inevitably leads to the embrittlement of the strips. In addition, the method according to the invention and the audible device can also be applied to polycrystalline metal alloys if the advantage of strip production directly from the melt is also important.

Die erfindungsgemäße Vorrichtung kann in an sich bekannter Weise auch dadurch abgewandelt werden, daß man als Kühlkörper die Innenseite einer rotierenden Walze, zwei gegeneinander drehende Walzen oder ein endlos umlaufendes Band verwendet.The device according to the invention can also be modified in a manner known per se by using the inside of a rotating roller, two counter-rotating rollers or an endlessly rotating belt as the heat sink.

Claims (13)

1. A process for the production of metal strips, in particular from an amorphous metal alloy, wherein. a jet of the molten metal from a reservoir (15) impinges on the rapidly moving surface of a cooling body (11) and solidifies, characterised in that the jet of molten metal and the cooling body (11) are additionally moved relative to one another, transversely to the direction of the jet of molten metal and transversely to the direction of movement of the cooling body (11).
2. A process as claimed in Claim 1, characterised in that the direction of the additional relative movement is periodically changed.
3. A process as claimed in one of Claims 1 and 2, characterised in that the jet of molten metal is moved.
4. A process as claimed in one of Claims 1 to 3, characterised in that the speed of the relative movement is at the most one hundredth of the surface speed of the cooling body (11).
5. A process as claimed in one of Claims 1 to 4, characterised in that the width of the metal strip which is to be produced is swept over in approximately 0.2 to 1 s by means of the relative movement of the jet of molten metal and the cooling body (11).
6. A process as claimed in Claim 5, characterised in that the speed of the relative movement is selected to be between 1 mm/s and 5 cm/s.
7. A process as claimed in Claim.5, characterised in that the speed of the relative movement is 5 to 30 cm/s.
8. Apparatus for carrying out the process as claimed in one of Claims 1 to 7, comprising a cooling body (11) the surface of which rotates about at least one axis, and a reservoir (15) for the molten metal alloy, characterised in that the reservoir (15) and the cooling body (11) are displaceable relative to one another, transversely to the direction of the jet of molten metal which issues from the reservoir (15) and transversely to the direction of movement of the cooling body (11).
9. Apparatus as claimed in Claim 8, characterised in that the reservoir (15) is displaceable with respect to the fixedly arranged cooling body (11).
10. Apparatus as claimed in one of Claims 8 or 9, characterised in that a roller is provided as the cooling body (11).
11. Apparatus as claimed in Claim 10, characterised in that the cooling roller is made of copper of high thermal conductivity.
12. Apparatus as claimed in one of Claims 8 to 11, characterised in that the direction of the relative movement is periodically changeable.
13. Apparatus as claimed in one of Claims 8 to 12, characterised in that the reservoir (15) and the cooling body (11) are arranged in a vacuum chamber (10).
EP79103096A 1978-09-29 1979-08-23 Method and apparatus for the production of metallic strips Expired EP0009603B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79103096T ATE1086T1 (en) 1978-09-29 1979-08-23 METHOD AND DEVICE FOR THE MANUFACTURE OF METAL TAPE.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2842421 1978-09-29
DE19782842421 DE2842421C2 (en) 1978-09-29 1978-09-29 Method and device for the production of metal strips
DE19782846628 DE2846628C2 (en) 1978-10-26 1978-10-26 Process for the production of metal strips
DE2846628 1978-10-26

Publications (2)

Publication Number Publication Date
EP0009603A1 EP0009603A1 (en) 1980-04-16
EP0009603B1 true EP0009603B1 (en) 1982-05-26

Family

ID=25775884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103096A Expired EP0009603B1 (en) 1978-09-29 1979-08-23 Method and apparatus for the production of metallic strips

Country Status (4)

Country Link
US (1) US4293023A (en)
EP (1) EP0009603B1 (en)
CA (1) CA1129169A (en)
DE (1) DE2962959D1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024247A (en) * 1983-07-18 1985-02-06 Unitika Ltd Continuous production of metallic product by quick cooling of liquid
FR2700282B1 (en) * 1993-01-13 1995-03-03 Seva Method and installation for manufacturing amorphous metallic ribbons by hyper quenching.
FR2732628B1 (en) * 1995-04-05 1997-05-30 Seva INSTALLATION AND METHOD FOR MANUFACTURING TAPE OR METALLIC FIBER AMORPHOUS BY HYPERTREMPE
JP2007111711A (en) * 2005-10-18 2007-05-10 Denso Corp Method for producing foil brazing material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899728A (en) * 1959-08-18 Method and apparatus for forming metal
US3297436A (en) * 1965-06-03 1967-01-10 California Inst Res Found Method for making a novel solid metal alloy and products produced thereby
GB1549124A (en) * 1976-05-04 1979-08-01 Allied Chem Chill roll castin of continuous filament
US4077462A (en) * 1976-06-30 1978-03-07 Allied Chemical Corporation Chill roll casting of continuous filament
AU503857B2 (en) * 1976-10-22 1979-09-20 Allied Chemical Corp. Continuous casting of metal strip
DE2809837A1 (en) * 1977-03-07 1978-09-21 Furukawa Electric Co Ltd Process for the production of amorphous metal strips
FR2393635A1 (en) * 1977-06-06 1979-01-05 Michelin & Cie PROCESS FOR MANUFACTURING CORRUGATED METAL WIRE FOR REINFORCING COMPOSITE MATERIALS
JPS6038225B2 (en) * 1977-09-12 1985-08-30 ソニー株式会社 Manufacturing method of amorphous alloy

Also Published As

Publication number Publication date
DE2962959D1 (en) 1982-07-15
EP0009603A1 (en) 1980-04-16
US4293023A (en) 1981-10-06
CA1129169A (en) 1982-08-10

Similar Documents

Publication Publication Date Title
DE3638901C2 (en)
DE2759736C2 (en) Use of a slot nozzle and a heat sink
DE2746238C2 (en) Device for the continuous casting of a thin metal strip
DE2606581C3 (en) Process for the continuous casting of a metal alloy thread and the use of metal alloys therefor
DE3018290C2 (en) Method and device for producing fine-grain castings
DE2719710C2 (en) Method and device for stripping off a thread-like metal strand
DE2462387A1 (en) METHOD AND DEVICE FOR CONTINUOUS CASTING OF FEMES OR WIRE
DE2837432C2 (en) Process for the continuous casting of an amorphous alloy by means of casting rolls
EP0026812B1 (en) Apparatus for producing amorphous metal strips
EP0009603B1 (en) Method and apparatus for the production of metallic strips
EP0756911B1 (en) Process and apparatus for producing particles from directionally solified cast parts
DE2842421C2 (en) Method and device for the production of metal strips
DE2812600C2 (en) Device for the production of granules
DE2824776C3 (en) PROCEDURES FOR SANGGIE; EN OF WIRE-SHAPED Reinforcement Elements
DE2950406A1 (en) Casting wheel for mfg. metal strip - where gas jet produces smooth cast surface, esp. on amorphous metal strip made of iron-nickel-boron-silicon alloys
DE19626732A1 (en) Sputtering target production and recycling
DE3444955A1 (en) DEVICE AND METHOD FOR PRODUCING MICROCRYSTALLINE METAL MATERIALS
DE712253C (en) Method and apparatus for dividing and cooling molten alkaline earth metal carbide
DE3128063A1 (en) Method and apparatus for the continuous casting of a solid metal strip
AT224692B (en) Process for producing a crystal from a single crystal material
CH668721A5 (en) Method and device for casting metallbaendern directly from the melt.
EP0231216A1 (en) Process and device for casting crystalline metal strip
DE2201061A1 (en) Furnace for melting metals and producing materials with a high melting point
DE2547647A1 (en) CASTING MACHINE FOR THE PRODUCTION OF METAL PLATES
DE1793818B1 (en) Device for continuous crystallization of trioxane with band formation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed
ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 1086

Country of ref document: AT

Date of ref document: 19820615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2962959

Country of ref document: DE

Date of ref document: 19820715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19821125

Year of fee payment: 4

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900705

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900801

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900807

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900808

Year of fee payment: 12

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900831

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901012

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901015

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910823

Ref country code: AT

Effective date: 19910823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910831

Ref country code: BE

Effective date: 19910831

BERE Be: lapsed

Owner name: VACUUMSCHMELZE G.M.B.H.

Effective date: 19910831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920501

EUG Se: european patent has lapsed

Ref document number: 79103096.8

Effective date: 19920306

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT