EP0000879A1 - Process for the preparation of aromatic carbonic acid esters - Google Patents

Process for the preparation of aromatic carbonic acid esters Download PDF

Info

Publication number
EP0000879A1
EP0000879A1 EP78100570A EP78100570A EP0000879A1 EP 0000879 A1 EP0000879 A1 EP 0000879A1 EP 78100570 A EP78100570 A EP 78100570A EP 78100570 A EP78100570 A EP 78100570A EP 0000879 A1 EP0000879 A1 EP 0000879A1
Authority
EP
European Patent Office
Prior art keywords
meaning
radical
carbonate
organotin compounds
transesterification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP78100570A
Other languages
German (de)
French (fr)
Other versions
EP0000879B1 (en
Inventor
Heinrich Dr. Krimm
Hans-Josef Dr. Buysch
Hans Dr. Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000879A1 publication Critical patent/EP0000879A1/en
Application granted granted Critical
Publication of EP0000879B1 publication Critical patent/EP0000879B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates

Definitions

  • the invention relates to a process for the preparation of aromatic carbonic acid esters from aliphatic carbonic acid esters and phenols by transesterification in the presence of organotin compounds.
  • transesterification of aliphatic carbonic acid esters with phenols in the presence of strong bases or of alkali compounds is known according to DBP 971 790, 1 020 184, 1 026 958 and 1 031 512.
  • Transesterification processes catalyzed in this way have the disadvantage that they are not very selective, so that considerable amounts of carbon dioxide are released in a side reaction.
  • DOS 2 528 412 and 2 552 907 describe transesterification processes for the production of aromatic carbonic acid esters, in which Lewis acids, ie transition metal halides or the corresponding acyloxy, alkoxy or aryloxy compounds, are used as catalysts.
  • Lewis acids ie transition metal halides or the corresponding acyloxy, alkoxy or aryloxy compounds
  • catalysts on Titan asis have the disadvantage that they color the end products strongly red-brown. This coloring is particularly unpleasant if the end products do not have to be purified by recrystallization or distillation, as is the case with polycarbonates, for example.
  • the object of the invention was achieved by using organotin compounds as transesterification catalysts.
  • the invention therefore relates to processes for the preparation of aromatic carbonic acid esters by transesterification of dialkyl carbonates with phenols with the elimination of alcohols in the presence of catalysts, which are characterized in that organotin compounds are used as catalysts.
  • the favorable catalytic action of the catalysts according to the invention is surprising since they cannot be called Lewis acids.
  • the organotin halogen compounds such as dibutyltin dichloride or dioctyltin dichloride, in which a formal relationship to typical Lewis acids such as aluminum trichloride or titanium tetrachloride could most likely be assigned, are completely ineffective.
  • the organotin compounds used according to the invention may therefore not contain any direct tin-halogen compound.
  • organotin compounds for example include trimethyltin, Triäthylzinnbenzoat, tributyltin acetate, triphenyltin acetate, dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, Dibutylzinnadipinat, Methoxytributylzinn, Methoxytriphenylzinn, Phenoxytriäthylzinn, dimethoxydibutyltin, Dimethylzinnglykolat, Diäthoxydibutylzinn, Diphenoxydibutylzinn, Dimethoxydiphenylzinn, Triäthylzinnhydroxid, triphenyltin hydroxide, Hexaäthylstannoxan , Hexabutylstannoxane, tetrabutyldiphenoxystannoxane, dibutyltin oxide and diocty
  • those compounds are used whose vapor pressure is low even at the required reaction temperatures, i.e. those with organometallically bonded alkyl radicals of at least four carbon atoms.
  • Preferred dialkyl carbonates are those of the general formula (III) used, in which R 7 is an alkyl radical having C 1 -C 10 .
  • Dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dioctyl carbonate, diisooctyl carbonate and dicyclohexyl carbonate can preferably be used.
  • Suitable phenols are preferably those of the general formula (IV) in which X is hydrogen, an alkyl radical with C1-C3, a halogen atom, preferably chlorine, or a nitro group and n is 1 or 2.
  • Particularly preferred phenols for the process according to the invention are phenol, o, m, p-cresol, o, m, p-chlorophenol, o, m, p-ethylphenol, o, m, p-propylphenol, o, m, p -Nitrophenol, 2,6-dimethylphenol, 2,4-dimethylphenol and 3,4-dimethylphenol are used.
  • bisphenols such as dihydroxydiarylalkanes with C 1 -C 4 in the alkyl radical, for example bisphenol A, can also be used. They are not split under the process conditions and can thus be converted directly into polycarbonates. Based on pure raw materials, these are almost colorless and do not require any additional cleaning steps.
  • the catalysts are used in concentrations of about 0.001-20% by weight, based on the total amount of the reaction mixture.
  • the weight ratio of dialkyl carbonate: phenol can vary within wide limits and is between about 1:99 and 99: 1, preferably 1: 9 and 9: 1. It depends on this ratio whether alkylphenyl carbonate or diaryl carbonate predominates in the end product.
  • the alkylaryl carbonate formed in addition to diaryl carbonate can be separated off by distillation without difficulty and either reacted with fresh phenol or, after the diaryl carbonate has been separated off, can react further with the phencl still present.
  • the reaction temperatures are preferably in the range from 50 to 250 ° C., particularly preferably in the range from 100 to 200 ° C. It is advantageous to work at a pressure of 1 torr to 20 atm abs, preferably 1-5 atm.
  • Solvents such as aliphatic or aromatic hydrocarbons can also be used.
  • a preferred procedure is to bring the transesterification mixture to the desired reaction temperature in a longer column, while the alcohol is removed overhead, to the extent that it is released in the reaction mixture, if appropriate with the aid of an inert gas stream.
  • excess dialkyl carbonate is passed through a melt of the phenol to be reacted, while a mixture consisting of the alcohol and dialkyl carbonate is continuously distilled off.
  • the components can be separated in a separate step using customary methods.
  • the process products can be used as starting materials for the production of polycarbonates by known processes or of crop protection agents.
  • the yield based on the converted phenol, is thus 96% of theory. Th. During the reaction, 0.014 mol of CO 2 are split off. This corresponds to a loss of carbonate of 1.05%.
  • the reaction product is colored deep red-brown before distillation. Even after the distillation, the diphenyl carbonate still shows a red-brown tinge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

1. A process for the production of aromatic carbonic acid esters by transesterifying dialkyl carbonates with phenols under the elimination of alcohols and in the presence of transesterification catalysts, wherein organo tin compounds of the general formula I (R**1 )-Sn-(Y)x 4-x in which Y represents an see diagramm : EP0000879,P5,F2 OH or OR**2 radical, R**2 denoting a C1 -C12 alkyl radical, a C6 -C12 aryl radical or a C7 -C13 alkylaryl radical, and R**1 has the meaning of R**2 and x denotes an integer from 1 to 3, or dialkyl tin oxides each with 1-12 C-Atoms in the alkyl radical or organo tin compounds of the general formula II see diagramm : EP0000879,P5,F4 in which R**1 and R**4 are the same or different and have the above-indicated meaning of R**2 , and R**5 has the meaning of R**2 or represents a radical OR**6 in which R**6 has the meaning of R**2 are used as reesterification catalysts, in quantities of from 0.001 to 20% by weight, based on the total amount of the reaction mixture.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung aromatischer Kohlensäureester aus aliphatischen Kohlensäureestern und Phenolen durch Umesterung in Gegenwart von zinnorganischen Verbindungen.The invention relates to a process for the preparation of aromatic carbonic acid esters from aliphatic carbonic acid esters and phenols by transesterification in the presence of organotin compounds.

Die Umesterung aliphatischer Kohlensäureester mit Phenolen in Anwesenheit starker Basen bzw. von Alkaliverbindungen ist nach DBP 971 790, 1 020 184, 1 026 958 und 1 031 512 bekannt. Derart katalysierte Umesterungsverfahren haben den Nachteil, wenig selektiv zu sein, so daß in einer Nebenreaktion erhebliche Mengen an Kohlendioxid freigesetzt werden.The transesterification of aliphatic carbonic acid esters with phenols in the presence of strong bases or of alkali compounds is known according to DBP 971 790, 1 020 184, 1 026 958 and 1 031 512. Transesterification processes catalyzed in this way have the disadvantage that they are not very selective, so that considerable amounts of carbon dioxide are released in a side reaction.

In den DOS 2 528 412 und 2 552 907 sind Umesterungsverfahren zur Herstellung aromatischer Kohlensäureester beschrieben, bei denen als Katalysatoren Lewissäuren, d.h. Ubergangsmetallhalogenide oder die entsprechenden Acyloxy-, Alkoxy- oder Aryloxy-Verbindungen verwendet werden. Von den Verbindungen der Elemente Al, Ti, U, V, Zn, Fe und Sn sind nur die des Titans von wirtschaftlichem Interesse, da nur diese hinreichend wirksam und selektiv sind. Diese Katalysatoren auf Titan asis haben aber den Nachteil, daß sie die Endprodukte stark rot-braun färben. Diese Färbung tritt besonders dann unangenehm in Erscheinung, wenn sich die Endprodukte nicht ourch Umkristalliseren oder Destillieren reinigen assen, wie das z.B. bei Polycarbonaten der Fall ist.DOS 2 528 412 and 2 552 907 describe transesterification processes for the production of aromatic carbonic acid esters, in which Lewis acids, ie transition metal halides or the corresponding acyloxy, alkoxy or aryloxy compounds, are used as catalysts. Of the compounds of the elements Al, Ti, U, V, Zn, Fe and Sn, only those of titanium are of economic interest, since only these are sufficiently effective and selective. This However, catalysts on Titan asis have the disadvantage that they color the end products strongly red-brown. This coloring is particularly unpleasant if the end products do not have to be purified by recrystallization or distillation, as is the case with polycarbonates, for example.

Es war deshalb die Aufgabe gestellt, Katalysatoren zu finden, die neben einer zumindest den Titankatalysatoren gleichwertigen Umesterungswirksamkeit und Selektivität auch den Vorteil aufweisen, die Endprodukte nicht wesentlich zu verfärben.It was therefore the task of finding catalysts which, in addition to a transesterification activity and selectivity at least equivalent to the titanium catalysts, also have the advantage of not significantly discoloring the end products.

Die erfindungsgemäße Lösung der Aufgabe gelang durch die Verwendung zinnorganischer Verbindungen als Umesterungskatalysatoren. Gegenstand der Erfindung sind daher Verfahren zur Herstellung von aromatischen Kohlesäureester durch Umesterung von Dialkylcarbonaten mit Phenolen unter Abspaltung von Alkoholen in Gegenwart von Katalysatoren, die dadurch gekennzeichnet sind, daß als Katalysatoren zinnorganische Verbindungen verwendet werden.The object of the invention was achieved by using organotin compounds as transesterification catalysts. The invention therefore relates to processes for the preparation of aromatic carbonic acid esters by transesterification of dialkyl carbonates with phenols with the elimination of alcohols in the presence of catalysts, which are characterized in that organotin compounds are used as catalysts.

Die günstige katalytische Wirkung der erfindungsgemäßen Katalysatoren ist überraschend, da man sie nicht als Lewissäuren bezeichnen kann. Ganz im Gegenteil ist festzustellen, daß gerade die zinnorganischen Halogenverbindungen wie Dibutylzinndichlorid oder Dioctylzinndichlorid, bei denen noch am ehesten eine formale Verwandtschaft zu typischen Lewissäuren wie Aluminiumtrichlorid oder Titantetrachlorid zugerechnet werden könnte, völlig unwirksam sind. Die erfindungsgemäß verwendeten zinnorganischen Verbindungen dürfen daher keine direkte Zinn-Halogen-Verbindung enthalten.The favorable catalytic action of the catalysts according to the invention is surprising since they cannot be called Lewis acids. On the contrary, it can be stated that the organotin halogen compounds such as dibutyltin dichloride or dioctyltin dichloride, in which a formal relationship to typical Lewis acids such as aluminum trichloride or titanium tetrachloride could most likely be assigned, are completely ineffective. The organotin compounds used according to the invention may therefore not contain any direct tin-halogen compound.

Die Wirksamkeit der erfindungsgemäßen Katalysatoren,gemessen an der Geschwindigkeit der Alkoholabspaltung, unterscheidet sich praktisch nicht von der von Verbindungen des Titans wie z.B. des Tetrabutyltitanats.Doch sind Vorteile darin zu sehen, daß in den beiden Verfahrensprodukten Alkylarylcarbonat und Diarylcarbonat das Verhältnis zugunsten des letzteren verschoben ist und unter vergleichbaren Bedingungen eine etwa um die Hälfte geringere Kohlendioxidabspaltung beobachtet wird.The effectiveness of the catalysts according to the invention, measured in terms of the rate of alcohol splitting, practically does not differ from that of compounds of titanium such as e.g. However, advantages can be seen in the fact that the ratio in the two process products alkylaryl carbonate and diaryl carbonate is shifted in favor of the latter and that, under comparable conditions, an approximately half reduction in carbon dioxide elimination is observed.

Für das erfindungsgemäße Verfahren eignen sich besonders zinnorganische Verbindungen der allgemeinen Formel (I)

Figure imgb0001
in der

  • Y für einen Rest
    Figure imgb0002
    OH oder OR2 steht, wobei R 2 einen Alkylrest mit C1-C12, einen Arylrest mit C6-C12 oder einen Alkylarylrest mit C7-C13 bedeutet, und
  • R 1 die Bedeutung von R2 hat, und
  • x eine ganze Zahl von 1 - 3 bedeutet, oder Dialkylzinnoxide mit jeweils 1-12 C-Atome im Alkylrest oder zinnorganische Verbindungen der allgemeinen Formel (II)
Figure imgb0003
in der
  • R3 und R4 gleich oder verschieden, die oben angegebene Bedeutunq von R 2 haben,
  • und R die Bedeutung von R2 hat oder für einen Rest OR 6 steht, in dem R 6 die Bedeutung von R2 hat.
Organotin compounds of the general formula (I) are particularly suitable for the process according to the invention.
Figure imgb0001
in the
  • Y for a rest
    Figure imgb0002
    Is OH or OR 2 , where R 2 is an alkyl radical with C 1 -C 12 , an aryl radical with C 6 -C 12 or an alkylaryl radical with C 7 -C 13 , and
  • R 1 has the meaning of R 2 , and
  • x is an integer from 1 to 3, or dialkyltin oxides each having 1-12 C atoms in the alkyl radical or organotin compounds of the general formula (II)
Figure imgb0003
in the
  • R 3 and R 4 are the same or different and have the meaning of R 2 given above,
  • and R has the meaning of R 2 or represents a radical O R 6 in which R 6 has the meaning of R 2 .

Für das erfindungsgemäße Verfahren sind ganz besonders geeignete zinnorganische Verbindungen wie z.B.: Trimethylzinnacetat, Triäthylzinnbenzoat, Tributylzinnacetat, Triphenylzinnacetat, Dibutylzinndiacetat, Dibutylzinndilaurat, Dioctylzinndilaurat, Dibutylzinnadipinat, Methoxytributylzinn, Methoxytriphenylzinn, Phenoxytriäthylzinn, Dimethoxydibutylzinn, Dimethylzinnglykolat, Diäthoxydibutylzinn, Diphenoxydibutylzinn, Dimethoxydiphenylzinn, Triäthylzinnhydroxid, Triphenylzinnhydroxid, Hexaäthylstannoxan, Hexabutylstannoxan, Tetrabutyldiphenoxystannoxan, Dibutylzinnoxid und Dioctylzinnoxid.For the inventive process particularly suitable organotin compounds, for example include trimethyltin, Triäthylzinnbenzoat, tributyltin acetate, triphenyltin acetate, dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, Dibutylzinnadipinat, Methoxytributylzinn, Methoxytriphenylzinn, Phenoxytriäthylzinn, dimethoxydibutyltin, Dimethylzinnglykolat, Diäthoxydibutylzinn, Diphenoxydibutylzinn, Dimethoxydiphenylzinn, Triäthylzinnhydroxid, triphenyltin hydroxide, Hexaäthylstannoxan , Hexabutylstannoxane, tetrabutyldiphenoxystannoxane, dibutyltin oxide and dioctyltin oxide.

Vorzugsweise werden solche Verbindungen verwendet, deren Dampfdruck auch bei den erforderlichen Reaktionstemperaturen niedrig ist, d.h. solche mit metallorganisch gebundenen Alkylresten von mindestens vier Kohlenstoffatomen.Preferably those compounds are used whose vapor pressure is low even at the required reaction temperatures, i.e. those with organometallically bonded alkyl radicals of at least four carbon atoms.

Als Dialkylcarbonate werden vorzugsweise solche der allgemeinen Formel (III)

Figure imgb0004
verwendet, in der R7 für einen Alkylrest mit C1-C10 steht. Bevorzugt können Dimethylcarbonat, Diäthylcarbonat, Dipropylcarbonat, Diisopropylcarbonat, Dibutylcarbonat, Dioctylcarbonat, Diisooctylcarbonat und Dicyclohexylcarbonat eingesetzt werden.Preferred dialkyl carbonates are those of the general formula (III)
Figure imgb0004
used, in which R 7 is an alkyl radical having C 1 -C 10 . Dimethyl carbonate, diethyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, dioctyl carbonate, diisooctyl carbonate and dicyclohexyl carbonate can preferably be used.

Als Phenole eignen sich vorzugsweise solche der allgemeinen Formel (IV)

Figure imgb0005
in der X für Wasserstoff, einen Alkylrest mit C1-C3, ein Halogenatom, vorzugsweise Chlor, oder eine Nitrogruppe und n für 1 oder 2 stehen. Besonders bevorzugt werden als Phenole für das erfindungsgemäße Verfahren Phenol, o,m,p-Kresol, o,m,p-Chlorphenol, o,m,p-Ähylphenol, o,m,p-Propyl- phenol, o,m,p-Nitrophenol, 2,6-Dimethylphenol, 2,4-Dimethylphenol und 3,4-Dimethylphenol verwendet.Suitable phenols are preferably those of the general formula (IV)
Figure imgb0005
in which X is hydrogen, an alkyl radical with C1-C3, a halogen atom, preferably chlorine, or a nitro group and n is 1 or 2. Particularly preferred phenols for the process according to the invention are phenol, o, m, p-cresol, o, m, p-chlorophenol, o, m, p-ethylphenol, o, m, p-propylphenol, o, m, p -Nitrophenol, 2,6-dimethylphenol, 2,4-dimethylphenol and 3,4-dimethylphenol are used.

Anstelle der einwertigen Phenole können auch Bisphenole wie Dihydroxydiarylalkane mit C1-C4 im Alkylrest, so z.B. Bisphenol A, eingesetzt werden. Sie werden unter den Verfahrenbedingungen nicht gespalten und können so unmittelbar in Polycarbonate übergeführt werden. Diese sind, geht man von reinen Ausgangsstoffen aus, nahezu farblos und bedürfen keiner zusätzlichen Reinigungsschritte.Instead of the monohydric phenols, bisphenols such as dihydroxydiarylalkanes with C 1 -C 4 in the alkyl radical, for example bisphenol A, can also be used. They are not split under the process conditions and can thus be converted directly into polycarbonates. Based on pure raw materials, these are almost colorless and do not require any additional cleaning steps.

Die Katalysatoren werden in Konzentrationen von etwa 0,001 - 20 Gew.-%, bezogen auf die gesamte Menge des Reaktionsgutes, angewendet. Das Gewichtsverhältnis von Dialkylcarbonat : Phenol kann in weiten Grenzen schwanken und zwischen etwa 1:99 und 99:1, vorzugsweise 1:9 und 9:1 liegen. Von diesem Verhältnis hängt es ab, ob im Endprodukt Alkylphenylcarbonat oder Diarylcarbonat überwiegt.The catalysts are used in concentrations of about 0.001-20% by weight, based on the total amount of the reaction mixture. The weight ratio of dialkyl carbonate: phenol can vary within wide limits and is between about 1:99 and 99: 1, preferably 1: 9 and 9: 1. It depends on this ratio whether alkylphenyl carbonate or diaryl carbonate predominates in the end product.

Ohne Schwierigkeit kann das neben Diarylcarbonat gebildete Alkylarylcarbonat durch Destillation abgetrennt und entweder mit frischem Phenol umgesetzt oder nach Abtrennung des Diarylcarbonats mit dem noch vorhandenen Phencl weiterreagieren.The alkylaryl carbonate formed in addition to diaryl carbonate can be separated off by distillation without difficulty and either reacted with fresh phenol or, after the diaryl carbonate has been separated off, can react further with the phencl still present.

Die Reaktionstemperaturen liegen vorzugsweise im Bereich von 50 - 250°C, besonders bevorzugt im Bereich von 100 - 200°C. Vorteilhafterweise wird bei einem Druck von 1 Torr bis 20 Atm abs, vorzugsweise 1 - 5 Atm gearbeitet.The reaction temperatures are preferably in the range from 50 to 250 ° C., particularly preferably in the range from 100 to 200 ° C. It is advantageous to work at a pressure of 1 torr to 20 atm abs, preferably 1-5 atm.

Lösungsmittel wie aliphatische oder aromatische Kohlenwasserstoffe können mitverwendet werden.Solvents such as aliphatic or aromatic hydrocarbons can also be used.

Eine bevorzugte Verfahrensweise besteht darin, das Umesterungsgemisch an einer längeren Kolonne auf die gewünschte Reaktionstemperatur zu bringen, während der Alkohol über Kopf in dem Maße, wie er im Reaktionsgut freigesetzt wird, gegebenenfalls mit Hilfe eines inerten Gasstroms abgetrennt wird.A preferred procedure is to bring the transesterification mixture to the desired reaction temperature in a longer column, while the alcohol is removed overhead, to the extent that it is released in the reaction mixture, if appropriate with the aid of an inert gas stream.

In einer anderen Verfahrensvariante wird überschüssiges Dialkylcarbonat durch eine Schmelze des umzusetzenden Phenols geleitet, während ein aus dem Alkohol und Dialkylcarbonat bestehendes Gemisch laufend abdestilliert. Die Trennung der Komponenten kann in einem separaten Schritt nach üblichen Methoden erfolgen.In another process variant, excess dialkyl carbonate is passed through a melt of the phenol to be reacted, while a mixture consisting of the alcohol and dialkyl carbonate is continuously distilled off. The components can be separated in a separate step using customary methods.

Die Ergebnisse beider Verfahrensweisen unterscheiden sich nicht wesentlich.The results of both procedures do not differ significantly.

Die Verfahrensprodukte können als Ausgangsstoffe zur Herstellung von Polycarbonaten nach bekannten Verfahren oder von Pflanzenschutzmitteln verwendet werden.The process products can be used as starting materials for the production of polycarbonates by known processes or of crop protection agents.

Beispiel 1example 1

  • a) In einer 2,9 m hohen, mit Glasringen beschickten verspiegelten Füllkörperkolonne werden 470 g (5 Mol) Phenol, 90 g (1 Mol) Dimethylcarbonat, 50 g n-Heptan und 5,7 g Diphenoxydibutylzinn zum Sieden erhitzt. Durch Eintropfen von Heptan wird die Innentemperatur bei 1550C gehalten. Ein Gemisch von Methanol und Heptan wird bei 59,5 - 60°C über Kopf destilliert. In dem Maße, wie die Reaktion voranschreitet, wird weiteres Dimethylcarbonat im unteren Kolonnendrittel eingetropft. Insgesamt werden so innerhalb von 30 h 315 g = 3,5 Mol Dimethylcarbonat eingesetzt. Etwa während der Reaktion abgespaltenes Kohlendioxid wird durch einen schwachen Stickstoffstrom in einer mit n-Natronlauge gefüllten Waschflasche absorbiert. Das Reaktionsgut wird über eine 1,1 m hohe Kolonne fraktioniert. Nach einem aus Methanol, Dimethylcarbonat und Heptan bestehenden Vorlauf gehen bei 80 - 87°C/15 Torr 313 g (3,33 Mol) unumgesetztes Phenol, bei 95 - 97°C/13 Torr 118 g (0,78 Mol) Methylphenylcarbonat (
    Figure imgb0006
    D 1,4970) und nach Entfernen der Kolonne bei 165 - 172°C/13 Torr 90 g (0,44 Mol) Lristallines Diphenylcarbonat über. Somit beträgt die Ausbeute, bezogen auf umgesetztes Phenol, 98,5 % d. Th. In der Waschflasche sind nach der analytischen CO2-Bestimmung 0,011 Mol Kohlendioxid absorbiert, das entspricht einem Verlust von 0,9 % des eingesetzten Carbonats.
    a) 470 g (5 mol) of phenol, 90 g (1 mol) of dimethyl carbonate, 50 g of n-heptane and 5.7 g of diphenoxydibutyltin are heated to boiling in a 2.9 m high, mirrored packed column loaded with glass rings. The internal temperature is kept at 155 ° C. by dropping heptane. A mixture of methanol and heptane is distilled overhead at 59.5-60 ° C. As the reaction progresses, further dimethyl carbonate is added dropwise in the lower third of the column. In total, 315 g = 3.5 mol of dimethyl carbonate are thus used within 30 h. Carbon dioxide that is released during the reaction is absorbed by a weak stream of nitrogen in a wash bottle filled with n-sodium hydroxide solution. The reaction mixture is fractionated over a 1.1 m high column. According to one of methanol, dimethyl carbonate and heptane existing preprocessing go at 80-87 ° C / 15 torr 313 g (3.33 moles) of unreacted phenol, at 95-13 Torr 97 ° C / 118 g (0.78 mol) of ethyl phenyl carbonate M (
    Figure imgb0006
    D 1.4970) and after removal of the column at 165-172 ° C./13 Torr 90 g (0.44 mol) of crystalline diphenyl carbonate. Thus, the yield, based on the phenol converted, is 98.5% of theory. Th. According to the analytical CO 2 determination, 0.011 mol of carbon dioxide is absorbed in the wash bottle, which corresponds to a loss of 0.9% of the carbonate used.
  • b) Ein Gemisch von 45,6 g (0,2 Mol) 2,2-Bis-(4-hydroxyphenyl)-propan, 47,1 g (0,22 Mol) des nach a) hergestellten Diphenylcarbonats und 0,008 g Natriummethylat wird langsam bis auf 210° unter 20 Torr erhitzt, wobei. die Hauptmenge des abgespaltenen Phenols abdestilliert. Dann wird der Druck auf 0,2 Torr ermäßigt und die Temperatur während einer Stunde auf 250 C und während zweier weiterer Stunden auf 280°C erhöht, bis die Schmelze so zäh geworden ist, daß sie sich kaum mehr rühren läßt. Beim Abkühlen erhält man einen klaren, farblosen, elastischen Kunststoff, aus dessen Schmelze Formkörper mit hervorragenden Festigkeitseigenschaften hergestellt werden können.b) A mixture of 45.6 g (0.2 mol) of 2,2-bis (4-hydroxyphenyl) propane, 47.1 g (0.22 mol) of the product according to a) Issued diphenyl carbonate and 0.008 g of sodium methylate is slowly heated to 210 ° below 20 torr, whereby. the majority of the phenol cleaved off. The pressure is then reduced to 0.2 torr and the temperature is raised to 250.degree. C. for one hour and to 280.degree. C. for another two hours until the melt has become so tough that it can hardly be stirred. When cooling, a clear, colorless, elastic plastic is obtained, from the melt of which molded articles with excellent strength properties can be produced.
Beispiel 2Example 2

An einer 2,3 m hohen verspiegelten Füllkörperkolonne werden 470 g (5 Mol) Phenol, 118 g (1 Mol) Diäthylcarbonat, 200 g Xylol und 4 g Dimethoxydibutylzinn zum Sieden erhitzt. Über Kopf geht bei 78 - 80°C Äthanol über. In den unteren Kolonnenteil wird so viel Diäthylcarbonat eingetropft, daß die Innentemperatur bei 157 - 158°C gehalten wird. Insgesamt werden im Laufe von 28 h 2,5 Mol Diäthylcarbonat eingebracht, während 1,8 Mol Äthanol abdestilliert werden. Ein schwacher Stickstoffstrom führt das Abgas durch eine mit n-Natronlauge beschickte Waschflasche. Das Reaktionsgut wird über eine 1 m Kolonne fraktioniert. Nach Abdestillieren von Xylol und nichtumgesetztem Diäthylcarbonat gehen bei 76 - 80°C/13 Torr 302 g Phenol über. Der Rückstand weist eine schwach graue Färbung auf. Bei 102 - 107°C/12 Torr destillieren Äthylphenylcarbonat (113 g = 0,68 Mol;

Figure imgb0007
) und nach Entfernung der Kolonne bei 165 - 170°C/13 Torr 110 g (0,b4 Mol) Diphenylcarbonat. Die Ausbeute, bezogen auf umgesetztes Phenol, beträgt über 99 % d. Th. Während der Reaktion werden 0,005 Mol C02 abgespalten, das entspricht einem Verlust von 0,41 % Carbonat.470 g (5 mol) of phenol, 118 g (1 mol) of diethyl carbonate, 200 g of xylene and 4 g of dimethoxydibutyltin are heated to boiling on a 2.3 m high mirrored packed column. Ethanol passes overhead at 78 - 80 ° C. So much diethyl carbonate is dropped into the lower part of the column that the internal temperature is kept at 157-158 ° C. A total of 2.5 moles of diethyl carbonate are introduced over the course of 28 hours, while 1.8 moles of ethanol are distilled off. A weak stream of nitrogen leads the exhaust gas through a wash bottle charged with n-sodium hydroxide solution. The reaction mixture is fractionated over a 1 m column. After xylene and unreacted diethyl carbonate have been distilled off, 302 g of phenol pass over at 76-80 ° C./13 torr. The residue has a pale gray color. At 102 - 107 ° C / 12 Torr distill ethylphenyl carbonate (113 g = 0.68 mol;
Figure imgb0007
) and after removing the column at 165 - 170 ° C / 13 Torr 110 g (0, b4 moles) diphenyl carbonate. The yield, based on the phenol converted, is over 99% of theory. Th. During the reaction, 0.005 mol of CO 2 are split off, which corresponds to a loss of 0.41% carbonate.

Beispiel 3 (Vergleichsbeispiel)Example 3 (comparative example)

In der gleichen Weise, wie in Beispiel 2 beschrieben, werden 5 Mol Phenol mit 2,5 Mol Diäthylcarbonat unter Verwendung von 4 g Titantetrabutylat als Katalysator innerhalb 28 h bei einer Innentemperatur von 157 - 158°C umgesetzt.In the same way as described in Example 2, 5 mol of phenol are reacted with 2.5 mol of diethyl carbonate using 4 g of titanium tetrabutylate as catalyst within 28 hours at an internal temperature of 157-158 ° C.

298 g Phenol werden zurückgewonnen. 149 g (0,9 Mol) Äthylphenylcarbonat und 92 g (0,43 Mol) Diphenylcarbonat werden erhalten.298 g of phenol are recovered. 149 g (0.9 mol) of ethylphenyl carbonate and 92 g (0.43 mol) of diphenyl carbonate are obtained.

Die Ausbeute, bezogen auf umgesetztes Phenol, beträgt somit 96 % d. Th. Während der Reaktion werden 0,014 Mol C02 abgespalten. Das entspricht einem Verlust an Carbonat von 1,05 %.The yield, based on the converted phenol, is thus 96% of theory. Th. During the reaction, 0.014 mol of CO 2 are split off. This corresponds to a loss of carbonate of 1.05%.

Das Reaktionsprodukt ist vor der Destillation tief rot-braun gefärbt. Auch nach der Destillation weist das Diphenylcarbonat noch einen rot-braunen Stich auf.The reaction product is colored deep red-brown before distillation. Even after the distillation, the diphenyl carbonate still shows a red-brown tinge.

Beispiel 4Example 4

In einer Apparatur wie im Beispiel 2 beschrieben werden 1880 g (20 Mol) Phenol, 300 g (2,54 Mol) Diäthylcarbonat und 20 g Tetrabutyldiphenoxystannoxan unter Überleiten von Stickstoff zum Sieden erhitzt, bis über Kopf bei 78-79,5°C Äthanol abdestilliert. Im unteren Kolonnenteil wird Diäthylcarbonat derart zugesetzt, daß die Sumpftemperatur bei 176°C - 178°C gehalten wird. Im Laufe von 25 h kommen insgesamt 644 g (8 Mol) Diäthylcarbonat zur Anwendung. 253 g (5,5 Mol) Äthanol werden abdestilliert. Nach Abdestillieren des nicht umgesetzten Diäthylcarbonats gehen bei 82 - 88°C/20 Torr 1339 g Phenol, bei 114 - 118oC/ 20 Torr 291 g (1,75 Mol) Äthylphenylcarbonat und 391 g (1,825 Mol) Diphenylcarbonat über. Die Ausbeute, bezogen auf umgesetztes Phenol, beträgt somit 98,5 % d. Th. Im Abgas werden 1,35 g (0,035 Mol) Kohlendioxid nachgewiesen, das entspricht einem Verlust von 1 % Carbonat..In an apparatus as described in Example 2, 1880 g (20 mol) of phenol, 300 g (2.54 mol) of diethyl carbonate and 20 g of tetrabutyldiphenoxystannoxane are passed over heated to boiling by nitrogen until ethanol was distilled off overhead at 78-79.5 ° C. In the lower part of the column, diethyl carbonate is added in such a way that the bottom temperature is kept at 176 ° C.-178 ° C. A total of 644 g (8 mol) of diethyl carbonate are used in the course of 25 hours. 253 g (5.5 mol) of ethanol are distilled off. C / 20 Torr 88 ° 1,339 g of phenol, at 114 - - After distilling off the unreacted Diäthylcarbonats go at 82,118 o C / 20 torr 291 g (1.75 mol) Äthylphenylcarbonat and 391 g (1.825 mol) of diphenyl carbonate over. The yield, based on the converted phenol, is thus 98.5% of theory. Th. 1.35 g (0.035 mol) of carbon dioxide are detected in the exhaust gas, which corresponds to a loss of 1% carbonate.

Claims (5)

1. Verfahren zur Herstellung von aromatischen Kohlensäureestern durch Umesterung von Dialkylcarbonaten mit Phenolen unter Abspaltung von Alkoholen in Gegenwart von Umesterungskatalysatoren, dadurch gekennzeichnet, daß man als Umesterungskatalysatoren Organozinnverbindungen verwendet.1. A process for the preparation of aromatic carbonic acid esters by transesterification of dialkyl carbonates with phenols with the elimination of alcohols in the presence of transesterification catalysts, characterized in that organotin compounds are used as transesterification catalysts. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Organozinnverbindungen Verbindungen der allgemeinen Formel (I)
Figure imgb0008
in der Y für einen Rest
Figure imgb0009
OH oder OR2 steht, wobei R2 einen Alkylrest mit C1-C12, einen Arylrest mit C6-C12 oder einen Alkylarylrest mit C7-C13 bedeutet, und
R 1 die Bedeutung von R2 hat, und x eine ganze Zahl von 1 - 3 bedeutet, oder Dialkylzinnoxide mit jeweils 1-12 C-Atome im Alkylrest oder zinnorganische Verbindungen der allgemeinen Formel (II)
Figure imgb0010
in der R 3 und R 4 gleich oder verschieden die oben angegebene Bedeutung von R2 haben, und R5 die Bedeutung von R2 hat oder für einen Rest OR6 steht, in dem R6 die Bedeutung von R 2 hat,
verwendet werden.
2. The method according to claim 1, characterized in that as organotin compounds of the general formula (I)
Figure imgb0008
in the Y for a rest
Figure imgb0009
Is OH or OR 2 , where R 2 is an alkyl radical with C 1 -C 12 , an aryl radical with C 6 -C 12 or an alkylaryl radical with C 7 -C 13 , and
R 1 has the meaning of R 2 , and x is an integer from 1 to 3, or dialkyltin oxides each having 1-12 C atoms in the alkyl radical or organotin compounds of the general formula (II)
Figure imgb0010
in the R 3 and R 4, identical or different, have the meaning of R 2 given above, and R 5 has the meaning of R 2 or represents a radical OR 6 in which R 6 has the meaning of R 2 ,
be used.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß als Organozinnverbindungen Trimethylzinnacetat, Triäthylzinnbenzoat, Tributylzinnacetat, Triphenylzinnacetat, Dibutylzinndiacetat, Dibutylzinndilaurat, Dioctylzinndilaurat, Dibutylzinnadipinat, Methoxytributylzinn, Methoxytriphenylzinn, Phenoxytriäthylzinn, Dimethoxydibutylzinn, Dimethylzinnglykolat, Diäthoxydibutylzinn, Diphenoxydibutylzinn. Dimethoxydiphenylzinn, Triäthylzinnhydroxid, Triphenylzinnhydroxid, Hexaäthylstannoxan, Hexabutylstannoxan, Tetrabutyldiphenoxystannoxan, Dibutylzinnoxid oder Dioctylzinnoxid eingesetzt werden.3. The method according to claims 1 and 2, characterized in that the organotin compounds trimethyltin, Triäthylzinnbenzoat, tributyltin acetate, triphenyltin acetate, dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, Dibutylzinnadipinat, Methoxytributylzinn, Methoxytriphenylzinn, Phenoxytriäthylzinn, dimethoxydibutyltin, Dimethylzinnglykolat, Diäthoxydibutylzinn, Diphenoxydibutylzinn. Dimethoxydiphenyltin, triethyltin hydroxide, triphenyltin hydroxide, hexaethylstannoxane, hexabutylstannoxane, tetrabutyldiphenoxystannoxane, dibutyltin oxide or dioctyltin oxide can be used. 4. Verfahren nach den Ansprüchen 1 - 3, dadurch gekennzeichnet, daß die Organozinnverbindungen in Mengen von 0,001 - 20 Gew.-%, bezogen auf die Gesamtmenge, verwendet werden.4. Process according to claims 1-3, characterized in that the organotin compounds are used in amounts of 0.001-20% by weight, based on the total amount. 5. Verfahren nach den Ansprüchen 1 - 4, dadurch gekennzeichnet, daß die Umesterung bei Temperaturen von 50 - 250°C erfolgt.5. Process according to claims 1-4, characterized in that the transesterification takes place at temperatures of 50 - 250 ° C.
EP78100570A 1977-08-10 1978-08-02 Process for the preparation of aromatic carbonic acid esters Expired EP0000879B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2736062 1977-08-10
DE19772736062 DE2736062A1 (en) 1977-08-10 1977-08-10 Process for the preparation of aromatic carbonic acid esters

Publications (2)

Publication Number Publication Date
EP0000879A1 true EP0000879A1 (en) 1979-03-07
EP0000879B1 EP0000879B1 (en) 1980-08-20

Family

ID=6016076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100570A Expired EP0000879B1 (en) 1977-08-10 1978-08-02 Process for the preparation of aromatic carbonic acid esters

Country Status (4)

Country Link
EP (1) EP0000879B1 (en)
JP (1) JPS5448733A (en)
DE (2) DE2736062A1 (en)
IT (1) IT1106869B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338760A2 (en) * 1988-04-16 1989-10-25 Mitsui Petrochemical Industries, Ltd. Process for production of aromatic carbonate compound
GB2255972A (en) * 1991-04-12 1992-11-25 Davy Res & Dev Ltd Production of diaryl carbonates.
US5344954A (en) * 1992-08-13 1994-09-06 Bayer Aktiengesellschaft Process for the preparation of diaryl carbonates
US5627301A (en) * 1994-03-29 1997-05-06 Council Of Scientific & Industrial Research Process for the preparation of mono-alkylcarbonate of bisphenols
DE102007044033A1 (en) 2007-09-14 2009-03-19 Bayer Materialscience Ag Process for the preparation of diaryl or alkylaryl carbonates from dialkyl carbonates
EP2062868A2 (en) 2007-11-20 2009-05-27 Bayer MaterialScience AG Process for purifying diaryl carbonates
US7629485B2 (en) 2004-12-21 2009-12-08 Asahi Kasei Chemicals Corporation Process for producing aromatic carbonate
DE102008029514A1 (en) 2008-06-21 2009-12-24 Bayer Materialscience Ag Process for the preparation of diaryl carbonates from dialkyl carbonates
EP2239249A1 (en) 2009-04-08 2010-10-13 Bayer MaterialScience AG Method for producing diarylcarbonates or arylalkylcarbonates from dialkylcarbonates
EP2322261A2 (en) 2009-11-14 2011-05-18 Bayer MaterialScience AG Method for cleaning dialkyl carbonates
US8003817B2 (en) 2007-05-25 2011-08-23 Bayer Materialscience Ag Process for the preparation of diaryl carbonates or arylalkyl carbonates from dialkyl carbonates
DE102010042937A1 (en) 2010-10-08 2012-04-12 Bayer Materialscience Aktiengesellschaft Process for the preparation of diaryl carbonates from dialkyl carbonates
EP2650278A1 (en) 2012-04-11 2013-10-16 Bayer MaterialScience AG Method for manufacturing diaryl carbonates from dialkyl carbonates
WO2014095776A1 (en) 2012-12-18 2014-06-26 Bayer Materialscience Ag Method for producing diaryl carbonate
US9284254B2 (en) 2012-09-20 2016-03-15 Sabic Global Technologies B.V. Process for the continuous manufacture of aryl alkyl carbonate and/or diaryl carbonate using vapor recompression

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4403056A (en) * 1980-02-11 1983-09-06 Stauffer Chemical Company Carbonate esters, carbonate ester compositions, and plasticized compositions
US4410464A (en) * 1982-03-15 1983-10-18 General Electric Company Diaryl carbonate process
US4609501A (en) * 1983-12-27 1986-09-02 General Electric Company Process for the preparation of aromatic carbonates
JPH0662512B2 (en) * 1986-05-27 1994-08-17 ダイセル化学工業株式会社 Method for producing diphenyl carbonate
DE4006520A1 (en) * 1990-03-02 1991-09-05 Bayer Ag Di:aryl or alkyl carbonate prodn. from alkyl carbonate - using polymeric hydroxy-stannoxane as ester exchange catalyst for high activity and selectivity
TW310322B (en) * 1994-05-25 1997-07-11 Nippon Catalytic Chem Ind
JP3528997B2 (en) * 1995-12-15 2004-05-24 日本ジーイープラスチックス株式会社 Method for producing polycarbonate
US5807964A (en) * 1997-03-17 1998-09-15 General Electric Company Process for the preparation of polycarbonates
US6093842A (en) * 1998-09-25 2000-07-25 General Electric Company Process for continuous production of carbonate esters
WO2005123657A1 (en) 2004-06-17 2005-12-29 Asahi Kasei Chemicals Corporation Process for producing aromatic carbonate
CN100532347C (en) 2004-07-13 2009-08-26 旭化成化学株式会社 Industrial process for producing aromatic carbonate
EA010033B1 (en) 2004-07-14 2008-06-30 Асахи Касеи Кемикалз Корпорейшн Process for producing aromatic carbonate on industrial scale
US20070255069A1 (en) 2004-07-14 2007-11-01 Shinsuke Fukuoka Process for Industrially Producing an Aromatic Carboante
US7812189B2 (en) 2004-08-25 2010-10-12 Asahi Kasei Chemicals Corporation Industrial process for production of high-purity diphenyl carbonate
EA010425B1 (en) 2004-10-14 2008-08-29 Асахи Касеи Кемикалз Корпорейшн Process for production of high-purity diaryl carbonates
RU2372322C2 (en) 2004-12-24 2009-11-10 Асахи Касеи Кемикалз Корпорейшн Method of producing aromatic carbonate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714234A (en) * 1968-07-02 1973-01-30 Rohm & Haas Catalysts and esterification process
DE2528412A1 (en) * 1974-06-25 1976-01-08 Snam Progetti PROCESS FOR THE PRODUCTION OF AROMATIC CARBONATES
DE2552907A1 (en) * 1974-11-25 1976-05-26 Anic Spa PROCESS FOR THE PRODUCTION OF AROMATIC CARBONATES
DE2725255A1 (en) * 1976-06-18 1977-12-22 Nitto Chemical Industry Co Ltd PROCESS FOR THE PRODUCTION OF DIMETHYLAMINOAETHYLMETHACRYLATE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714234A (en) * 1968-07-02 1973-01-30 Rohm & Haas Catalysts and esterification process
DE2528412A1 (en) * 1974-06-25 1976-01-08 Snam Progetti PROCESS FOR THE PRODUCTION OF AROMATIC CARBONATES
DE2552907A1 (en) * 1974-11-25 1976-05-26 Anic Spa PROCESS FOR THE PRODUCTION OF AROMATIC CARBONATES
DE2725255A1 (en) * 1976-06-18 1977-12-22 Nitto Chemical Industry Co Ltd PROCESS FOR THE PRODUCTION OF DIMETHYLAMINOAETHYLMETHACRYLATE

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0338760A2 (en) * 1988-04-16 1989-10-25 Mitsui Petrochemical Industries, Ltd. Process for production of aromatic carbonate compound
EP0338760A3 (en) * 1988-04-16 1990-01-10 Mitsui Petrochemical Industries, Ltd. Process for production of aromatic carbonate compound
AU619823B2 (en) * 1988-04-16 1992-02-06 Mitsui Chemicals, Inc. Process for production of aromatic carbonate compound
GB2255972A (en) * 1991-04-12 1992-11-25 Davy Res & Dev Ltd Production of diaryl carbonates.
US5344954A (en) * 1992-08-13 1994-09-06 Bayer Aktiengesellschaft Process for the preparation of diaryl carbonates
US5627301A (en) * 1994-03-29 1997-05-06 Council Of Scientific & Industrial Research Process for the preparation of mono-alkylcarbonate of bisphenols
US7629485B2 (en) 2004-12-21 2009-12-08 Asahi Kasei Chemicals Corporation Process for producing aromatic carbonate
US8003817B2 (en) 2007-05-25 2011-08-23 Bayer Materialscience Ag Process for the preparation of diaryl carbonates or arylalkyl carbonates from dialkyl carbonates
DE102007044033A1 (en) 2007-09-14 2009-03-19 Bayer Materialscience Ag Process for the preparation of diaryl or alkylaryl carbonates from dialkyl carbonates
EP2062868A2 (en) 2007-11-20 2009-05-27 Bayer MaterialScience AG Process for purifying diaryl carbonates
DE102007055266A1 (en) 2007-11-20 2009-05-28 Bayer Materialscience Ag Process for the purification of diaryl carbonates
DE102008029514A1 (en) 2008-06-21 2009-12-24 Bayer Materialscience Ag Process for the preparation of diaryl carbonates from dialkyl carbonates
US9040732B2 (en) 2008-06-21 2015-05-26 Bayer Materialscience Ag Process for preparing diaryl carbonates from dialkyl carbonates
DE102009016853A1 (en) 2009-04-08 2010-10-14 Bayer Materialscience Ag Process for the preparation of diaryl or alkylaryl carbonates from dialkyl carbonates
US8952189B2 (en) 2009-04-08 2015-02-10 Bayer Materialscience Ag Process for preparing diaryl carbonates or alkyl aryl carbonates from dialkyl carbonates
EP2239249A1 (en) 2009-04-08 2010-10-13 Bayer MaterialScience AG Method for producing diarylcarbonates or arylalkylcarbonates from dialkylcarbonates
DE102009053370A1 (en) 2009-11-14 2011-05-19 Bayer Materialscience Ag Process for the purification of dialkyl carbonates
EP2322261A2 (en) 2009-11-14 2011-05-18 Bayer MaterialScience AG Method for cleaning dialkyl carbonates
DE102010042937A1 (en) 2010-10-08 2012-04-12 Bayer Materialscience Aktiengesellschaft Process for the preparation of diaryl carbonates from dialkyl carbonates
EP2457891A1 (en) 2010-10-08 2012-05-30 Bayer MaterialScience AG Method for manufacturing diaryl carbonates from dialkyl carbonates
US8304509B2 (en) 2010-10-08 2012-11-06 Bayer Intellectual Property Gmbh Process for preparing diaryl carbonates from dialkyl carbonates
EP2650278A1 (en) 2012-04-11 2013-10-16 Bayer MaterialScience AG Method for manufacturing diaryl carbonates from dialkyl carbonates
US9284254B2 (en) 2012-09-20 2016-03-15 Sabic Global Technologies B.V. Process for the continuous manufacture of aryl alkyl carbonate and/or diaryl carbonate using vapor recompression
WO2014095776A1 (en) 2012-12-18 2014-06-26 Bayer Materialscience Ag Method for producing diaryl carbonate
US9765012B2 (en) 2012-12-18 2017-09-19 Covestro Deutschland Ag Method for producing diaryl carbonate

Also Published As

Publication number Publication date
IT1106869B (en) 1985-11-18
DE2736062A1 (en) 1979-02-22
DE2860235D1 (en) 1980-12-04
IT7850656A0 (en) 1978-08-08
EP0000879B1 (en) 1980-08-20
JPS5448733A (en) 1979-04-17

Similar Documents

Publication Publication Date Title
EP0000879B1 (en) Process for the preparation of aromatic carbonic acid esters
EP0000880B1 (en) Process for the preparation of aromatic carbonic acid esters
EP0582930B1 (en) Process for the preparation of diarylcarbonates
DE69814652T2 (en) METHOD FOR PRODUCING AROMATIC CARBONATES
DE3445552A1 (en) IMPROVED METHOD FOR PRODUCING AROMATIC CARBONATES
DE3445555A1 (en) IMPROVED METHOD FOR PRODUCING AROMATIC CARBONATES
DE2552907A1 (en) PROCESS FOR THE PRODUCTION OF AROMATIC CARBONATES
DE2528412A1 (en) PROCESS FOR THE PRODUCTION OF AROMATIC CARBONATES
DE3445553A1 (en) IMPROVED METHOD FOR PRODUCING AROMATIC CARBONATES
EP0654461A1 (en) Process for the preparation of diaryle carbonates
EP0001083A1 (en) Process for the preparation of dialkyl carbonates
EP0338760B1 (en) Process for production of aromatic carbonate compound
EP0039452B1 (en) Process for preparing aromatic polycarbonates
EP0444293B1 (en) Process for the preparation of carbonic acid diesters containing at least one aromatic ester group
DE1595446B2 (en) Process for the preparation of dihydroxy compounds containing carbonate radicals
EP0798329A2 (en) Two step process for the preparation of thermoplastic polycarbonate
EP0794168B1 (en) Process for the preparation of diarylcarbonates and from these obtainable polycarbonates
DE2749082A1 (en) METHOD FOR PRODUCING ORGANO TIN COMPOUNDS
EP0560159A1 (en) Process for the preparation of aromatic carbonates
EP0040741A1 (en) Process for the preparation of chloroformic-acid aryl esters
EP0032245B1 (en) Process for the preparation of aromatic chloroformates
DE1227471B (en) Process for the preparation of diaryl carbonates
EP0048927A2 (en) Process for the preparation of N,O-disubstituted urethanes, and their use as raw materials in the manufacture of isocyanates
CH629214A5 (en) METHOD FOR PRODUCING PHOSPHORIC ACID ESTERCHLORIDES AND PHOSPHONIC ACID ESTERCHLORIDES.
DE1570546A1 (en) Process for producing high molecular weight thermoplastic polycarbonates by the transesterification process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 2860235

Country of ref document: DE

Date of ref document: 19801204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910729

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910805

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920802

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940714

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940831

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT