EP0000554B1 - Procédé de préparation d'oxirannes substitués par des groupes halogénoalcoyle - Google Patents

Procédé de préparation d'oxirannes substitués par des groupes halogénoalcoyle Download PDF

Info

Publication number
EP0000554B1
EP0000554B1 EP78100456A EP78100456A EP0000554B1 EP 0000554 B1 EP0000554 B1 EP 0000554B1 EP 78100456 A EP78100456 A EP 78100456A EP 78100456 A EP78100456 A EP 78100456A EP 0000554 B1 EP0000554 B1 EP 0000554B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
dichloro
dibromo
substituted
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100456A
Other languages
German (de)
English (en)
Other versions
EP0000554A1 (fr
Inventor
Gebhard Dr. Rauleder
Hermann Dr. Seifert
Hubert Dr. Kastenhuber
Günter Dr. Prescher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Evonik Operations GmbH
Original Assignee
Bayer AG
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG, Degussa GmbH filed Critical Bayer AG
Publication of EP0000554A1 publication Critical patent/EP0000554A1/fr
Application granted granted Critical
Publication of EP0000554B1 publication Critical patent/EP0000554B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/02Preparation of halogenated hydrocarbons by addition of halogens to unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof

Definitions

  • the present invention enters an improved process for the preparation of haloalkyl substituted oxiranes from haloalkyl substituted olefins and percarboxylic acids.
  • Haloalkyl-substituted oxiranes are used in the field of paints and plastics and thus organic intermediates.
  • Haloalkyl-substituted olefins can therefore not be easily epoxidized with percarboxylic acids. Due to the low reactivity of their double bond, high temperatures and long reaction times are required, which gives rise to the formation of undesirable by-products such as dihydroxy and hydroxyacyloxy derivatives of the starting products. (S.N. Lewis in R.L. Augustin, "Oxidation", vol. I, page 233, in particular 3.6-1.1, Marcel Dekker, New York 1969).
  • the structure and mode of preparation of the percarboxylic acid used is of great importance, in particular with regard to the type and implementation of the reaction between a haloalkyl-substituted olefin and a percarboxylic acid.
  • the mineral acid present in the reaction mixture catalyzes the splitting of the primarily formed oxirane (D. Swern "Organic Peroxides", Wiley Intersciense 1971, Vol. 2, p. 436), which is particularly important for inert olefins, such as halogenoalkyl-substituted olefins, which require high temperatures and long reaction times when they are reacted. can lead to loss of oxirane.
  • Performic acid can be prepared from hydrogen peroxide and formic acid without an additional catalyst (SN Lewis in RL Augustin, "Oxidation", Vol. 1, p. 217, first paragraph, Marcel Dekker, New York 1969).
  • SN Lewis in RL Augustin, "Oxidation", Vol. 1, p. 217, first paragraph, Marcel Dekker, New York 1969 did not give the corresponding epoxide only in low yields. So it was for the epoxidation of 3,4-dichlorobutene- (1) a performic acid produced from 90% formic acid and 85% hydrogen peroxide.
  • a process for the production of aliphatic chlorine epoxides by reacting an allyl chlorohydrocarbon which has a chlorine atom in the vicinity of the double bond with an organic per compound which is free from inorganic impurities has recently become known (DAS 1 056 596).
  • the per compounds used here are "pure peracetic acid, perpropionic acid or acetaldehyde monoperacetate in a mixture with acetaldehyde and / or acetone".
  • DAS 1 056 596 Epoxidation according to the DAS 1 056 596 process of allyl-chlorine-substituted olefins with acetaldehyde monoperacetate yields the corresponding oxiranes in yields based on the per-compound of between 17% and 56%.
  • DAS 1 056596 columns 5 to 7, lines 35 ff., Examples 1, 3, 4 and 6).
  • peracetic acid and perpropionic acid used for this epoxidation process are used dissolved in an inert organic solvent.
  • typical inert solvents in this process include acetone, ethyl acetate, butyl acetate, and dibutyl ether (U.S. Pat. No. 3,150,154, column 3, lines 1-3).
  • Allyl chlorohydrocarbons can be epoxidized with the peracids produced according to the process of DAS 1 056 596; however, the yields of oxiranes are low; the peracid conversion is incomplete. In the examples given, it is only about 90% and the purity of the isolated oxiranes is insufficient for industrial use.
  • the DAS 1 056 596 in Example 5, column 7, lines 5 ff. Describes the epoxidation of 3-chloro-1-butene with a solution of peracetic acid in acetone. The peracid conversion is 91% after a reaction time of ten hours. The oxirane is isolated with a purity of 90.5% in 68% yield.
  • a chloroalkyl- or bromoalkyl-substituted monoolefin with at least 4 carbon atoms is preferably used.
  • 1,4-dichloro-2-butene, 1,4-dibromo-2-butene and 3,4-dichloro-1-butene are very particularly suitable for reaction with percarboxylic acids by the process according to the invention.
  • chlorinated hydrocarbons can be used as solvents, such as methylene chloride, chloroform, carbon tetrachloride, 1-chloroethane, 1,2-dichloroethane, 1,1-dichloroethane, 1,12,2-tetrachloroethane, 1-chloropropane, 2-chloropropane, 1 , 2-dichloropropane, 1,3-dichloropropane, 2,3-dichloropropane, 1,2,3-trichloropropane, 1,1,2,3-tetrachloropropane, butyl chloride, 1,2-dichlorobutane, 1,4-dichlorobutane, 2 , 3-dichlorobutane, 1,3-dichlorobutane, 1,2,3,4-tetrachlorobutane, tert.
  • solvents such as methylene chloride, chloroform, carbon tetrachloride, 1-chloroethan
  • Preferred solvents are methylene chloride, chloroform, carbon tetrachloride and 1,2-dichloropropane.
  • a particularly preferred solvent is 1,2-dichloropropane.
  • Solvent mixtures of chlorinated hydrocarbons can also be used.
  • Peracids which can be used according to the invention are perpropionic acid, perbutyric acid and perisobutyric acid. Perpropionic acid and perisobutyric acid are preferably used. Perpropionic acid is particularly preferred.
  • the mineral acid-free peracids can be prepared in one of the organic solvents mentioned, for example by the process described in DOS 2 262 970. -
  • the inventive method is carried out in a temperature range of 30-100 ° C. It is preferred to work at 60-80 ° C, particularly preferably at 65-75 ° C. In special cases, the specified temperatures can also be exceeded or fallen short of.
  • the reaction can also be carried out with the formation of a so-called temperature gradient, which generally increases with the progress of the reaction.
  • the reaction can also be carried out in such a way that a gradient of falling temperature is formed as the reaction proceeds.
  • the molar ratio of olefin to peracid is 1.1: 1 to 10: 1.
  • a molar ratio of 1.25: 1 to 5: 1 is preferably used. It is very particularly advantageous to use a molar ratio of 1.5 to 3.0 mol of olefin per mole of peracid.
  • the method according to the invention can be carried out at a wide variety of pressures. Generally one works at normal pressure; however, the process can also be carried out under negative or positive pressure.
  • the water content of the percarboxylic acid used for the epoxidation is up to 5% by weight.
  • a percarboxylic acid with a water content of up to 2% by weight is suitable.
  • a percarboxylic acid solution which contains less than 1% by weight of water is preferably used.
  • a water content of less than 0.1% by weight is particularly preferred.
  • the hydrogen peroxide content of the percarboxylic acid used is up to 2% by weight. It is advantageous to work with a content of less than 1% by weight. It is particularly advantageous to carry out the reaction with a percarboxylic acid solution which has a hydrogen peroxide content of less than 0.3%.
  • the mineral acid content of the percarboxylic acid solution being implemented is below 50 ppm.
  • a mineral acid content of less than 10 ppm is particularly advantageous.
  • the reaction can be carried out batchwise or continuously in the devices customary for reactions of this type, such as stirred tanks, boiling reactors, tubular reactors, loop reactors or loop reactors.
  • Glass, stainless steel or enamelled material can be used as materials for carrying out the processes.
  • Heavy metal ions in the reaction mixture catalyze the decomposition of the percarboxylic acid. Substances are therefore generally added to the percarboxylic acid solution which inactivate the heavy metal ions through complex formation.
  • Known substances of this type are gluconic acid, ethylenediaminetetraacetic acid, sodium silicate, sodium pyrophosphate, sodium hexametaphosphate, disodium dimethyl pyrophosphate, or Na 2 (2-ethylhexyl), (P, 0 1 ,) 2 (DAS 1 056 596, column 4, line 60 ff.) .
  • the haloalkyl-substituted olefin can be introduced into the device used for the reaction in various ways. It can be added to the reactor together with the percarboxylic acid solution, or the two components can be fed to the reactor separately. It is also possible to feed the olefin and the percarboxylic acid solution into the reactor unit at various points. When using several reactors connected in cascade, it may be expedient to introduce all of the olefin into the first reactor. However, the olefin can also be divided between the various reactors.
  • the heat of reaction is dissipated by internal or external coolers.
  • the reaction can also be carried out under reflux (boiling reactors).
  • the reaction is advantageously carried out with as complete a conversion of the percarbonate as possible acid made. In general, more than 95 mol% of the percarboxylic acid is reacted. It is expedient to convert more than 98 mol% of peracid.
  • the reaction mixture is worked up in a manner known per se, e.g. B. by distillation. It is particularly advantageous to extract the reaction mixture with water before working up by distillation in order to separate off the carboxylic acid corresponding to the percarboxylic acid formed during the reaction.
  • the extraction can be carried out in conventional extractors such as mixer-separators, sieve tray extractors, pulsating sieve tray columns, turntable extractors or extraction centrifuges.
  • an approximately 20% by weight perpropionic acid solution in 1,2-dichloropropane is added with stirring to the triple-molar amount of halogenoalkyl-substituted olefin, which is thermostated at 70 ° C.
  • the perpropionic acid solution contains less than 10 ppm mineral acid; it has a water content of less than 0.1% and a hydrogen peroxide content of less than 0.3%.
  • To complex heavy metal ions about 0.05% by weight of Na 5 (2-ethylhexyl) 5 (P 3 O 10 ) 2 was added to the perpropionic acid before the reaction.
  • the progress and the end of the reaction are checked by taking samples from the reaction solution at intervals and determining the content of percarboxylic acid still present by titration. After the reaction has ended, the reaction mixture is cooled and washed three times with the same amount of water to remove the propionic acid. The propionic acid-free reaction mixture is then fractionated.
  • reaction mixture was washed several times with water to remove the propionic acid, 1,2-dichloropropane was distilled off and then fractionated in a 40 cm packed column filled with 4 mm glass of Rasching rings. 18.5 g of 2- (1,2-dichloroethyl) oxirane with a purity of 99.4% were isolated.
  • This reaction system was fed 2,137.5 g perpropionic acid as a 20% solution in 1,2-dichloropropane (4.75 mol) and 1,781.25 g (14.25 mol) 1,4-dichloro-2-butene per hour, which corresponded to an average residence time of about 8 hours. Under these reaction conditions, 94.2% of the perpropionic acid was converted. The selectivity of the 2,3-bis (chloromethyl) oxirane formed was 92%, based on the perpropionic acid used.
  • the reaction mixture obtained behind the third reactor had in the middle! following composition: 35.6% 1,2-dichloropropane, 31.4% 1,4-dichloro-2-butene, 15.7% 2,3-bis (chlor methyl) oxirane and 17% propionic acid.
  • This mixture was extracted in a pulsating sieve plate column with twice the amount of water to separate the propionic acid. Thereafter, the residual propionic acid content was less than 0.1%.
  • the reaction mixture obtained after this operation was separated on a distillation line. In a first column, 1,2-dichloropropane was distilled off in an amount of 1,395 g per hour.
  • the bottom product of this column which consisted essentially of starting material and oxirane, was separated in a second column under reduced pressure.
  • the top product was 1,235 g of 1,4-dichloro-2-butene per hour.
  • the bottom product of this column was freed from high boilers in a third column under reduced pressure. 606 g of 2,3-bis (chloromethyl) oxirane with a purity of over 99.9% were obtained as the top product per hour. This corresponds to a yield of 90.5%, based on the perpropionic acid used in the reaction system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (13)

1. Procédé de production d'oxiranes à substituants halogénalkyl à partir d'oléfines à substituants halogénalkyle et d'acides percarboxyliques, caractérisé en ce qu'on fait réagir une mono-oléfine à substituant chloralkyle ou bromalkyle de formule générale:
Figure imgb0016
dans laquelle:
R1 et R4 représentent, indépendamment l'un de l'autre, de l'hydrogène, un radical alkyle en C1 à C5, cyclo- alkyle en C5 à C7, monochloralkvle en C1 à C5, monobromalkyle en C1 à C5, dichloralkyle en C1 à C5, dibromalkyle en C1 à C5, monochlorocycloalkyle en C5 à C7, monobromocycloalkyle en C5 en C7, dichloro- cycloalkyle en C5 à C7, dibromocycloalkyle en C5 à C7,
R2 et R3 représentent, indépendamment l'un de l'autre, de l'hydrogène, un radical alkyle en C1 à C5, monochloralkyle en C1 à C5, monobromoalkyle en C1 à C5, dichloralkyle en C1 à C5, dibromalkyle en C1 à C5, les restes
R2 et R3 pouvant former conjointement avec les atomes de carbone de la double liaison C=C un noyau ayant jusqu'à 12 atomes de carbone,
au moins l'un des restes R1 à R4 étant un reste dichloro ou dibromo du type mentionné ou bien au moins deux des restes R1 à R4 étant un reste contenant du chlore ou du brome du type mentionné,
et la mono-oléfine à substituant chloralkyle ou bromalkyle contenant au moins 4 atomes de carbone, avec une solution d'un acide percarboxylique contenant 3 ou 4 atomes de carbone dans un hydrocarbure chloré contenant 1 à 8 atomes de carbone dans un rapport molaire de la mono-oléfine à l'acide percarboxylique de 1,1 : 1 à 10 : 1 et à une température de 30 à 100°C, l'acide percarboxylique contenant jusqu'à 5 % en poids d'eau et jusqu'à 2 % en poids de peroxyde d'hydrogène et la solution d'acide percarboxylique mise en réaction ayant une teneur en acide minéral inférieure à 50 ppm.
2. Procédé suivant la revendication 1, caractérisé en ce qu'on utilise comme mono-oléfine à substituant chloralkyle ou bromalkyle une oléfine de formule:
Figure imgb0017
dans laquelle:
R5 et R6 représentent, indépendamment l'un de l'autre, un radical alkyle en C1 à C5, monochloralkyle en C1 à C5, monobromalkyle en C1 à C5, dichloralkyl en C1 à C5 ou dibromalkyle en C1 à C5,
les restes R5 et R6 pouvant être liés en un noyau conjointement avec le groupe CH=CH, et au moins l'un des restes R5 et R6 représentant un radical dichloralkyle en C1 à C5 ou dibromalkyle en C1 à C5 ou bien les deux restes R5 et R6 représentent un reste monochloralkyle en C1 à C5 ou monobromalkyle en C1 à C5.
3. Procédé suivant les revendications 1 et 2, caractérisé en ce qu'on utilise comme mono-oléfine un substituant chloralkyie ou bromalky!e, une oléfine de formule:
Figure imgb0018
dans laquelle:
R, et R8 représentent, indépendamment l'un de l'autre, de l'hydrogène, un radical alkyle en C1 à C5, monochloralkyle en C1 à C5, monobromalkyle en C1 à C5, dichloralkyle en C1 à C5 ou dibromalkyle en C1 à C5,
R9 et R10 représentent, indépendamment l'un de l'autre, un reste méthylène, chlorométhylène, bromo- méthylène, 1,2-dichloréthylène ou 1,2-dibromométhylène,
n est un nombre entier de 1 à 6,
et au moins l'un des restes R7 à R10 représentent un reste dichloro ou dibromo du type mentionné ou bien au moins deux des restes R7 à R10 représentant un reste du type mentionné contenant du chlore ou du brome.
4. Procédé suivant les revendications 1 et 2, caractérisé en ce qu'on utilise comme mono-oléfine à substituant chloralkyle ou bromalkyle, une oléfine de formule:
Figure imgb0019
dans laquelle:
R11 et R12 représentent, indépendamment l'un de l'autre, de l'hydrogène, un reste alkyle en C1 à C5, monochloralkyle en C1 à C5, monobromalkyle en C1 à C5, dichloralkyle en C1 à C5 ou dibromalkyle en C1 à C5,
l'un au moins des restes R11 et R12 étant un reste dichloralkyle en C1 à C5 ou dibromalkyle en C1 à C5 ou bien les deux restes R11 et R12 représentant un reste monochloralkyle en C1 à C5 ou monobromalkyle en C1 à C5.
5. Procédé suivant la revendication 1, caractérisé en ce qu'on utilise le 1,4-dichloro-2-butène comme mono-oléfine à substituant chloralkyle ou bromalkyle.
6. Procédé suivant la revendication 1, caractérisé en ce qu'on utilise le 3,4-dichloro-1-butène comme mono-oléfine à substituant chloralkyle ou bromalkyle.
7. Procédé suivant la revendication 1, caractérisé en ce qu'on utilise le 1,4-dibromo-2-butène comme mono-oléfine à substituant chloralkyle ou bromalkyle.
8. Procédé suivant les revendications 1 à 7, caractérisé en ce qu'on utilise l'acide perpropionique comme acide percarboxylique.
9. Procédé suivant les revendications 1 à 7, caractérisé en ce qu'on utilise l'acide perisobutyrique comme acide percarboxylique.
10. Procédé suivant les revendications 1 à 9, caractérisé en ce qu'on utilise le dichloropropane comme hydrocarbure chloré.
11. Procédé suivant les revendications 1 à 10, caractérisé en ce qu'on conduit la réaction à un rapport molaire de l'oléfine au peracide de 1,5 à 3 : 1.
12. Procédé suivant les revendications 1 à 11, caractérisé en ce qu'on conduit la réaction à une température de 60 à 80°C.
13. Procédé suivant les revendications 1 à 12, caractérisé en ce qu'on extrait le mélange réactionnel à l'eau avant le traitement de distillation pour séparer l'acide carboxylique formé lors de la réaction, correspondant à l'acide percarboxylique.
EP78100456A 1977-07-28 1978-07-20 Procédé de préparation d'oxirannes substitués par des groupes halogénoalcoyle Expired EP0000554B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772734085 DE2734085A1 (de) 1977-07-28 1977-07-28 Verfahren zur herstellung von halogenalkylsubstituierten oxiranen
DE2734085 1977-07-28

Publications (2)

Publication Number Publication Date
EP0000554A1 EP0000554A1 (fr) 1979-02-07
EP0000554B1 true EP0000554B1 (fr) 1982-02-10

Family

ID=6015052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100456A Expired EP0000554B1 (fr) 1977-07-28 1978-07-20 Procédé de préparation d'oxirannes substitués par des groupes halogénoalcoyle

Country Status (6)

Country Link
EP (1) EP0000554B1 (fr)
JP (1) JPS5424806A (fr)
AT (1) AT358057B (fr)
CA (1) CA1120047A (fr)
DD (1) DD138067A5 (fr)
DE (2) DE2734085A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2456096A1 (fr) * 1979-05-10 1980-12-05 Solvay Procede pour la fabrication d'oxydes d'olefines
DE102005019296A1 (de) 2005-04-26 2006-11-09 Deutsche Exide Gmbh Entgasungsventil für Säurebatterien
DE102021123420A1 (de) 2020-09-11 2022-03-17 Illinois Tool Works Inc. Notentgasungsventil
DE102023106792A1 (de) 2022-04-11 2023-10-12 Illinois Tool Works Inc. Notentgasungsventilvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1535313A (en) * 1975-02-04 1978-12-13 Interox Chemicals Ltd Production of peracids and of epoxides
GB1584355A (en) * 1976-10-26 1981-02-11 Propylox Sa Epoxidation
BE860029A (fr) * 1976-10-26 1978-04-24 Propylox Sa Procede pour l'epoxydation d'olefines

Also Published As

Publication number Publication date
AT358057B (de) 1980-08-25
JPS5424806A (en) 1979-02-24
DE2734085A1 (de) 1979-02-22
CA1120047A (fr) 1982-03-16
EP0000554A1 (fr) 1979-02-07
ATA544578A (de) 1980-01-15
DE2861619D1 (en) 1982-03-18
DD138067A5 (de) 1979-10-10

Similar Documents

Publication Publication Date Title
EP0090239A1 (fr) Procédé de préparation du diépoxyde de 2,2-bis-(3-cyclohexényl)-propane
EP0000554B1 (fr) Procédé de préparation d'oxirannes substitués par des groupes halogénoalcoyle
EP0056932B1 (fr) Procédé de préparation et d'isolement de n-alkyloxirannes
EP0008112B1 (fr) Procédé pour la préparation d'esters glycidiques d'acides aromatiques polycarboxyliques
EP0000555B1 (fr) Procédé de préparation d'oxirannes substitués par des groupes halogénoalcoyle
DE3528004C2 (fr)
EP0000535B1 (fr) Procédé de préparation de vinyloxirannes substitués par un ou plusieurs halogènes
EP0008116B1 (fr) Procédé pour la préparation de l'ester diglycidique de l'acide 7-oxabicyclo(4.1.0) heptane-3,4-dicarboxylique
EP0008114B1 (fr) Procédé pour la préparation d'esters glycidiques de l'acide maléique
DE3528002C2 (fr)
EP0008113B1 (fr) Procédé pour la préparation de l'ester diglycidique de l'acide 7-oxabicyclo(4.1.0) heptane-3,4-dicarboxylique
EP0008111B1 (fr) Procédé de préparation d'esters glycidiques d'acides polycarboxyliques cycloaliphatiques
DE69010136T2 (de) Wiedergewinnung von wasserunlöslichen Epoxy-Alkoholen.
EP0008115B1 (fr) Procédé pour la préparation d'esters glycidiques de l'acide fumarique
EP0000534B1 (fr) Procédé de préparation de vinyloxirannes
DE3528005C2 (fr)
EP0113858A1 (fr) Procédé pour la préparation et la séparation de composés polyglycidyliques
EP0120297B1 (fr) Procédé pour la préparation de formyl-3-dihydro-5,6-2H-pyrane
DE3101049A1 (de) Verfahren zur herstellung und isolierung von n-alkyloxiranen
DE3101037A1 (de) Verfahren zur herstellung und isolierung von n-alkyloxiranen
DE2757926A1 (de) Verfahren zur herstellung von 5-(oxiranylmethyl)-1,3-benzodioxol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): BE CH DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL

REF Corresponds to:

Ref document number: 2861619

Country of ref document: DE

Date of ref document: 19820318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840905

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19890731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900621

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900628

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900718

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910731

BERE Be: lapsed

Owner name: DEGUSSA A.G.

Effective date: 19910731

Owner name: BAYER A.G.

Effective date: 19910731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT