DK2260549T3 - Højeffektlaserfibersystem - Google Patents

Højeffektlaserfibersystem Download PDF

Info

Publication number
DK2260549T3
DK2260549T3 DK09724063.4T DK09724063T DK2260549T3 DK 2260549 T3 DK2260549 T3 DK 2260549T3 DK 09724063 T DK09724063 T DK 09724063T DK 2260549 T3 DK2260549 T3 DK 2260549T3
Authority
DK
Denmark
Prior art keywords
fiber
fibre
core
fibers
fiber system
Prior art date
Application number
DK09724063.4T
Other languages
English (en)
Inventor
Jean-Paul Pocholle
François-Xavier Doittau
Original Assignee
Thales Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Sa filed Critical Thales Sa
Application granted granted Critical
Publication of DK2260549T3 publication Critical patent/DK2260549T3/da

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06745Tapering of the fibre, core or active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06737Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Claims (15)

  1. HØJEFFEKTLASERFIBERSYSTEM
    1. Effektlaserfibersystem, der på en signalbølgelængde (λ) udsender og omfatter flere enkeltmodusfibre, der er fordelt således, at der frembringes en moduskobling mellem fibrene, hvor én af fibrene er en fremkommende fiber for emissionslaserstrålens signalbølgelængde, hvor hver af fibrene mindst omfatter en ydre kappe og en kerne, hvor hver af fibrene i kernen har en radial indeksgradient og mindst over en del af dens længde omfatter et geometristykke med en kemefiberradius med aftagende gradient mellem en såkaldt indgangsende til stykket og en såkaldt udgangsende af stykket, hvor parametrene for kemeradius og indeksvariation mellem kappen og fiberen ved indgangsenden er således, at den normaliserede frekvens V, der er defineret ved signalbølgelængden, er mindre end den normaliserede grænsefrekvens Vc, hvorfra fiberen har karakter af enkeltmodus.
  2. 2. Effektlaserfibersystem ifølge krav 1, kendetegnet ved, at gradientindekset er af den parabolske type.
  3. 3. Effektlaserfibersystem ifølge krav 1, kendetegnet ved, at gradientindekset er af den triangulære type.
  4. 4. Effektlaserfibersystem ifølge krav 1, kendetegnet ved, at hver af fibrene omfatter et konisk geometrisk stykke, en første kapperadius (ri) og en anden kemeradius (r2), hvor den første og den anden radius henholdsvis defineres ved følgende ligninger: ri (z)=r1c(l-m1z) r2 (z) = r2c (1- m2z)
  5. 5. Effektlaserfibersystem ifølge et af kravene 1 til 4, kendetegnet ved, at fibrene er fordelt ifølge en matrixgeometri i et plan vinkelret på fibrenes længde.
  6. 6. Effektlaserfibersystem ifølge et af kravene 1 til 4, kendetegnet ved, at fibrene er cirkelformet fordelt omkring en central fiber.
  7. 7. Effektlaserfibersystem ifølge et af de foregående krav kendetegnet ved, at det omfatter én præform, der omfatter en enhed af enkeltstående kapper og fiberkemer.
  8. 8. Effektlaserfibersystem ifølge et af de foregående krav, kendetegnet ved, at det omfatter: et fiberforbindelsesled, der er beregnet til at modtage pumpeffekt fra laserdioder; en enhed af fibre, der er radialt koblet og trukne for at optimere koblingen; en central fiber, ved hvilken laserstrålens signalbølgelængde fremkommer.
  9. 9. Effektlaserfibersystem ifølge krav 8, kendetegnet ved, at den fremkommende fiber omfatter en spejlfunktion.
  10. 10. Effektlaserfibersystem ifølge krav 9, kendetegnet ved, at den fremkommende fiber omfatter en Bragg-reflektor.
  11. 11. Effektlaserfibersystem ifølge et af de foregående krav kendetegnet ved, at det omfatter midler af axicon-typen, der er koblet ved enderne af fibrene modsat dem, der omfatter de koniske stykker.
  12. 12. Effektlaserfibersystem ifølge et af de foregående krav kendetegnet ved, at det mindst omfatter en fiber med en silicakappe.
  13. 13. Effektlaserfibersystem ifølge et af de foregående krav kendetegnet ved, at det mindst omfatter en fiber med en fiberkeme, der omfatter silica doteret med Ge02.
  14. 14. Effektlaserfibersystem ifølge krav 13, kendetegnet ved, at fiberkemen omfatter perifere lag med variable satser af Ge02 for således at sikre en radial indeksgradient inde i kernen.
  15. 15. Effektlaserfibersystem ifølge et af de foregående krav kendetegnet ved, at det mindst omfatter en fiber med en siliciumfiberkeme doteret med sjældne jordioner.
DK09724063.4T 2008-03-28 2009-03-27 Højeffektlaserfibersystem DK2260549T3 (da)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0801714A FR2929456B1 (fr) 2008-03-28 2008-03-28 Systeme a fibre laser de forte puissance.
PCT/EP2009/053648 WO2009118404A2 (fr) 2008-03-28 2009-03-27 Systeme a fibre laser de forte puissance

Publications (1)

Publication Number Publication Date
DK2260549T3 true DK2260549T3 (da) 2017-12-11

Family

ID=40291027

Family Applications (1)

Application Number Title Priority Date Filing Date
DK09724063.4T DK2260549T3 (da) 2008-03-28 2009-03-27 Højeffektlaserfibersystem

Country Status (8)

Country Link
US (1) US10014647B2 (da)
EP (1) EP2260549B1 (da)
CA (1) CA2719900C (da)
DK (1) DK2260549T3 (da)
ES (1) ES2649837T3 (da)
FR (1) FR2929456B1 (da)
NO (1) NO2260549T3 (da)
WO (1) WO2009118404A2 (da)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009043964A1 (en) * 2007-10-03 2009-04-09 Optoelectronics Research Centre, Tampere University Of Technology Active optical fiber and method for fabricating an active optical fiber
WO2011025959A1 (en) 2009-08-27 2011-03-03 The Foundry Llc Method and apparatus for force redistributon in articular joints
EP3776759A4 (en) * 2018-04-11 2021-04-21 NEC Corporation OPTICAL AMPLIFIER, OPTICAL COMMUNICATION SYSTEM AND OPTICAL REINFORCEMENT METHOD
US11320608B1 (en) 2020-09-17 2022-05-03 Waymo Llc Metal coated spike array
US11307144B1 (en) 2020-09-17 2022-04-19 Waymo Llc Evanescent wave based optical profiler array

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163654A (en) * 1978-04-21 1979-08-07 Exxon Research & Engineering Co. Method of manufacturing graded index optical fibers
US5333218A (en) * 1993-05-24 1994-07-26 General Electric Company Optical fiber tapered output end preparation for improved high power laser/fiber delivered beam quality
US5379149A (en) * 1993-08-06 1995-01-03 Kutger, The State University Of New Jersey Glass compositions having low energy phonon spectra and light sources fabricated therefrom
JPH10125988A (ja) * 1996-10-16 1998-05-15 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ一括増幅器
US6031850A (en) * 1997-12-22 2000-02-29 Pc Photonics Corporation Clad pumped, eye-safe and multi-core phase-locked fiber lasers
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
US6882664B2 (en) * 2002-02-28 2005-04-19 Lucent Technologies Inc. Laser with internally coupled pump source
JP2006145757A (ja) * 2004-11-18 2006-06-08 Fujitsu Ltd 分散補償器
FI20050214A0 (fi) * 2005-02-23 2005-02-23 Corelase Oy Uudet kuituoptiset laitteet
US7391561B2 (en) * 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
FR2890958B1 (fr) * 2005-09-16 2010-09-17 Cit Alcatel Preforme destinee a la fabrication d'une fibre optique comprenant des nanoparticules et procede de fabrication d'une fibre optique mettant en oeuvre une telle preforme
US7764854B2 (en) * 2005-12-27 2010-07-27 Ofs Fitel Llc Optical fiber with specialized index profile to compensate for bend-induced distortions
US7532792B2 (en) * 2006-08-28 2009-05-12 Crystal Fibre A/S Optical coupler, a method of its fabrication and use

Also Published As

Publication number Publication date
CA2719900C (en) 2016-09-20
WO2009118404A3 (fr) 2009-12-30
US10014647B2 (en) 2018-07-03
CA2719900A1 (en) 2009-10-01
FR2929456B1 (fr) 2016-12-09
NO2260549T3 (da) 2018-02-03
ES2649837T3 (es) 2018-01-15
US20110235658A1 (en) 2011-09-29
EP2260549B1 (fr) 2017-09-06
WO2009118404A2 (fr) 2009-10-01
EP2260549A2 (fr) 2010-12-15
FR2929456A1 (fr) 2009-10-02

Similar Documents

Publication Publication Date Title
CN109642981B (zh) 模式混合光纤以及使用其的方法和***
US7590323B2 (en) Optical fibre with high numerical aperture, method of its production, and use thereof
CA2445280C (en) A structured optical fibre with cladding region sized to provide high numerical aperture, method of its production, and use thereof
GB2511043A (en) A supercontinuum source
DK2260549T3 (da) Højeffektlaserfibersystem
CN110073557A (zh) 串联泵浦光纤放大器
EP3025175A1 (en) Single large mode cladding amplification in active double-clad fibers
US9673591B2 (en) Wavelength locking multimode diode lasers with fiber Bragg grating in large mode area core
Zhao et al. Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique
US11280965B2 (en) Multi-clad optical fiber with taper portion, and optical fiber device having same
CN110071415A (zh) 瞄准光束光纤侧耦合
JP2022545472A (ja) 光ファイバ間の結合損失低減
ES2909898T3 (es) Fibra óptica multimodo para aplicaciones de potencia en fibra
EP1696251A2 (en) Opticial fibre with high numerical aperture, method of its production and use thereof
Delgado et al. Propagation characteristics of optical long period fiber gratings using graphical solution methods
Drljača et al. Wavelength dependence of equilibrium mode distribution and steady state distribution in W-type plastic-clad silica fibers
Kliros Coupling coefficient of thermally diffused expanded core fiber couplers
Bairagi et al. Design of a concentric triple-core based dispersion compensating fiber
Higuchi et al. Connection loss reduction in variable optical delay line by using graded‐index type photonic crystal fiber
WO2017117555A1 (en) Wavelength locking multi-mode diode lasers
Morshed et al. Bending characteristics of single mode-multimode-single mode optical fiber structures
Sovizi et al. Calculating transfer and loss coefficients in bent slab single mode micro-waveguides and micro-rings considering bending and coupling losses
Donlagic et al. Bend insensitive multimode fibers with extreme bend loss tolerance and high bandwidth
Mendes et al. Theoretical analysis of the transmission efficiency of a (6+ 1)× 1 pump–signal combiner
Paschotta Optical fiber technology: physical principles and applications of different types of optical fibers