DK2005079T3 - COOLING SYSTEM WITH PARALLEL STEP ECONOMIZER CIRCUIT AND ONE OR 2-STEP HEAD COMPRESSOR - Google Patents

COOLING SYSTEM WITH PARALLEL STEP ECONOMIZER CIRCUIT AND ONE OR 2-STEP HEAD COMPRESSOR Download PDF

Info

Publication number
DK2005079T3
DK2005079T3 DK06739730.7T DK06739730T DK2005079T3 DK 2005079 T3 DK2005079 T3 DK 2005079T3 DK 06739730 T DK06739730 T DK 06739730T DK 2005079 T3 DK2005079 T3 DK 2005079T3
Authority
DK
Denmark
Prior art keywords
refrigerant
economizer
compressor
path
stage compressor
Prior art date
Application number
DK06739730.7T
Other languages
Danish (da)
Inventor
Biswajit Mitra
Wayne P Beagle
James W Bush
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Application granted granted Critical
Publication of DK2005079T3 publication Critical patent/DK2005079T3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/074Details of compressors or related parts with multiple cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

DESCRIPTION
BACKGROUND OF THE INVENTION
[0001] The present invention relates generally to refrigerating systems used for moling. More particularly, the present invention relates to a refrigerating system that incorporates economizer circuits to increase system efficiency.
[0002] A typical refrigerating system includes an evaporator, a compressor, a condenser, and a throttle valve. A refrigerant, such as a hydrofluorocarbon (HFC), typically enters the evaporator as a two-phase liquid-vapor mixture. Within the evaporator, the liquid portion of the refrigerant changes phase from liquid to vapor as a result of heat transfer into the refrigerant. The refrigerant is then compressed within the compressor, thereby increasing the pressure of the refrigerant. Next, the refrigerant passes through the condenser, where it changes phase from a vapor to a liquid as it mols within the condenser. Finally, the refrigerant expands as it flows through the throttle valve, which results in a decrease in pressure and a change in phase from a liquid to a two-phase liquid-vapor mixture.
[0003] While natural refrigerants such as carbon dioxide have recently been proposed as alternatives to the presently used HFCs, the high side pressure of carbon dioxide typically ends up in the supercritical region where there is no transition from vapor to liquid as the high pressure refrigerant is cooled. For a typical single stage vapor compression cycle, this leads to poor efficiency due to the loss of the subcritical rønstant temperature condensation process and to the relatively high residual enthalpy of supercritical carbon dioxide at normal high side temperatures.
[0004] WO 2006/022829 A1 discloses a CO2 refrigerant circuit. The circuit is provided with a receiver comprising a liquid portion and a flash gas portion. Aflash gas line is connected to the flash gas portion, and a liquid line is connected to the liquid portion. Fleat is transferred from the liquid flowing in the liquid line to the flash gas flowing through the flash gas line in an internal heat exchanger. The flash gas is returned to an inlet of a low temperature compressor set. The refrigerant circuit is also provided with further sub-moling in the outlet line of a heat rejecting heat exchanger. A portion of the refrigerant is diverted through an expansion valve and sub-cools the remainder of the refrigerant in another heat exchanger.
[0005] US-A- 6 113 358 discloses a refrigeration system according to the preamble of claim 1.
[0006] Thus, there exists a need for a refrigerating system that is capable of utilizing any refrigerant, including a transcritical refrigerant, while maintaining a high level of system efficiency.
BRIEF SUMMARY OF THE INVENTION
[0007] According to a first aspect of the present invention, there is provided a refrigeration system mmprising: a main refrigerant path; an evaporator; a plurality of mmpressors for mmpressing a refrigerant, each of the compressors having a suction port and a discharge port; a heat rejecting heat exchanger for moling the refrigerant; and a plurality of economizer circuits each comprising a heat exchanger, wherein each of the economizer circuits is configured to inject a portion of the refrigerant into the suction port of one of the mmpressors, wherein an economizer path of each of the economizer circuits is in a heat exchanger relationship with the main refrigerant path for moling the main refrigerant path in the respective economizer heat exchanger, and wherein the discharge port of each of the mmpressors is directly connected to the heat rejecting heat exchanger.
[0008] According to a second aspect of the present invention, there is provided a method of operating a refrigeration system, the method comprising: evaporating a refrigerant; compressing the refrigerant from a lower pressure to a higher pressure in a plurality of compressors, the plurality of compressors including a two-stage compressor and at least two single-stage compressors, wherein the two-stage compressor includes an intercooler configured to cool the refrigerant between a first stage of compression and a second stage of compression; injecting the refrigerant from the discharge port of each of the mmpressors directly into a heat rejecting heat exchanger and cooling the refrigerant in the heat rejecting heat exchanger; directing the refrigerant in a main refrigerant path through a plurality of economizer heat exchangers each provided in a respective economizer circuit, and, in the economizer heat exchangers, cooling the refrigerant in the main refrigerant path using the refrigerant in an economizer path of the respective economizer circuit; injecting a first portion of the refrigerant from a first economizer circuit into a suction port of one of the single- stage compressors; and injecting a second portion of the refrigerant from a semnd economizer circuit into a suction port of another one of the single-stage compressors; and wherein, optionally, the mmpressors are part of a single, multi-cylinder compressor unit.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG. 1A illustrates a schematic diagram of a refrigeration system employing a pair of economizer circuits. FIG. 1B illustrates a graph relating enthalpy to pressure for the refrigeration system of FIG. 1A FIG. 2A illustrates a schematic diagram of a refrigeration system employing three economizer circuits. FIG. 2B illustrates a graph relating enthalpy to pressure for the refrigeration system of FIG. 2A FIG. 3A illustrates a schematic diagram of a refrigeration system employing four economizer circuits. FIG. 3B illustrates a graph relating enthalpy to pressure for the refrigeration system of FIG. 3A FIG. 4A illustrates a schematic diagram of a refrigeration system employing five economizer circuits.
FIG. 4B illustrates a graph relating enthalpy to pressure for the refrigeration system of FIG. 4A FIG. 5A illustrates a schematic diagram of a second embodiment of a refrigeration system employing a pair of economizer circuits. FIG. 5B illustrates a graph relating enthalpy to pressure for the refrigeration system of FIG. 5A. FIG. 6 illustrates a schematic diagram of an alternative embodiment of the refrigeration system of FIG. 1 A. FIG. 7 illustrates a schematic diagram of another embodiment of the refrigeration system of FIG. 1A.
DETAILED DESCRIPTION
[0010] FIG. 1A illustrates a schematic diagram of refrigeration system 20A, which includes compressor unit 22, heat rejecting heat exchanger 24, first economizer circuit 25A, second economizer circuit 25B, main expansion valve 26, evaporator 27, and sensor 31. First economizer circuit 25A includes first economizer heat exchanger 28A, expansion valve 30A, and sensor 31A, while second economizer circuit 25B includes second economizer heat exchanger 28B, expansion valve 30B, and sensor 31B. As shown in FIG. 1A, first economizer heat exchanger 28Aand second economizer heat exchanger 28B are parallel flow tube-in-tube heat exchangers.
[0011] Compressor unit 22 includes two-stage compressor 32, single-stage compressor 34, and single-stage compressor 35. Two-stage compressor 32 includes cylinders 36A and 36B connected in series, single-stage compressor 34 includes cylinder 36C, and single-stage compressor 35 includes cylinder 36D. Two-stage compressor 32, single-stage compressor 34, and single-stage compressor 35 may be stand-alone compressor units, or they may be part of a single, multi-cylinder compressor unit. In addition, two-stage compressor 32, single-stage compressor 34, and single-stage compressor 35 are preferably reciprocating compressors, although other types of compressors may be used including, but not limited to, scroll, screw, rotary vane, standing vane, variable speed, hermetically sealed, and open drive compressors.
[0012] In refrigeration system 20A, three distinct refrigerant paths are formed by connection of the various elements in the system. Amain refrigerant path is defined by the route between points 1, 2, 3, 4, 5, and 6. A first economized refrigerant path is defined by the route between points 5A, 6A, 7A, and 8A. Finally, a second economized refrigerant path is defined by the route between points 5B, 6B, 7B, and 8B. It should be understood that the paths are all closed paths that allow for continuous flow of refrigerant through refrigeration system 20A.
[0013] In reference to the main refrigerant path, after refrigerant exits two-stage compressor 32 at high pressure and enthalpy through discharge port 39 (point 4), the refrigerant loses heat in heat rejecting heat exchanger 24, exiting heat rejecting heat exchanger 24 at low enthalpy and high pressure (point 5A). The refrigerant then splits into two flow paths 40A and 42A prior to entering first economizer heat exchanger 28A. The main path continues along paths 40Aand 40B through first economizer heat exchanger 28A (point 5B) and second economizer heat exchanger 28B (point 5), respectively. As the refrigerant in path 40Aflows through first economizer heat exchanger 28A, it is cooled by the refrigerant in path 42Aof the first economized path. Similarly, as the refrigerant in path 40B flows through second economizer heat exchanger 28B, it is cooled by the refrigerant in path 42B of the second economized path.
[0014] Refrigerant from path 40B is then throttled in main expansion valve 26. Main expansion valve 26, along with economizer expansion valves 30Aand 30B, are preferably thermal expansion valves (TXV) or electronic expansion valves (EXV). After going through an expansion process within main expansion valve 26 (point 6), the refrigerant is a two-phase liquid-vapor mixture and is directed toward evaporator 27. After evaporation of the remainder of the liquid (point 1), the refrigerant enters two-stage compressor 32 through suction port 37. The refrigerant is compressed within cylinder 36A, which is the first stage of two-stage compressor 32, and is then directed out discharge port 50 (point 2), where it flow® through intercooler 48 prior to a second stage of compression in cylinder 36B. Intercooler 48 is configured to cool down the refrigerant discharged from cylinder 36A prior to the second stage of compression within cylinder 36B. After the second stage of compression, the refrigerant is discharged through discharge port 39 (point 4).
[0015] In reference to the first economized path, after refrigerant exits heat rejecting heat exchanger 24 at low enthalpy and high pressure (point 5A) and splits into two flow paths 40Aand 42A, the first economized path continues along path 42A. In path 42A, the refrigerant is throttled to a lower pressure by economizer expansion valve 30A (point 6A) prior to flowing through first economizer heat exchanger 28A. The refrigerant from path 42A that flowed through first economizer heat exchanger 28A (point 7A) is then directed along economizer return path 46A and injected into suction port 52 of single-stage compressor 34 for compression in single-stage compressor 34. After compression within single-stage compressor 34, the refrigerant is discharged through discharge port 54 (point 8A) where it merges wth the refrigerant discharged from two-stage compressor 32 and single-stage compressor 35.
[0016] In reference to the second economized path, after being cooled in the higher pressure first economizer heat exchanger 28A (point 5B), the refrigerant in path 40A splits into two flow paths 40B and 42B. The second economized path continues along flow path 42 B where the refrigerant is throttled to a lower pressure by economizer expansion valve 30B (point 6B) prior to flowing through second economizer heat exchanger 28B. The refrigerant from path 42B that flowed through second economizer heat exchanger 28B (point 7B) is then directed along economizer return path 46B and injected into suction port 56 of single-stage compressor 35 for compression in single-stage compressor 35. After compression within single-stage compressor 35, the refrigerant is discharged through discharge port 58 (point 8B) where it merges with the refrigerant discharged from two-stage compressor 32 and single-stage compressor 34.
[0017] Refrigeration system 20Aalso includes sensor 31 disposed between evaporator 27 and compressor unit 22 along the main refrigerant path. In general, sensor 31 acts with expansion valve 26 to sense the temperature of the refrigerant leaving evaporator 27 and the pressure of the refrigerant in evaporator 27 to regulate the flow of refrigerant into evaporator 27 to keep the combination of temperature and pressure within some specified bounds. In a preferred embodiment, expansion valve 26 is an electronic expansion valve and sensor 31 is a temperature transducer such as a thermocouple or thermistor. In another embodiment, expansion valve 26 is a mechanical thermal expansion valve and sensor 31 includes a small tube that terminates in a pressure vessel filled with a refrigerant that differs from the refrigerant running through refrigeration system 20A. As refrigerant from evaporator 27 flows past sensor 31 on its way toward compressor unit 22, the pressure vessel will either heat up or cool down, thereby changing the pressure within the pressure vessel. As the pressure in the pressure vessel changes, sensor 31 sends a signal to expansion valve 26 to modify the pressure drop caused by the valve. Similarly, in the case of the electronic expansion valve, sensor 31 sends an electrical signal to expansion valve 26 which responds in a similar manner to regulate refrigerant flow. For example, if a return gas coming from evaporator 27 is too hot, sensor 31 will then heat up and send a signal to expansion valve 26, causing the valve to open further and allow more refrigerant per unit time to flow through evaporator 27, thereby reducing the heat of the refrigerant exiting evaporator 27.
[0018] Economizer circuits 25Aand 25B also include sensors 31Aand 31B, respectively, that operate in a similar manner to sensor 31. However, sensors 31A and 31 B sense temperature along economizer return paths 46A and 46B and act with expansion valves 30A and 30B to control the pressure drops within expansion valves 30A and 30B instead. It should also be noted that various other sensors may be substituted for sensors 31, 31 A, and 31 B without departing from the scope of the present invention, which is defined by the appended claims.
[0019] By controlling the expansion valves 26, 30A, and 30B, the operation of refrigeration system 20Acan be adjusted to meet the cooling demands and achieve optimum efficiency. In addition to adjusting the pressures associated with expansion valves 26, 30A, and 30B, the displacements of cylinders 36A, 36B, 36C, and 36D may also be adjusted to help achieve optimum efficiency of refrigeration system 20A.
[0020] FIG. 1B illustrates a graph relating enthalpy to pressure for the refrigeration system 20Aof FIG. 1A. Vapor dome V is formed by a saturated liquid line and a saturated vapor line, and defines the state of the refrigerant at various points along the refrigeration cycle. Underneath vapor dome V, all states involve both liquid and vapor coexisting at the same time. At the very top of vapor dome V is the critical point. The critical point is defined by the highest pressure where saturated liquid and saturated vapor coexist. In general, compressed liquids are located to the left of vapor dome V, while superheated vapors are located to the right of vapor dome V.
[0021] In FIG. 1B, the main refrigerant path is defined by the route between points 1, 2, 3, 4, 5, and 6; the first economized path is defined by the route between points 5A, 6A, 7A, and 8A; and the second economized path is defined by the route between points 5B, 6B, 7B, and 8B. The cycle begins in the main path at point 1, where the refrigerant is at a low pressure and high enthalpy prior to entering compressor unit 22. After a first stage of compression within cylinder 36Aof two-stage compressor 32, both the enthalpy and pressure increase as shown by point 2. Next, the refrigerant is cooled down as it flows through intercooler 48, as shown by point 3. After a second stage of compression within cylinder 36B, the refrigerant exits compressor unit 22 at high pressure and even higher enthalpy, as shown by point 4. Then, as the refrigerant flows through heat rejecting heat exchanger 24, enthalpy decreases while pressure remains constant. Prior to entering first economizer heat exchanger 28A, the refrigerant splits into a main portion and a first economized portion as shown by point 5A Similarly, prior to entering second economizer heat exchanger 28B, a second economized portion is diverted from the main portion as shown by point 5B. The first and second economized portions will be discussed in more detail below The main portion is then throttled in main expansion valve 26, decreasing pressure as shown by point 6. Finally, the main portion of the refrigerant is evaporated, exiting evaporator 27 at a higher enthalpy as shown by point 1.
[0022] As stated previously, the first economized portion splits off of the main portion as indicated by point 5A. The first economized portion is throttled to a lower pressure in expansion valve 30Aas shown by point 6A. The first economized portion of the refrigerant then exchanges heat with the main portion in first economizer heat exchanger 28A, cooling down the main portion of the refrigerant as indicated by point 5B, and heating up the first economized portion of the refrigerant as indicated by point 7A The first economized portion is then compressed within single-stage compressor 34 and merged with the refrigerant discharged from two-stage compressor 32 and single-stage compressor 35, as shown by point 8A
[0023] As stated previously, the second economized portion splits off of the main portion as indicated by point 5B. The second economized portion is throttled to a lower pressure in expansion valve 30B as shown by point 6B. The second economized portion of the refrigerant then exchanges heat with the main portion within second economizer heat exchanger 28B, cooling down the main portion of the refrigerant to its lowest temperature as indicated by point 5, and heating up the second economized portion of the refrigerant as indicated by point 7B. The second economized portion is then compressed within single-stage compressor 35 and merged with the refrigerant discharged from two-stage compressor 32 and single-stage compressor 34, as shown by point 8B.
[0024] In a refrigeration system, the specific cooling capacity, which is the measure of total cooling capacity divided by refrigerant mass flow, may typically be represented on a graph relating pressure to enthalpy by the length of the evaporation line. Furthermore, when the specific cooling capacity is divided by the specific power input to the compressor, the result is the system efficiency. In general, a high specific cooling capacity achieved by inputting a low specific power to the compressor will yield a high efficiency.
[0025] As shown in FIG. 1B, the specific cooling capacity of refrigeration system 20A is represented by the length of evaporation line E1 from point 6 to point 1. Lines A1 and A2 represent the increased specific cooling capacity due to the addition of the first economizer circuit 25A and second economizer circuit 25B, respectively. This indicates that refrigeration system 20A, which includes two economizer circuits, has a larger specific cooling capacity than a refrigeration system with no economizer circuits. Along with the increase in specific cooling capacity also comes an increase in specific power consumption. The increase in specific power consumption is a result of the additional compression of the economized flow shown between points 7A and 8A as well as between points 7B and 8B. However, since the economized vapor is compressed over a smaller pressure range than the main portion of refrigerant, the added compression power is less than the added capacity. Therefore, the ratio of capacity to power (the efficiency) is increased by the addition of the two economizer circuits.
[0026] FIG. 2A illustrates a schematic diagram of refrigeration system 20B of the present invention employing three economizer circuits. Refrigeration system 20B is similar to refrigeration system 20A, except that single-stage compressor 70 is added to compressor unit 22, and third economizer circuit 25C is added to the system. Single-stage compressor 70 includes cylinder 36E.
[0027] In refrigeration system 20B, four distinct refrigerant paths are formed by connection of the various elements in the system.
The main refrigerant path, the first economized refrigerant path, and the second economized refrigerant path are similar to those described above in reference to FIG. 1A. Athird economized refrigerant path is defined by the route between points 5C, 6C, 7C, and 8C.
[0028] In reference to the third economized path, after being cooled in the higher pressure second economizer heat exchanger 28B, the refrigerant in path 40B splits into two flow paths 40C and 42C (point 5C). The third economized path continues along flow path 42C where the refrigerant is throttled to a lower pressure by economizer expansion valve 30C prior to flowing through third economizer heat exchanger 28C (point 6C). The refrigerant from path 42C that flowed through third economizer heat exchanger 28C (point 7C) is then directed along economizer return path 46C and injected into suction port 72 of single-stage compressor 70 for compression in single-stage compressor 70. After compression within single-stage compressor 70, the refrigerant is discharged through discharge port 74 (point 8C) where it merges with the refrigerant discharged from two-stage compressor 32 and single-stage compressors 34 and 35.
[0029] FIG. 2B illustrates a graph relating enthalpy to pressure for the refrigeration system 20B of FIG. 2A. In FIG. 2B, the main refrigerant path is defined by the route between points 1, 2, 3, 4, 5, and 6; the first economized path is defined by the route between points 5A, 6A, 7A, and 8A; the second economized path is defined by the route between points 5B, 6B, 7B, and 8B; and the third economized path is defined by the route between points 5C, 6C, 7C, and 8C. As shown in FIG. 2B, evaporation line E2 of refrigeration system 20B is longer than evaporation line E1 of refrigeration system 20A (FIG. 1B). This indicates that refrigeration system 20B, which includes three economizer circuits, has a larger specific cooling capacity than refrigeration system 20A, which includes two economizer circuits. In particular, line A3 represents the increased specific cooling capacity due to the addition of the third economizer circuit.
[0030] FIG. 3A illustrates a schematic diagram of refrigeration system 20C of the present invention employing four economizer circuits. Refrigeration system 20C is similar to refrigeration system 20B, except that single-stage compressor 80 is added to compressor unit 22, and fourth economizer circuit 25D is added to the system. Single-stage compressor 80 includes cylinder 36F.
[0031] In refrigeration system 20C, five distinct refrigerant paths are formed by connection of the various elements in the system. The main refrigerant path, the first economized refrigerant path, the second economized refrigerant path, and the third economized refrigerant path are similar to those described above in reference to FIGS. 1A and 2A. A fourth economized refrigerant path is defined by the route between points 5D, 6D, 7D, and 8D.
[0032] In reference to the fourth economized path, after being cooled in the higher pressure third economizer heat exchanger 28C, the refrigerant in path 40C splits into two flow paths 40D and 42D (point 5D). The fourth economized path continues along flow path 42D where the refrigerant is throttled to a lower pressure by economizer expansion valve 30D prior to flowing through fourth economizer heat exchanger 28D (point 6D). The refrigerant from path 42D that flowed through fourth economizer heat exchanger 28D is then directed along economizer return path 46D (point 7D) and injected into suction port 82 of single-stage compressor 80 for compression in single-stage compressor 80. After compression within single-stage compressor 80 (point 8D), the refrigerant is discharged through discharge port 84 where it merges with the refrigerant discharged from two-stage compressor 32 and single-stage compressors 34, 35, and 70.
[0033] FIG. 3B illustrates a graph relating enthalpy to pressure for the refrigeration system 20C of FIG. 3A. In FIG. 3B, the main refrigerant path is defined by the route between points 1, 2, 3, 4, 5, and 6; the first economized path is defined by the route between points 5A, 6A, 7A, and 8A; the second economized path is defined by the route between points 5B, 6B, 7B, and 8B; the third economized path is defined by the route between points 5C, 6C, 7C, and 8C; and the fourth economized path is defined by the route between points 5D, 6D, 7D, and 8D. As shown in FIG. 3B, evaporation line E3 of refrigeration system 20C is longer than evaporation line E2 of refrigeration system 20B (FIG. 2B). This indicates that refrigeration system 20C, which includes four economizer circuits, has a larger specific cooling capacity than refrigeration system 20B, which includes three economizer circuits. In particular, line A4 represents the increased specific cooling capacity due to the addition of the fourth economizer circuit.
[0034] FIG. 4A illustrates a schematic diagram of refrigeration system 20D of the present invention employing five economizer circuits. Refrigeration system 20D is similar to refrigeration system 20C, except that single-stage compressor 90 is added to compressor unit 22, and fifth economizer circuit 25E is added to the system. Single-stage compressor 90 includes cylinder 36G.
[0035] In refrigeration system 20D, six distinct refrigerant paths are formed by connection of the various elements in the system. The main refrigerant path, the first economized refrigerant path, the second economized refrigerant path, the third economized refrigerant path, and the fourth economized refrigerant path are similar to those described above in reference to FIGS. 1A, 2A, and 3A. A fifth economized refrigerant path is defined by the route between points 5E, 6E, 7E, and 8E.
[0036] In reference to the fifth economized path, after being cooled in the higher pressure fourth economizer heat exchanger 28D, the refrigerant in path 40D splits into two flow paths 40E and 42E (point 5E). The fifth economized path continues along flow path 42E where the refrigerant is throttled to a lower pressure by economizer expansion valve 30E prior to flowing through fifth economizer heat exchanger 28E (point 6E). The refrigerant from path 42E that flowed through fifth economizer heat exchanger 28E is then directed along economizer return path 46E (point 7E) and injected into suction port 92 of single-stage compressor 90 for compression in single-stage compressor 90. After compression within single-stage compressor 90, the refrigerant is discharged through discharge port 94 (point 8E) where it merges with the refrigerant discharged from two-stage compressor 32 and single-stage compressors 34, 35, 70, and 80.
[0037] FIG. 4B illustrates a graph relating enthalpy to pressure for the refrigeration system 20D of FIG. 4A. In FIG. 4B, the main refrigerant path is defined by the route between points 1,2, 3, 4, 5, and 6; the first economized path is defined by the route between points 5A, 6A, 7A, and 8A; the second economized path is defined by the route between points 5B, 6B, 7B, and 8B; the third economized path is defined by the route between points 5C, 6C, 7C, and 8C; the fourth economized path is defined by the route between points 5D, 6D, 7D, and 8D; and the fifth economized path is defined by the route between points 5E, 6E, 7E, and 8E. As shown in FIG. 4B, evaporation line E4 of refrigeration system 20D is longer than evaporation line E3 of refrigeration system 20C (FIG. 3B). This indicates that refrigeration system 20D, which includes five economizer circuits, has a larger specific cooling capacity than refrigeration system 20C, which includes four economizer circuits. In particular, line A5 represents the increased specific cooling capacity due to the addition of the fifth economizer circuit.
[0038] FIG. 5A illustrates a schematic diagram of refrigeration system 20E of the present invention employing two economizer circuits. Refrigeration system 20E is similar to and an alternative embodiment of refrigeration system 20A. In refrigeration system 20E, intercooler 48 has been removed and two-stage compressor 32 has been replaced by single-stage compressor 100. Single-stage compressor 100 includes cylinder 36H.
[0039] In refrigeration system 20E, three distinct refrigerant paths are formed by connection of the various elements in the system. A main refrigerant path is defined by the route between points 1,2,3, and 4. A first economized refrigerant path is defined by the route between points 3A, 4A, 5A, and 6A. Finally, a second economized refrigerant path is defined by the route between points 3B, 4B, 5B, and 6B.
[0040] In reference to the main refrigerant path, after refrigerant exits single-stage compressor 100 at high pressure and enthalpy through discharge port 104 (point 2), the refrigerant loses heat in heat rejecting heat exchanger 24, exiting heat rejecting heat exchanger 24 at low enthalpy and high pressure (point 3A). The refrigerant then splits into two flow paths 40Aand 42A prior to entering first economizer heat exchanger 28A. The main path continues along paths 40A and 40B through first economizer heat exchanger 28A (point 3B) and second economizer heat exchanger 28B (point 3), respectively. As the refrigerant in path 40Aflows through first economizer heat exchanger 28A, it is cooled by the refrigerant in path 42Aof the first economized path. Similarly, as the refrigerant in path 40B flows through second economizer heat exchanger 28B, it is cooled by the refrigerant in path 42B of the second economized path.
[0041] Refrigerant from path 40B is then throttled in main expansion valve 26. After going through an expansion process within main expansion valve 26 (point 4), the refrigerant is a two-phase liquid-vapor mixture and is directed toward evaporator 27. After evaporation of the remainder of the liquid (point 1), the refrigerant enters single-stage compressor 100 through suction port 102. The refrigerant is then compressed within cylinder 36H and discharged through discharge port 104 (point 2).
[0042] In reference to the first economized path, after refrigerant exits heat rejecting heat exchanger 24 at low enthalpy and high pressure (point 3A) and splits into two flow paths 40Aand 42A, the first economized path continues along path 42A. In path 42A, the refrigerant is throttled to a lower pressure by economizer expansion valve 30A (point 4A) prior to flowing through first economizer heat exchanger 28A. The refrigerant from path 42A that flowed through first economizer heat exchanger 28A (point 5A) is then directed along economizer return path 46A and injected into suction port 52 of single-stage compressor 34 for compression in single-stage compressor 34. After compression within single-stage compressor 34, the refrigerant is discharged through discharge port 54 (point 6A) where it merges with the refrigerant discharged from single-stage compressors 100 and 35.
[0043] In reference to the second economized path, after being cooled in the higher pressure first economizer heat exchanger 28A (point 3B), the refrigerant in path 40A splits into two flow paths 40B and 42B. The second economized path continues along flow path 42B where the refrigerant is throttled to a lower pressure by economizer expansion valve 30B (point 4B) prior to flowing through second economizer heat exchanger 28B. The refrigerant from path 42B that flowed through second economizer heat exchanger 28B (point 5B) is then directed along economizer return path 46B and injected into suction port 56 of single-stage compressor 35 for compression in single-stage compressor 35. After compression within single-stage compressor 35, the refrigerant is discharged through discharge port 58 (point 6B) where it merges with the refrigerant discharged from single-stage compressors 34 and 100.
[0044] FIG. 5B illustrates a graph relating enthalpy to pressure for the refrigeration system 20E of FIG. 5A. In FIG. 5B, the main refrigerant path is defined by the route between points 1, 2, 3, and 4; the first economized path is defined by the route between points 3A, 4A, 5A, and 6A; and the second economized path is defined by the route between points 3B, 4B, 5B, and 6B.
[0045] As shown in FIG. 5B, the specific cooling capacity of refrigeration system 20E is represented by the length of evaporation line E5 from point 4 to point 1. Lines A1' and A2' represent the increased specific cooling capacity due to the addition of first economizer circuit 25A and second economizer circuit 25B, respectively. When compared with evaporation line E1 of FIG. 1B, evaporation line E5 is substantially equivalent in length to evaporation line E1. This indicates that refrigeration system 20E has a specific cooling capacity that is substantially equivalent to the specific cooling capacity of refrigeration system 20A. Thus, a two-stage compressor and an intercooler may be replaced by a single-stage compressor in a refrigeration system such as that shown in FIG. 1A without a substantial change in specific cooling capacity. It should be noted that although refrigeration system 20E is shown as a modified version of refrigeration system 20A, refrigeration systems 20B, 20C, and 20D may also be modified in the same manner without a substantial change in specific cooling capacity.
[0046] FIG. 6 illustrates a schematic diagram of refrigeration system 20A', which is an alternative embodiment of refrigeration system 20A. In the embodiment shown in FIG. 6, first economizer heat exchanger 28A' and second economizer heat exchanger 28B' comprise flash tanks. Thus, as used in refrigeration system 20A', flash tanks are an alternative type of heat exchanger. As stated previously, in the embodiment shown in FIG. 1A, first and second economizer heat exchangers 28Aand 28B are parallel flow tube-in-tube heat exchangers. However, parallel flow tube-in-tube heat exchangers may be replaced with flash tank type heat exchangers, as depicted in FIG. 6, without departing from the scope of the present invention, which is defined by the appended claims.
[0047] FIG. 7 illustrates a schematic diagram of refrigeration system 20A", which is another alternative embodiment of refrigeration system 20A. In the embodiment shown in FIG. 7, first economizer heat exchanger 28A" and second economizer heat exchanger 28B" form a brazed plate heat exchanger. However, substituting a brazed plate heat exchanger for parallel flow tube-in-tube heat exchangers does not substantially affect the overall system efficiency. Thus, a refrigeration system using a brazed plate heat exchanger is also within the intended scope of the present invention.
[0048] In addition to the parallel flow tube-in-tube heat exchangers, flash tanks, and brazed plate heat exchangers, numerous other heat exchangers may be used for the economizers without departing from the scope of the present invention. The list of alternative heat exchangers includes, but is not limited to, counter-flow tube-in-tube heat exchangers, parallel flow shell-in-tube heat exchangers, and counter-flow shell-in-tube heat exchangers.
[0049] Although the refrigeration system of the present invention is useful to increase system efficiency in a system using any type of refrigerant, it is especially useful in refrigeration systems that utilize transcritical refrigerants, such as carbon dioxide. Because carbon dioxide is such a low critical temperature refrigerant, refrigeration systems using carbon dioxide typically run transcritical. Furthermore, because carbon dioxide is such a high pressure refrigerant, there is more opportunity to provide multiple pressure steps between the high and low pressure portions of the circuit to include multiple economizers, each of which contributes to increase the efficiency of the system. Thus, the present invention may be used to increase the efficiency of systems utilizing transcritical refrigerants such as carbon dioxide, making their efficiency comparable to that of typical refrigerants. However, the refrigeration system of the present invention is useful to increase the efficiency in systems using any refrigerant, including those that run subcritical as well as those that run transcritical.
[0050] While the alternative embodiments of the present invention have been described as including a number of economizer circuits ranging from two to five, it should be understood that a refrigeration system with more than five economizer circuits is within the intended scope of the present invention. Furthermore, the economizer circuits may be connected to the compressors in various other combinations without decreasing system efficiency. Thus, refrigeration systems that utilize a greater number of economizer circuits or connect the economizer circuits in various other combinations are within the scope defined by the appended claims.
[0051] Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the invention, which is defined by the appended claims.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WQ200e022828A1 fSO-34! • US6113358A [POOS]

Claims (15)

KØLESYSTEM MED PARALLELTRIN-ECONOMIZER-KREDSLØB OG EN ET- ELLER TOTRINSHOVEDKOMPRESSORCOOLING SYSTEM WITH PARALLEL STEP ECONOMIZER CIRCUIT AND ONE OR 2-STEP HEAD COMPRESSOR 1. Kølesystem (20A; 20B; 20C; 20D; 20E; 20A'; 20A") omfattende: en hovedkølemiddelbane; en fordamper (27); en flerhed af kompressorer (32, 34, 35; 70; 80; 90; 100) til komprimering af et kølemiddel, hvor hver kompressor har en sugeåbning (37, 52, 56; 72; 82; 92; 102) og en afgangsåbning (39, 54, 58; 74; 84; 94; 104); en varmeafvisende varmeveksler (24) til afkøling af kølemidlet og en flerhed af economizer-kredsløb (25A, 25B; 25C; 25D; 25E), der hvert omfatter en economizer-varmeveksler (28A, 28B; 28A', 28B'; 28A", 28B"), hvor hvert af economizer-kredsløbene er konfigureret til at indsprøjte en del af kølemidlet i sugeåbningen til én af kompressorerne, kendetegnet ved, at en economizer-bane (42A, 42B) i hvert af economizer-kredsløbene er i et varmevekslerforhold med hovedkølemiddelbanen (40A, 40B) for afkøling af hovedkølemiddelbanen i den tilsvarende economizer-varmeveksler, og ved, at afgangsåbningen (39, 54, 58; 74; 84; 94; 104) i hver kompressorer direkte forbundet med den varmeafvisende varmeveksler (24).A cooling system (20A; 20B; 20C; 20D; 20E; 20A '; 20A ") comprising: a main refrigerant path; an evaporator (27); a plurality of compressors (32, 34, 35; 70; 80; 90; 100) for compressing a refrigerant, each compressor having a suction port (37, 52, 56; 72; 82; 92; 102) and a discharge port (39, 54, 58; 74; 84; 94; 104); a heat-rejecting heat exchanger ( 24) for cooling the refrigerant and a plurality of economizer circuits (25A, 25B; 25C; 25D; 25E), each comprising an economizer heat exchanger (28A, 28B; 28A ', 28B'; 28A ", 28B"), wherein each of the economizer circuits is configured to inject a portion of the refrigerant into the suction port of one of the compressors, characterized in that an economizer path (42A, 42B) in each of the economizer circuits is in a heat exchanger relationship with the main refrigerant path (40A, 40B) for cooling the main refrigerant path in the corresponding economizer heat exchanger and knowing that the outlet port (39, 54, 58; 74; 84; 94; 104) directly connects to each compressor t with the heat-rejecting heat exchanger (24). 2. Kølesystem ifølge krav 1, hvor én af kompressorerne er en totrinskompressor (32) med en første kompressorcylinder (36A) og en anden kompressorcylinder (36B).The cooling system of claim 1, wherein one of the compressors is a two-stage compressor (32) with a first compressor cylinder (36A) and a second compressor cylinder (36B). 3. Kølesystem ifølge krav 2, hvor en mellemkøler (48) er placeret mellem den første og anden kompressorcylinder (36A, 36B) i totrinskompressoren (32) for at afkøle kølemidlet før et andet kompressionstrin.The cooling system of claim 2, wherein an intermediate cooler (48) is located between the first and second compressor cylinders (36A, 36B) of the two-stage compressor (32) to cool the refrigerant before a second compression step. 4. Kølesystem ifølge krav 1, hvor hver kompressor er en ettrinskompressor.The cooling system of claim 1, wherein each compressor is a single stage compressor. 5. Kølesystem ifølge et hvilket som helst af de foregående krav, hvor den varmeafvisende varmeveksler (24) er en kondensator eller en gaskøler.A cooling system according to any one of the preceding claims, wherein the heat-rejecting heat exchanger (24) is a capacitor or a gas cooler. 6. Kølesystem ifølge et hvilket som helst af de foregående krav, hvor economizer-varmevekslerne er ekspansionsbeholdere (28A', 28B’).A cooling system according to any one of the preceding claims, wherein the economizer heat exchangers are expansion vessels (28A ', 28B'). 7. Kølesystem ifølge krav 1, hvilket kølesystem omfatter: en totrinskompressor (32) til komprimering af kølemidlet, hvilken totrinskompressor har en første kompressorcylinder (36A) og en anden kompressorcylinder (36B); en første ettrinskompressor (34) til komprimering af kølemidlet, en anden ettrinskompressor (35) til komprimering af kølemidlet, et første economizer-kredsløb (25A), der er konfigureret til at indsprøjte en første del af kølemidlet i sugeåbningen (52) på den første ettrinskompressor; og et andet economizer-kredsløb (25B), der er konfigureret til at indsprøjte en anden del af kølemidlet i sugeåbningen (56) på den anden ettrinskompressor.A cooling system according to claim 1, comprising: a two-stage compressor (32) for compressing the refrigerant, said two-stage compressor having a first compressor cylinder (36A) and a second compressor cylinder (36B); a first one-stage compressor (34) for compressing the refrigerant; a second one-stage compressor (35) for compressing the refrigerant; a first economizer circuit (25A) configured to inject a first portion of the refrigerant into the suction port (52) ettrinskompressor; and a second economizer circuit (25B) configured to inject a second portion of the refrigerant into the suction port (56) of the second stage compressor. 8. Kølesystem ifølge krav 7, hvor flerheden af kompressorer eller totrinskompressoren (32), den første ettrinskompressor (34) og den anden ettrinskompressor (35) indgår i en enkelt, flercylindret kompressorenhed.A cooling system according to claim 7, wherein the plurality of compressors or the two-stage compressor (32), the first one-stage compressor (34) and the second one-stage compressor (35) are included in a single, multi-cylinder compressor unit. 9. Kølesystem ifølge krav 7 og 8, hvor en mellemkøler (48) er placeret mellem den første kompressorcylinder (36A) og den anden kompressorcylinder (36B) for at afkøle kølemidlet mellem et første kompressionstrin og et andet kompressionstrin.The cooling system of claims 7 and 8, wherein an intermediate cooler (48) is located between the first compressor cylinder (36A) and the second compressor cylinder (36B) to cool the refrigerant between a first compression step and a second compression step. 10. Kølesystem ifølge krav 9, hvilket kølesystem endvidere omfatter: en tredje ettrinskompressor (70) med en suge- (72) åbning og en afgangsåbning (74); og et tredje economizer-kredsløb (25C), der er konfigureret til at indsprøjte en tredje del af kølemidlet i sugeåbningen i den tredje ettrinskompressor.A cooling system according to claim 9, further comprising: a third one-stage compressor (70) having a suction (72) orifice and a discharge orifice (74); and a third economizer circuit (25C) configured to inject a third portion of the refrigerant into the suction port of the third one-stage compressor. 11. Kølesystem ifølge krav 10, hvilket kølesystem endvidere omfatter: en fjerde ettrinskompressor (80) med en sugeåbning (82) og en afgangsåbning (84); og et fjerde economizer-kredsløb (25D), der er konfigureret til at indsprøjte en fjerde del af kølemidlet i sugeåbningen på den fjerde ettrinskompressor.The cooling system of claim 10, further comprising: a fourth one-stage compressor (80) having a suction port (82) and a discharge port (84); and a fourth economizer circuit (25D) configured to inject a fourth portion of the refrigerant into the suction port of the fourth one-stage compressor. 12. Kølesystem ifølge krav 11, hvilket kølesystem endvidere omfatter: en femte ettrinskompressor (90) med en sugeåbning (92) og en afgangsåbning (94); og et femte economizer-kredsløb (25E), der er konfigureret til at indsprøjte en femte del af kølemidlet i sugeåbningen i den femte ettrinskompressor.The cooling system of claim 11, further comprising: a fifth one-stage compressor (90) having a suction port (92) and a discharge port (94); and a fifth economizer circuit (25E) configured to inject a fifth portion of the refrigerant into the suction port of the fifth stage compressor. 13. Kølesystem ifølge et hvilket som helst af de foregående krav, hvor kølemidlet er carbondioxid.A cooling system according to any one of the preceding claims, wherein the refrigerant is carbon dioxide. 14. Fremgangsmåde til anvendelse af et a kølesystem, hvilken fremgangsmåde omfatter: fordampning af et kølemiddel; komprimering af kølemidlet fra et lavere tryk til et højere tryk i en flerhed af kompressorer, hvilken flerhed af kompressorer indbefatter en totrinskompressor og mindst to ettrinskompressorer, hvor totrinskompressoren indbefatter en mellemkøler, der er konfigureret til at afkøle kølemidlet mellem et første kompressionstrin og et andet kompressionstrin; indsprøjtning af kølemidlet fra afgangsåbningen af hver kompressor direkte ind i en varmeafvisende varmeveksler og afkøling af kølemidlet i den varmeafvisende varmeveksler; føring af kølemidlet i en hovedkølemiddelbane gennem en flerhed af economizer-varmevekslere, der hver er indsat i et tilsvarende economizer-kredsløb, og i economizer-varmevekslerne afkøling af kølemidlet i hovedkølemiddelbanen ved anvendelse af kølemidlet i en economizer-bane i det tilsvarende economizer-kredsløb; indsprøjtning afen første del af kølemidlet fra et første economizer-kredsløb i en sugeåbning i én af ettrinskompressorerne; og indsprøjtning afen anden del af kølemidlet fra et andet economizer-kredsløb i en sugeåbning i en anden af ettrinskompressorerne; og hvor kompressorerne eventuelt indgår i en enkelt, flercylindret kompressorenhed.A method of using an a refrigeration system, comprising: evaporating a refrigerant; compressing the refrigerant from a lower pressure to a higher pressure in a plurality of compressors, the plurality of compressors including a two-stage compressor and at least two one-stage compressors, the two-stage compressor including an intermediate cooler configured to cool the refrigerant between a first compression stage and a second compression stage. ; injecting the refrigerant from the outlet port of each compressor directly into a heat-rejecting heat exchanger and cooling the refrigerant in the heat-rejecting heat exchanger; passing the refrigerant in a main refrigerant path through a plurality of economizer heat exchangers each inserted into a corresponding economizer circuit, and in the economizer heat exchangers cooling the refrigerant in the main refrigerant path using the refrigerant in an economizer path in the corresponding economizer circuit ; injecting the first portion of the refrigerant from a first economizer circuit into a suction opening in one of the one-stage compressors; and injecting the second portion of the refrigerant from another economizer circuit into a suction port in another of the one-stage compressors; and wherein the compressors are optionally included in a single, multi-cylinder compressor unit. 15. Fremgangsmåde ifølge krav 14, hvor kølemidlet er carbondioxid.The process of claim 14, wherein the refrigerant is carbon dioxide.
DK06739730.7T 2006-03-27 2006-03-27 COOLING SYSTEM WITH PARALLEL STEP ECONOMIZER CIRCUIT AND ONE OR 2-STEP HEAD COMPRESSOR DK2005079T3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/011097 WO2007111594A1 (en) 2006-03-27 2006-03-27 Refrigerating system with parallel staged economizer circuits and a single or two stage main compressor

Publications (1)

Publication Number Publication Date
DK2005079T3 true DK2005079T3 (en) 2017-02-06

Family

ID=38541423

Family Applications (1)

Application Number Title Priority Date Filing Date
DK06739730.7T DK2005079T3 (en) 2006-03-27 2006-03-27 COOLING SYSTEM WITH PARALLEL STEP ECONOMIZER CIRCUIT AND ONE OR 2-STEP HEAD COMPRESSOR

Country Status (4)

Country Link
US (1) US20120117988A1 (en)
EP (1) EP2005079B1 (en)
DK (1) DK2005079T3 (en)
WO (1) WO2007111594A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139037A (en) * 2007-12-07 2009-06-25 Mitsubishi Heavy Ind Ltd Refrigerant circuit
JP4404148B2 (en) * 2008-02-01 2010-01-27 ダイキン工業株式会社 Economizer
US20100326100A1 (en) * 2008-02-19 2010-12-30 Carrier Corporation Refrigerant vapor compression system
US9068765B2 (en) 2010-01-20 2015-06-30 Carrier Corporation Refrigeration storage in a refrigerant vapor compression system
EP2646761B1 (en) 2010-11-30 2019-05-15 Carrier Corporation Ejector cycle
US9353980B2 (en) * 2013-05-02 2016-05-31 Emerson Climate Technologies, Inc. Climate-control system having multiple compressors
EP3023712A1 (en) * 2014-11-19 2016-05-25 Danfoss A/S A method for controlling a vapour compression system with a receiver
US10465962B2 (en) 2015-11-16 2019-11-05 Emerson Climate Technologies, Inc. Compressor with cooling system
DK179079B1 (en) * 2016-03-15 2017-10-09 Hsl Energy Holding Aps Heat pump
CA3061617A1 (en) * 2017-05-02 2018-11-08 Rolls-Royce North American Technologies Inc. Method and apparatus for isothermal cooling
WO2019143835A1 (en) * 2018-01-18 2019-07-25 Maynard Mark J Gaseous fluid compression with alternating refrigeration and mechanical compression
US11585608B2 (en) 2018-02-05 2023-02-21 Emerson Climate Technologies, Inc. Climate-control system having thermal storage tank
US11149971B2 (en) * 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US10598395B2 (en) 2018-05-15 2020-03-24 Emerson Climate Technologies, Inc. Climate-control system with ground loop
US11346583B2 (en) 2018-06-27 2022-05-31 Emerson Climate Technologies, Inc. Climate-control system having vapor-injection compressors
PL3628940T3 (en) 2018-09-25 2022-08-22 Danfoss A/S A method for controlling a vapour compression system based on estimated flow
EP3628942B1 (en) 2018-09-25 2021-01-27 Danfoss A/S A method for controlling a vapour compression system at a reduced suction pressure
CN112444005B (en) * 2020-12-04 2021-11-30 珠海格力电器股份有限公司 Heat pump system, air conditioner, and method for controlling heat pump system
US20230053834A1 (en) * 2021-08-21 2023-02-23 Carrier Corporation Enhanced economizer operation in a chiller
DE102022105047A1 (en) 2022-03-03 2023-09-07 Man Energy Solutions Se System and method for generating steam and/or heat
WO2024020019A1 (en) * 2022-07-18 2024-01-25 Johnson Controls Tyco IP Holdings LLP Compressor system for heating, ventilation, air conditioning & refrigeration system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2024323A (en) * 1932-07-01 1935-12-17 Baldwin Southwark Corp Apparatus for compressing gaseous fluids
JPS5710063A (en) * 1980-06-20 1982-01-19 Hitachi Ltd Refrigerating plant
US4457768A (en) * 1982-12-13 1984-07-03 Phillips Petroleum Company Control of a refrigeration process
US4947655A (en) * 1984-01-11 1990-08-14 Copeland Corporation Refrigeration system
US5062274A (en) * 1989-07-03 1991-11-05 Carrier Corporation Unloading system for two compressors
US5103650A (en) * 1991-03-29 1992-04-14 General Electric Company Refrigeration systems with multiple evaporators
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
US5174123A (en) * 1991-08-23 1992-12-29 Thermo King Corporation Methods and apparatus for operating a refrigeration system
DE69618976T2 (en) * 1995-11-02 2002-08-29 Aaf Mcquay Inc SCROLL COMPRESSORS
US5768901A (en) * 1996-12-02 1998-06-23 Carrier Corporation Refrigerating system employing a compressor for single or multi-stage operation with capacity control
CN1171050C (en) * 1999-09-24 2004-10-13 三洋电机株式会社 Multi-stage compression refrigerating device
EP1099918A1 (en) * 1999-11-09 2001-05-16 Maersk Container Industri As Cooling unit
US6460371B2 (en) * 2000-10-13 2002-10-08 Mitsubishi Heavy Industries, Ltd. Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
US6694750B1 (en) * 2002-08-21 2004-02-24 Carrier Corporation Refrigeration system employing multiple economizer circuits
US7424807B2 (en) * 2003-06-11 2008-09-16 Carrier Corporation Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
EP1782001B1 (en) 2004-08-09 2016-11-30 Carrier Corporation Flashgas removal from a receiver in a refrigeration circuit
US7628027B2 (en) * 2005-07-19 2009-12-08 Hussmann Corporation Refrigeration system with mechanical subcooling
EP1775531A1 (en) * 2005-10-12 2007-04-18 GTI Koudetechnik B.V. Apparatus and system for cooling and/or freezing and defrosting
DK2008036T3 (en) * 2006-03-27 2016-01-18 Carrier Corp Cooling system with parallel incremental economizer circuits using multi-stage compression
US8322150B2 (en) * 2006-03-27 2012-12-04 Carrier Corporation Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor

Also Published As

Publication number Publication date
US20120117988A1 (en) 2012-05-17
WO2007111594A1 (en) 2007-10-04
EP2005079A4 (en) 2011-11-30
EP2005079A1 (en) 2008-12-24
EP2005079B1 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
DK2005079T3 (en) COOLING SYSTEM WITH PARALLEL STEP ECONOMIZER CIRCUIT AND ONE OR 2-STEP HEAD COMPRESSOR
EP2008039B1 (en) Refrigerating system with parallel staged economizer circuits discharging to interstage pressures of a main compressor
DK2008036T3 (en) Cooling system with parallel incremental economizer circuits using multi-stage compression
JP5028481B2 (en) Multistage compressor unit for refrigeration system
JP5196452B2 (en) Transcritical refrigerant vapor compression system with charge control
US9989280B2 (en) Cascade cooling system with intercycle cooling or additional vapor condensation cycle
US8561425B2 (en) Refrigerant vapor compression system with dual economizer circuits
US8671703B2 (en) Refrigerant vapor compression system with flash tank economizer
DK2821731T3 (en) Coolant vapor compression system with expansion tank receiver
DK2340406T3 (en) Liquid Vapor Separation in Transcritical Refrigerant Cycle
CN101568776B (en) Economized refrigeration cycle with expander
CN101946137B (en) Refrigerant vapor compression system
JPH09166363A (en) Freezing cycle apparatus
JP2010007975A (en) Economizer cycle refrigerating apparatus
CN103196250A (en) Refrigerating apparatus and refrigerating unit
JP6712766B2 (en) Dual refrigeration system
JP2013217602A (en) Heat source device, refrigeration air conditioner, and control device