DK200200186A - Device and method for detecting wind noise - Google Patents

Device and method for detecting wind noise Download PDF

Info

Publication number
DK200200186A
DK200200186A DK200200186A DKPA200200186A DK200200186A DK 200200186 A DK200200186 A DK 200200186A DK 200200186 A DK200200186 A DK 200200186A DK PA200200186 A DKPA200200186 A DK PA200200186A DK 200200186 A DK200200186 A DK 200200186A
Authority
DK
Denmark
Prior art keywords
correlation
signal
wind noise
signals
microphone
Prior art date
Application number
DK200200186A
Other languages
Danish (da)
Inventor
Petersen Kim Spetzler
Bogason Gudmundur
Kjems Ulrik
Nielsen Thomas Bo
Original Assignee
Oticon As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oticon As filed Critical Oticon As
Priority to DK200200186A priority Critical patent/DK175163B1/en
Publication of DK200200186A publication Critical patent/DK200200186A/en
Application granted granted Critical
Publication of DK175163B1 publication Critical patent/DK175163B1/en

Links

Landscapes

  • Circuit For Audible Band Transducer (AREA)

Description

Patentkrav 1. Indretning til detektering af tilstedeværelsen af vindstøj, i en serie af mikrofoner omfattende to eller flere separate lydindgangsåbninger, og et element til konvertering fra lyd til elektrisk signal eller mikrofon i forbindelse med hver lydindgangsåbning, hvor mikrofonerne genererer hver sit tidsafhængige signal og hvor disse signaler ledes til en signal processeringsindretning, der tilvejebringer en eller flere udgangssignaler, hvor processeringsindretningen har midler til at kombinere mikrofonsignaleme med henblik på at danne et enkelt direktionelt signal kendetegnet ved, at signalprocesseringsindretningen yderligere har midler til at generere en første tidsafhængig korrelationsfunktion dannet af autokorrelationsfunktions- værdier fra en af mikrofonsignaleme før dette signal kombineres med andre signaler og yderligere har midler til at generere et andet tidsafhængigt korrelationssignal dannet af autokorrelationsfunktions- værdier af det enkelte direktionelle signal og hvor signalprosseceringsindretningen har midler til at sammenligne værdierne fra det første og det anden korrelationssignal, og at midlerne til at sammenligne er indrettet til at detektere den tilstand, at det andet korrelationssignals størrelse er højere en det første korrelationssignals størrelse hvorved nævnte tilstand er indikation for tilstedeværelsen af vindstøj. 2. Indretning ifølge krav 1, kendetegnet ved, at omfatte et lavpas-filter mellem mikrofonerne og midlerne til at generere korrelationssignaleme. 3. Indretning ifølge en eller flere af de foregående krav, kendetegnet ved, at en middelværdig generator er indrettet til hver af korrelationssignaleme. 4. Indretning ifølge krav 1, kendetegnet ved, at midlerne til at sammenligne den første korrelationsfunktion med den anden korrelationsfunktion er indrettet til at afgøre at vindstøj er tilstede når som helst middelværdien af den anden korrelationsfunktion er mere end 1,5 og fortrinsvist mere end 2,0 gange større en middelværdien af den første korrelationsfunktion. 5. Indretning ifølge et af de foregående krav, kendetegnet ved, at midlerne til at sammenligne er indrettet til kun at blive aktive, når et givet niveau i signal-energi detekteres i mikrofonkanaleme. 6. Fremgangsmåde til detektering af tilstedeværelsen af vindstøj i et system omfattende to eller flere mikrofonelementer, der hver har sin lydindgangsåbning, og hvor mikrofonsignaleme kombineres med henblik på at generere et enkelt direktionelt signal, kendetegnet ved, at et første korrelationssignal genereres, dannet af autokorrelationsfunktionsværdier fra den ene af nævnte mikrofonsignaler, og ved at andet korrelationssignal genereres, dannet af autokorrelationsfunktionsværdier af det direktionelle signal, og hvor værdien af det første korrelationssignal sammenlignes med værdien af det andet korrelationssignal, og at en vindstøjsindikator aktiveres når værdien af det andet korrelationssignal er højere end værdien af det første korrelationssignal. 7. Fremgangsmåde ifølge krav 6, kendetegnet ved, at signalerne fra mikrofonerne sendes gennem et lav-pas filter forud for dannelse af korrelationssignaleme. 8. Fremgangsmåde ifølge krav 6 kendetegnet ved, at hver af korrelationsfunktionerne genereres kontinuerlig alene under brug af enkeltstående værdier til et givet tidspunkt. 9. Fremgangmåde ifølge krav 6, kendetegnet ved, at en middelværdi genereres for hver af korrelationsfunktionssignaleme. 10. Fremgangsmåde ifølge krav 6 kendetegnet ved, at betingelsen for detektering af vindstøj er opfyldt når middelværdien af den anden korrelationsfunktion er mere end 1,5, fortrinsvist 2,0 gange højere end middelværdien af den første korrelationsfunktion. 11. Fremgangsmåde ifølge krav 6 kendetegnet ved, at midlerne til sammenligning kun bliver aktive når et givet niveau for signalenergien i mikrofonkanaleme detekteres.A claim for detecting the presence of wind noise, in a series of microphones comprising two or more separate audio input ports, and an element for converting from audio to electrical signal or microphone in connection with each audio input port, wherein the microphones each generate their own time-dependent signal and wherein these signals are passed to a signal processing device which provides one or more output signals wherein the processing device has means for combining the microphone signals to form a single directional signal characterized in that the signal processing device further has means for generating a first time dependent correlation function formed by autocorrelation function - values from one of the microphone signals before combining this signal with other signals and further having means for generating another time-dependent correlation signal formed by autocorrelation function values of the individual directional a signal and wherein the signal processing device has means for comparing the values of the first and second correlation signals, and the means for comparing are arranged to detect the condition that the size of the second correlation signal is higher than the size of the first correlation signal, thereby indicating for the presence of wind noise. Device according to claim 1, characterized in that it comprises a low-pass filter between the microphones and the means for generating the correlation signals. Device according to one or more of the preceding claims, characterized in that a medium generator is arranged for each of the correlation signals. Device according to claim 1, characterized in that the means for comparing the first correlation function with the second correlation function are arranged to determine that wind noise is present at any time the mean value of the second correlation function is more than 1.5 and preferably more than 2 , 0 times greater than the mean of the first correlation function. Device according to one of the preceding claims, characterized in that the means for comparing are arranged to become active only when a given level of signal energy is detected in the microphone channels. A method of detecting the presence of wind noise in a system comprising two or more microphone elements, each having its audio input port, and wherein the microphone signals are combined to generate a single directional signal, characterized by generating a first correlation signal formed by autocorrelation function values. from one of said microphone signals, and by generating the second correlation signal, formed by autocorrelation function values of the directional signal and comparing the value of the first correlation signal with the value of the second correlation signal and activating a wind noise indicator when the value of the second correlation signal is higher than the value of the first correlation signal. Method according to claim 6, characterized in that the signals from the microphones are transmitted through a low-pass filter prior to the formation of the correlation signals. Method according to claim 6, characterized in that each of the correlation functions is generated continuously only using single values for a given time. Method according to claim 6, characterized in that an average value is generated for each of the correlation function signals. Method according to claim 6, characterized in that the condition for detecting wind noise is fulfilled when the mean value of the second correlation function is more than 1.5, preferably 2.0 times higher than the average value of the first correlation function. Method according to claim 6, characterized in that the means for comparison only become active when a given level of the signal energy in the microphone channels is detected.

DK200200186A 2002-02-07 2002-02-07 Equipment and method are for detection of wind noise in series of microphones incorporating two or more sound inlet apertures separately located DK175163B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK200200186A DK175163B1 (en) 2002-02-07 2002-02-07 Equipment and method are for detection of wind noise in series of microphones incorporating two or more sound inlet apertures separately located

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK200200186 2002-02-07
DK200200186A DK175163B1 (en) 2002-02-07 2002-02-07 Equipment and method are for detection of wind noise in series of microphones incorporating two or more sound inlet apertures separately located

Publications (2)

Publication Number Publication Date
DK200200186A true DK200200186A (en) 2003-08-08
DK175163B1 DK175163B1 (en) 2004-06-21

Family

ID=27675516

Family Applications (1)

Application Number Title Priority Date Filing Date
DK200200186A DK175163B1 (en) 2002-02-07 2002-02-07 Equipment and method are for detection of wind noise in series of microphones incorporating two or more sound inlet apertures separately located

Country Status (1)

Country Link
DK (1) DK175163B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2447320A (en) * 2007-03-08 2008-09-10 Sony Corp Reducing a wind noise component of an input audio signal that has a frequency less than or equal to a predetermined frequency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2447320A (en) * 2007-03-08 2008-09-10 Sony Corp Reducing a wind noise component of an input audio signal that has a frequency less than or equal to a predetermined frequency
GB2447320B (en) * 2007-03-08 2009-05-20 Sony Corp Signal processing apparatus, signal processing method, and program recording medium

Also Published As

Publication number Publication date
DK175163B1 (en) 2004-06-21

Similar Documents

Publication Publication Date Title
CN102301216B (en) leak detector
JP4745170B2 (en) Water leakage detection device and water leakage detection method
BRPI0817731A8 (en) multiple voice microphone activity detector
JPH0230455B2 (en)
NO20065911L (en) Methods and systems for determining signatures for marine seismic source arrays for seismic analysis
GB2367362A (en) Detecting leaks in water distribution systems
CN105118515A (en) Method for detecting wind noise based on microphone array
ATE484894T1 (en) SENSOR NETWORK CALIBRATION
WO2009001451A1 (en) Detector and tester
DK200200186A (en) Device and method for detecting wind noise
EP1526755A3 (en) Detecting acoustic echoes using microphone arrays
Lang et al. Application-oriented audio watermark benchmark service
RU2002102334A (en) The method of determining the location of a leak in the pipeline and a device for its implementation
DK200000056A (en) gas analyzer
JP4031587B2 (en) Method and apparatus for measuring sound pressure level
JP6370725B2 (en) Waveform data collection device, water leakage determination device, water leakage determination system, and program for water leakage determination
JP3933235B2 (en) Vortex flow meter
Waters et al. Targeting faulty bearings for an ocean turbine dynamometer
Marineau et al. Surrogate bedload monitoring using hydrophones in the gravel-bedded Cedar river, Washington
Piotto et al. Low voltage acoustic particle velocity sensor with integrated low noise chopper pre-amplifier
JPS5739367A (en) Video signal normalizing circuit of sonar device
JP3658975B2 (en) Electromagnetic flow meter
RU2413128C1 (en) Device for acoustic control of transfer of objects inside pipes
JP2005308510A5 (en)
JPH0236320A (en) Abnormality diagnosing device for equipment

Legal Events

Date Code Title Description
PBP Patent lapsed

Effective date: 20190207