DK180365B1 - A shaft coupling - Google Patents

A shaft coupling Download PDF

Info

Publication number
DK180365B1
DK180365B1 DKPA201970312A DKPA201970312A DK180365B1 DK 180365 B1 DK180365 B1 DK 180365B1 DK PA201970312 A DKPA201970312 A DK PA201970312A DK PA201970312 A DKPA201970312 A DK PA201970312A DK 180365 B1 DK180365 B1 DK 180365B1
Authority
DK
Denmark
Prior art keywords
pulley
shaft
section
coupling
shaft coupling
Prior art date
Application number
DKPA201970312A
Other languages
Danish (da)
Inventor
Rendbeck Voetmann Thomas
Singer Hansen Peter
Feigler Szabolcs
Original Assignee
Mountain Top Ind Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mountain Top Ind Aps filed Critical Mountain Top Ind Aps
Priority to DKPA201970312A priority Critical patent/DK180365B1/en
Priority to PCT/EP2020/062296 priority patent/WO2020229214A1/en
Publication of DK201970312A1 publication Critical patent/DK201970312A1/en
Application granted granted Critical
Publication of DK180365B1 publication Critical patent/DK180365B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/64Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts
    • F16D3/68Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts the elements being made of rubber or similar material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J7/00Non-fixed roofs; Roofs with movable panels, e.g. rotary sunroofs
    • B60J7/02Non-fixed roofs; Roofs with movable panels, e.g. rotary sunroofs of sliding type, e.g. comprising guide shoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/10Doors arranged at the vehicle rear
    • B60J5/12Doors arranged at the vehicle rear slidable; foldable
    • B60J5/14Doors arranged at the vehicle rear slidable; foldable of roller-blind type made of rigid elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

A shaft coupling (1) for a drive system (69) for a roll-up truck bed cover serves to absorb jolts and vibrations when the truck bed cover is rolled by rotating the shaft that extends between opposite shaft couplings (1). The shaft coupling (1) comprises a driven shaft pulley (2) coupled to a timing belt pulley (3) and a flexible damping member (5) disposed between the driven shaft pulley (2) and the timing belt pulley (3).

Description

. DK 180365 B1 The present invention relates to a shaft coupling for a drive system for a roll-up truck bed cover, which shaft coupling comprises a driven shaft pulley coupled to a timing belt pulley.
The applicant’s international patent application no. PCT/DK2019/050125 discloses a shaft coupling for an electrically driven truck bed cover. A motor driven shaft pulley wheel is coupled to a timing belt pulley wheel at one of the side wall of the truck to move a timing belt and thus the hard truck bed cover to be rolled-up by means of a timing belt and a shaft located in a canister behind the driver's cab. A corresponding shaft coupling and arrangement of electrical motor and pulley wheels is provided at the opposite side wall.
To make this known system work smoothly the operation of the electrical motors is synchronized so that the opposite ends of the slats of the array of slats of the truck bed covers moves at the same speed. Despite this synchronization external forces, the weight of the truck bed cover, foreign objects on the top of the truck bed cover, in the canister, or objects accidentally jamming the drive system still influence on the operation of the truck bed cover.
It is a main aspect of the present invention to provide an improved shaft coupling that counterbalance misalignment of the axes of the operatively interconnected driven shaft pulley wheel and timing belt pulley wheel during operation of the truck bed cover.
In yet an aspect is provided a shaft coupling for operating a truck bed cover, wherein an electrical motor disposed at one side wall rotates the shaft to operate timing belts at both opposite truck bed sidewall.
The novel and unique whereby these and other aspects are achieved by the present invention consist in that a flexible
, DK 180365 B1 damping member is disposed between the driven shaft pulley and the timing belt pulley.
Within the context of the present invention the term “flexible” in relation to the flexible damping member means that the flexible damping member is capable of bending easily without breaking. The term “flexible” includes that the flexible damping member resiliently absorbs jolts and vibrations when the truck bed cover rolls for improved control of the rolling up the truck bed cover using a rotation means, e.g. a shaft, optionally rolling the truck bed cover onto and off the shaft. The flexible damping member deforms in case of misalignment of the axis of the driven shaft pulley wheel and the axis of the timing belt pulley wheel and reassumes its shape once the misalignment stops, to maintain a continuous smooth operation of the truck bed cover. In case the misalignment continues during operating the truck bed cover, e.g. in case one end of an array of slats moves faster than the opposite end, the flexible damping member effectively prevents unintended disconnecting of the driven shaft pulley wheel from the timing belt pulley wheel until stable driving conditions are achieved again, typically by self-adjusting of the opposite drive system so that the slats again become parallel with the axis of the drive shaft.
The term “damping” covers the ability to reduce, compensate for, countervail and/or neutralize at least some of the resistive forces and impact load that might occur at and influence on the shaft coupling due to exterior forces and events when the shaft is rotated, which forces on the driven shaft pulley include forward and reverse propulsion as well as the braking and turning forces. Such properties are particularly in demand in relation to hard truck bed covers that are heavier than soft truck bed covers to obtain a smooth and trouble-free operation and keep that slat as close to
2 DK 180365 B1 parallel with the shaft as possible, as well as to reduce noise during operation of the truck bed cover.
Accordingly, the flexible damping member advantageously increases the ability of the truck bed cover to be driven equally on both sides thereof, so that any twisting or distortion of the roll-up truck bed cover is completely avoided and the roll-up truck bed cover can reciprocate smoothly and easily. It is thus avoided that the slats of the roll-up truck bed cover are bent or pulled askew even if the truck bed cover utilizes just one motor at one side wall to drive the truck bed cover in both opposite coupling rails. Preferably the flexible damping member can be made of rubber or other elastomeric materials, but any durable material having similar resilient and flexible properties can be used; such properties include but are not limited to one or more of high abrasion resistance, high tear resistance, low compression set, high resilience, high tensile strength, and high tensile modulus. The driven shaft pulley may have a first shaft pulley end part having a shaft coupling means, an opposite second shaft pulley end part having a first coupling means, and a toothed intermediate shaft pulley part disposed axially between the first shaft pulley end part and the second shaft pulley end part to engage a driving belt, which is driven by an electrical motor. The toothed intermediate shaft pulley part may have first teeth that engage second teeth of the motorized driving belt thereby enabling rotating the shaft. The timing belt pulley may have a first timing belt pulley end part having a second coupling means opposite a second timing belt pulley end part, optionally in form of an axle journal, and a toothed intermediate timing belt pulley part disposed between the first timing belt pulley end part and the second
2 DK 180365 B1 timing belt pulley end part, wherein the first coupling means can be configured to couple to the second coupling means with the flexible damping member disposed in between said first coupling means and said second coupling means to absorb, counter and reduce existing negative effects of misalignment of the axes of the driven shaft pulley and timing belt pulley and serve as a precautionary means to prevent occurrence of such negative effects. The damping member advantageously serves as a displacement-absorbing structure.
The toothed intermediate timing belt pulley part may have third teeth to engage fourth teeth of a timing that runs the truck bed cover.
The first coupling means and the second coupling means can have different structural coupling features, the structure of which can have different designs.
In a preferred embodiment the first coupling means can include a socket section extending from a socket opening a distance along the first shaft pulley end part, which socket section can have a bore with bore sections in form of a first bore section and a second bore section in open radial communication with each other along a lengthwise extending common narrow central section.
The first bore section and second bore section may have cross sections configured as two sectors of a circle, which sectors of a circle radiate from a central driven shaft pulley axis.
Preferably the two sectors of the circle can be symmetrically arranged about the central driven shaft pulley axis. The two sectors of the circle may be identical so that the insertion of the second coupling means can be made in different angular orientations.
. DK 180365 B1 The second coupling means may include a plug section that extends from a free plug end along the longitudinal axis of the first timing belt pulley end part, which plug section may have at least one protruding coupling leg to engage a bore section of the socket section. Optionally at least one protruding coupling leg may extend via a tubular plateau section into the toothed intermediate timing belt pulley part. The tubular plateau section may serve at a stop face for the first coupling means.
Preferably the plug section may have at least two protruding coupling legs to be plugged into same bore section. In the alternative one protruding leg is inserted into a respective one of the first bore section and the second bore section.
The first bore section and the second bore section may have cross sections configured as two sectors of a circle, which sectors of a circle may radiate from a central driven shaft pulley axis to be widest at the periphery of the circle and smallest at the common narrow central section. Cross sections shaped as sectors of a circle defines solid ribs having triangular cross sections along the length of the socket section, which ribs have lengthwise extending side walls that serve to engage the flexible damping member.
The flexible damping member can for example be configured as a cross having four radiating arms joined in common cross center. Radiating arms may fit inside the bore sections when the cross center of the cross-shaped flexible damping member is inserted into the common narrow central section of the socket section. The shape of a cross confers flexibility not only due to the material properties but also by virtue of shape in that the radiating arms can yield to the sides, towards each other, and away from each other when the shaft pulley wheel and the timing belt pulley wheel rotate.
; DK 180365 B1 The cross-shaped flexible damping member may have a thickness corresponding substantially to the length of the socket section, and the center of the cross may fit inside the narrow section. In a preferred embodiment the two sectors of the circle are symmetrically arranged about the central driven shaft pulley axis to receive opposite pairs of arms of the cross-shaped flexible damping member. Preferably the two sectors of the circle can be identical and the cross symmetrical, whereby manufacturing costs can be reduced and assembling made very easy in that the chance of disorientation of the plug sector, when and during engaging the socket sector correct, is little. At least one of the first bore section and the second bore section may have an at least partly closed end opposite the socket opening. Such a partly closed end may serve to stop the axial insertion of at least some of the length the legs of the plug section inside the socket section, as well as serving as an abutment face for the damping member to avoid over- insertion.
One or both of the first bore section and the second bore section can have a cross section wherein the length of an arc of the sector of the circle of said bore section corresponds to or are shorter than a angular maximum distance between adjacent arms of a pair of arms of the cross-shaped flexible damping member, whereby a pair of arms can abut or engage the lengthwise extending side walls of the ribs between said bore sections, optionally applying a slight compression force to the adjacent arms. Said bore sections are thus substantially V- shaped to engage two diverging arms of the flexible damping
; DK 180365 B1 member thereby delimiting two axially extending coupling spaces between said adjacent arms of a pair of arms.
The present invention also relates to an electrical drive system for a roll-up truck bed cover comprising the flexible shaft coupling described above, wherein at least one driving belt drives a shaft pulley by means of at least one electrical motor. A driving belt is coupled to the toothed intermediate shaft pulley part of the timing belt pulley, and a timing belt is coupled to a toothed intermediate timing belt pulley part of the timing belt pulley. Optionally, a shaft coupling having a damping member may be provided at both ends of the shaft.
Yet an option is the provision of electrical motor means to rotate the shaft and the pulley wheels at opposite ends of the shaft as well. The invention will now be described in further detail with references to the accompanying drawing, in which fig. 1 is a perspective exploded side view of the shaft coupling, fig. 2 shows the same in assembled state, fig. 3 shows the driven shaft pulley with inserted damping member, fig. 4 shows the driven shaft pulley from the second shaft pulley end part, fig. 5 is a perspective, slightly inclined, view of the driven shaft pulley from and inside the socket section of the first shaft pulley end part,
fig. 6a is a cross sectional view of the driven shaft pulley taken along line VIa - VIa in fig. 4 close to the first shaft pulley end part,
fig. 6b shows the same taken along line VIb - VIb in fig. 4, thus closer to the driving belt flange than the section of fig. 6a,
fig. 7 is a longitudinal sectional view taken along line VII - VII of fig. 5, fig. 8 is a longitudinal sectional view taken along line VIII - VIII of fig. 5,
fig. 9 shows the timing belt pulley seen in fig. 1 but from the plug section, fig. 10 is an axial side view of the same,
fig. 11 is a slightly inclined end view of the timing belt pulley seen from the plug section, fig. 12 is sectional view along the central longitudinal axis,
and taken along line XII - XII in fig. 9, fig. 13 corresponds to fig. 12 but the section is offset the longitudinal axis of the timing belt pulley,
fig. 14 is a sectional view along the central longitudinal axis of the assembled coupling shaft seen in fig. 2, and taken along line XIV - XIV, fig. 15 corresponds to fig. 14 but the section is taken along a cord offset the longitudinal axis of the assembled coupling shaft,
. DK 180365 B1 fig. 16 shows, in perspective, a fragment of a drive system with the coupling shaft, figs. 17 shows the encircled fragment of fig. 17 in enlarged scale view, fig. 18 shows the same further enlarged and without driving belt and drive wheel, and fig. 19 corresponds to fig. 17 but without the journal bearing for the timing belt pulley and the tensioning rollers. The perspective exploded view of fig. 1 shows a shaft coupling arranged axially aligned with a shaft 4 along common axis X. The shaft coupling 1 has a driven shaft pulley 2 to be coupled to a timing belt pulley 3 opposite the shaft 4. A cross-shaped flexible damping member 5 is disposed between the driven shaft pulley 2 and the timing belt pulley 3.
The driven shaft pulley 2 has a first shaft pulley end part 6, that, via a toothed intermediate shaft pulley part 7, extends into an opposite second shaft pulley end part 8. The toothed intermediate shaft pulley part 7 has first teeth 9 for engaging second teeth 78 of a driving belt 74 (see fig. 18). The timing belt pulley 3 has a first timing belt pulley end part 10 that via a toothed intermediate timing belt pulley part 11 extends into a second timing belt pulley end part in form of an axle journal 12. The toothed intermediate timing belt pulley part 11 has third teeth 13 for engaging fourth teeth 78 of a timing belt 70 (see fig. 19). The second shaft pulley end part 8 has a first bore section 14 that via a central narrow section 15 extends into a second bore section 16. Said sections 14,15,16 provide the first coupling
10 DK 180365 B1 means. A driving belt flange 17 is positioned between the second shaft pulley end part 8 and the toothed intermediate shaft pulley part 7 to provide a guide face to control lateral movement of the driving belt (not shown). The cross sections of the bore-sections 14,16 are substantially V-shaped, where the apices meet in the narrow section 15. Similarly a timing belt flange 18 is positioned between the toothed intermediate timing belt pulley part 11 and the first timing belt pulley end part 10 to provide a guide face to control lateral displacement of the timing belt 70, e.g. in case of slacking. The first timing belt pulley end part 10 has a second coupling means 19 having a plug section 20 configured as two protruding coupling legs 21,22 that extend in parallel from a free plug end 23 into a tubular plateau section 24, where the timing belt flange 18 is positioned between the toothed intermediate timing belt pulley part 11 and the plug section 20.
The cross-shaped flexible damping member 5 has two pairs of arms, a first pair of arms 25,26 that flexibly fits inside the first bore section 14 and a second pair of arms 27,28 that flexibly fits inside the second bore section 16. The arms 25,26,27,28 radiate from a common cross center 29 and have widths increasing from said common cross center 29 towards free arm ends 25',26',27',28'. Lengthwise extending ribs 30,31 having triangular cross sections flank the bore sections 14,16 and provide four sidewalls 32 for flexible abutment of the arms 25,26,27,28 when the cross-shaped flexible damping member 5 is inserted in pairs into the bore sections 14,16, as shown in fig. 3, via the socket opening 34. Two opposite sidewalls 31 converge towards the narrow section 15 to obtain the V-shapes of the bore cross sections 14,16. The cross-shaped flexible damping member 5 fits
DK 180365 B1 neatly inside the second shaft pulley end part 8, which second shaft pulley end part 8 serves as a socket section 33 with a socket opening 34.
The socket opening 34 has the same outline as the cross section of the bore sections 14,16 in combination with the common central section 15, which outline may be substantially figure eight-shaped, hourglass-shaped or keyhole-shaped, so that when the arms 25,26 of the flexible damping member 5 is inserted in the first bore section 14 a first coupling space 35 for the first protruding leg 20 of the plug section 10 is delimited between said arms 25,26. Similarly when the arms 27,28 are inserted into the second bore section 16 a second coupling space 36 for the second protruding leg 21 of the plug section 10 is delimited between said arms 27,28.
Fig. 3 shows the driven shaft pulley 2 with inserted damping member 5.
Fig. 4 shows said driven shaft pulley 2 from the second shaft pulley end part 6, which second shaft pulley end part 6 has a rectangular main shaft coupling hole 37 that constitutes the female part that mates together with a correspondingly shaped male end part 38 of the shaft 4. The mating rectangular cross section of the main shaft coupling hole 37 ensures that the shaft 4 easily can couple to the driven shaft pulley 2 to prevent mutual rotation of said parts 2,4 in relation to each other, and to ensure that the shaft 4 is rotated by the driven shaft pulley 2. To further connect said parts 2,4 in correct position, the shaft 4 has longitudinal extending shaft ribs 39 and 1s hollow by a lengthwise extending shaft bore 42 that receives a tongue 41 that centrally protrudes coaxial inside the main shaft coupling hole 37 of the second shaft pulley end part 8. The main shaft coupling hole 37 has longitudinal extending first peripheral grooves 40 to engage the shaft ribs
39. The tongue 41 delimits a coupling annulus 44 that makes the
> DK 180365 B1 structural coupling of the second shaft pulley end part 6 and the shaft 4 safe and efficient. The tongue 41 has a lengthwise extending second peripheral groove 43 to engage a shaft rib 39 that faces inside the main shaft coupling hole 37. The arrangement of grooves 43 and ribs 39 orientates the driven shaft pulley 2 and the shaft in the proper axial interlocking position in relation to each other. Fig. 5 is a perspective, slightly inclined, view of the driven shaft pulley 2 from and inside the socket opening 34 of the socket section 33 of the second shaft pulley end part 8. At the transition into the toothed intermediate shaft pulley part 7, thus at the bottom of the socket section 33, is arranged a cross-shaped stop member 45.
The cross-shaped stop member 45 has a first traverse wall 46 that connects to the lengthwise extending ribs 30,31 that flank the side walls 32 of the bore sections 14,16. Crosswise the first traverse wall 46 1s a second traverse wall 47 that extends axially shorter than the first traverse wall 46, thus is farther from the socket opening 34. The first traverse wall 46 is thus longer and reaches closer to the socket opening 34 than the second traverse wall 47.
Radially extending shoulder ribs 48 extend angularly and radially in extension of opposite sidewalls 32 of the lengthwise extending ribs 30,31 a shorter radial distance than the radial distance of the lengthwise extending ribs 30,31 towards the center of the socket section 33, such as less than half the radius of the socket section 33. The free face 49 of a shoulder rib 48 is lengthwise retracted from the socket opening 34 but level with the first traverse wall 46.
As seen best in the sectional views of figs. 6a, 6b, 7 and 8 the lengthwise extending ribs 30,31, the shoulder ribs 48, the first traverse wall 46 and the second traverse wall 47 delimit
13 DK 180365 B1 two plug holes 50, as seen in fig. 6b, extending inside the bore sections 14,16. The two plug holes 50 extend axially in parallel and divide inside the toothed intermediate shaft pulley part 7 into four plug holes 50 at the second traverse wall 46, as seen in fig. 6a, to firmly, due to the damping member 5, resiliently clamp around the protruding legs 21,22 of the plug section 20.
The length of the socket section from the socket opening 34 to the first traverse wall 46 corresponds substantially to the thickness of the damping member 5 so that the free face 52 of the plateau section 24 can contact or at least get close to the front end 53 of the shaft pulley 2, as seen in fig. 2.
Figs. 9 - 11 show the timing belt pulley 2 from different angles to illustrate that the protruding coupling legs 21,22 are configured to fit into the coupling spaces 35,36 between opposite flexible arms 25,26;27,28 of the damping member 5 when said protruding coupling legs 21,22 are inserted inside the bore sections 14,16 to extend past said damping member 5 and reach into the plug holes 50 inside the toothed intermediate shaft pulley part 7 of the driven shaft pulley 2.
The first protruding coupling leg 21 of the plug section 20 has a first inner plug section part 54 in extension of the plateau section 25, which first inner plug section part 54 extends into a first outer plug section part 55 with a first free plug end
56. The second protruding coupling leg 22 of the plug section 20 has a second inner plug section part 57 in extension of the plateau section 25, which second inner plug section part 57 extends into a second outer plug section part 58 with a second free plug end 59.
The first inner plug section part 54 has a first outer curved face 60 with a curvature corresponding to the curvature of the sector of a circle of the cross section of the first bore
1 DK 180365 B1 section 14 opposite the narrow section 15 to mate against the interior wall defined by said sector of a circle. The angular length of the first outer curved face 60 is substantially as long as, or slightly shorter, than the curvature of the sector of the circle of the first bore section 14 to pass and fit inside the first coupling space 35. Similarly the second inner plug section part 57 has a second outer curved face 61 with a curvature corresponding to the curvature of the sector of a circle of the cross section of the second bore section 16, and the second inner plug section part 57 and the second outer plug section part 58 fit inside the second coupling space 36.
The cross sections of the first inner plug section part 54 and the second inner plug section part 57 are substantially triangular to mate inside the coupling spaces 35,36. The cross sections thus taper towards the longitudinal axis X of the timing belt pulley 3, which cross sections have respective first outer curved face 60 and second outer curved face 61 that via respective adjacent converging first side walls 62,63 and second side walls 64,65 provide the inner plug section parts 54,57 with the triangular cross section to fit in the coupling spaces 35,36 between the arms 25,26;27,28 of the damping member 5 to obtain a resilient, buffering and shock absorbing coupling of the timing belt pulley 3 and the drive shaft pulley 2.
The first outer plug section part 55 is a tapering of the first inner plug section part 54, and the second outer plug section part 58 is a tapering of the second inner plug section part 57. The outer plug section parts 55,58 can have various configurations, but as seen best in the sectional view of fig. 12 the outer plug section parts 55,58 can be longest at the respective center axes Y1,Y2 of a respective protruding leg 21,22, and decrease along the lengths of the outer plug section i DK 180365 B1 part 55,58 towards the inner plug section parts 54,57, optionally also tapering towards the periphery of the respective outer curved faces 60,61.
The bifurcated plug section 20 has a lengthwise extending gap 66 between the protruding coupling legs 21,22, and the bottom of the gap 66 serves as the stop face 67 that contacts the common cross center 29 when the front face 52 of the plateau section 24 contacts the front face of the damping member 5.
As seen in fig. 1 the axle journal 12 is partly hollow with four lengthwise extending channels delimited by reinforcing ribs 68.
Figs. 14 and 15 are sectional views along the central longitudinal axis X of the assembled coupling shaft 1 and illustrate the placement of the protruding coupling legs 21,22 inserted in the coupling spaces 35,36 delimited by the arms 25,26,27,28 of the damping member 5 and further into the plug holes 50 of the bore sections 14,16.
Fig. 16 shows in perspective a fragment of a drive system 69 utilizing the coupling shaft 1. The drive system 69 drives one long side of a truck bed cover (not shown) and a corresponding drive system (nor shown) drives the opposite long side of the truck bed cover to roll said truck bed cover e into a canister. The corresponding drive system may or may not include an electric motor means. The drive system 69 includes a timing belt 70 that runs over a timing belt pulley 3 opposite an idler pulley 71.
As seen best in the enlarged scale views of figs. 17, 18 and 19 the timing belt pulley 3 is seated in a journal bearing 72 and a timing belt tensioner 73 serves to connect the timing belt 70 to the assembled array of slats (not shown) that constitutes
Le DK 180365 B1 the part of the truck bed cover that covers the truck bed opening.
An electric motor (not shown) runs a driving belt 74 via a drive wheel 75. Thus the driving belt 74 runs over the driven shaft pulley 2 at the shaft 4, and over the drive wheel 75 to move the timing belt pulley 3 of the shaft coupling 1, which via the damping member 5 is coupled to the driven shaft pulley 2 to move the timing belt 70 when the electric motor runs. The timing belt 70 is held protected by a guide rail 76, that e.g. can be coupled to a side rail profile (not shown) used to mount the truck bed cover (not shown) on top of a side wall (not shown) of a truck bed (not shown).
The shaft coupling 1 is protected effectively by the journal bearing 72 so that lateral displacing of the driving belt 74 and the timing belt 70 is controlled. A first tensioning roller 77 may serve to tension the driving belt 74 towards the drive wheel 75 to keep the driving belt 74 in orbiting tensioned connection with both the driven shaft pulley 2 and the drive wheel 75. Similarly can a second tensioning roller 80 serve to tension the timing belt 70 towards the timing belt pulley 3 to keep the timing belt 70 in orbiting, tensioned connection with both the timing belt pulley 3.
The journal bearing may be configured to also journal the second tensioning roller 80.
The buffering and damping effects of the shaft coupling confer prolonging service life to the truck bed cover and facilitates operation.

Claims (11)

. DK 180365 B1 Krav. DK 180365 B1 Requirements 1. Akselkobling (1) til et drivsystem (16) til et rullelåg til en ladvogn, hvilken akselkobling (1) omfatter en remskive (2) til en drevet aksel, remskive (2) er koblet til en remskive (3) til en drivrem, kendetegnet ved at et fleksibelt dæmpningselement (5) er anbragt mellem remskive (2) til den drevne aksel og remskiven (3) til drivremmen.Shaft coupling (1) for a drive system (16) for a roller cover for a truck, which shaft coupling (1) comprises a pulley (2) for a driven shaft, pulley (2) is coupled to a pulley (3) for a drive belt , characterized in that a flexible damping element (5) is arranged between pulley (2) for the driven shaft and pulley (3) for the drive belt. 2. Akselkobling (1) ifølge krav 1, kendetegnet ved at det fleksible dæmpningselement (5) er fremstillet af gummi.Shaft coupling (1) according to claim 1, characterized in that the flexible damping element (5) is made of rubber. 3. Akselkobling (1) ifølge kravene 1 eller 2, kendetegnet ved at remskiven (2) til den drevne aksel har en første akselremskive-endedel (6), der har akselkoblingsmidler, en modstående anden akselremskive-endedel (8), der har et første koblingsmiddel (14,15,16), og en aksel-tandremskive- mellemdel (7) anbragt aksialt mellem den første akselremskive-endedel (6) og den anden akselremskive- endedel (8).Shaft coupling (1) according to claims 1 or 2, characterized in that the pulley (2) for the driven shaft has a first shaft pulley end portion (6) having shaft coupling means, an opposite second shaft pulley end portion (8) having a first coupling means (14,15,16), and a shaft timing belt pulley intermediate portion (7) disposed axially between the first shaft pulley end portion (6) and the second shaft pulley end portion (8). 4, Akselkobling (1) ifølge kravene 1, 2 eller 3, kendetegnet ved at remskiven (3) til drivremmen har en første drivrem- remskive-endedel (10), der har et anden koblingsmiddel (19) modstående en anden drivrem-remskive-endedel (12), og en drivrems-tandremskive-mellemdel (11) mellem den første drivrems-remskive-endedel (10) og den anden drivrems- remskive-endedel (12), hvori det første koblingsmiddel (14,15,16) er konfigureret til at koble til det anden koblingsmiddel (19) med det fleksible dæmpningselement (5) anbragt imellem nævnte første koblingsmiddel (14,15,16) og nævnte anden koblingsmiddel (19).Shaft coupling (1) according to claims 1, 2 or 3, characterized in that the pulley (3) for the drive belt has a first drive pulley end part (10) having a second coupling means (19) opposite a second drive pulley. end portion (12), and a drive belt timing belt pulley intermediate portion (11) between the first drive belt pulley end portion (10) and the second drive belt pulley end portion (12), wherein the first coupling means (14,15,16) is configured to couple the second coupling means (19) with the flexible damping element (5) interposed between said first coupling means (14,15,16) and said second coupling means (19). 5. Akselkobling (1) ifølge kravene 3 eller 4, kendetegnet ved at det første koblingsmiddel (14,15, 16) indbefatter en hunstiksektion (33), som strækker sig fra en hunstikåbningShaft coupling (1) according to claims 3 or 4, characterized in that the first coupling means (14, 15, 16) includes a female connector section (33) extending from a female connector opening , DK 180365 B1 (34) en længde langs den første akselremskive-endedel (6), hunstiksektionen (33) har en første hulsektion (14) og en anden hulsektion (16), der med en langsgående fælles smal midtersektion (15) strækker sig i forbindelse med hinanden., DK 180365 B1 (34) a length along the first shaft pulley end portion (6), the female connector section (33) having a first hole section (14) and a second hole section (16) extending with a longitudinal common narrow center section (15) in connection with each other. 6. Akselkobling (1) ifølge krav 5, kendetegnet ved at det anden koblingsmiddel (19) indbefatter en hanstiksektion (20), der strækker sig fra en fri hanstikende (23) langs den første drivrem-remskive-endedels (10) længdeakse (X), hvilken hanstiksektion (20) har mindst et udragende koblingsben (21,22) til at åindgribe med en hulsektion (14,16) i hunstiksektionen (33), valgfrit strækker mindst et udragende koblingsben (21,22) sig via en tubulær plateausektion (24) ind i den anden drivrem-remskive- endedel (11), foretrukket har hanstiksektionen (20) mindst to udragende koblingsben (21,22).Shaft coupling (1) according to claim 5, characterized in that the second coupling means (19) includes a male connector section (20) extending from a free male connector (23) along the longitudinal axis (X) of the first drive pulley end portion (10). ), which male plug section (20) has at least one projecting coupling leg (21,22) for engaging with a hollow section (14,16) in the female plug section (33), optionally at least one projecting coupling leg (21,22) extends via a tubular plateau section (24) into the second drive pulley end portion (11), preferably the male connector section (20) has at least two projecting coupling legs (21, 22). 7. Akselkobling (1) ifølge kravene 5 eller 6, kendetegnet ved at den første hulsektion (14) og den anden hulsektion (16) har tværsnit, der er konfigurede som to cirkeludsnit, hvilke cirkeludsnit udbreder sig radiært fra midteraksen (X) for remskiven til den drevne aksel, foretrukket er de to cirkeludsnit arrangerede symmetrisk omkring midteraksen (X) for remskiven til den drevne aksel, foretrukket er de to cirkeludsnit identiske.Shaft coupling (1) according to claims 5 or 6, characterized in that the first hole section (14) and the second hole section (16) have cross sections configured as two circular sections, which circular sections extend radially from the central axis (X) of the pulley. to the driven shaft, preferably the two circular sections are arranged symmetrically about the central axis (X) of the pulley of the driven shaft, preferably the two circular sections are identical. 8. Akselkobling (1) ifølge ethvert af de foregående krav 1 - 7, kendetegnet ved at det fleksible dæmpningselement (5) er konfigureret som et kryds, der har fire udstrålende arme (25,26,27,28) forenet i et fælles krydscentrum (29), valgfrit har krydset en tykkelse, der i hovedsagen svarer til hunstiksektionens (20) længde, og krydsets centrum passer sammen ind 1 den fælles smalle midtersektion (15). 9, Akselkobling (1) ifølge ethvert af de foregående krav 5 - 8, kendetegnet ved at en eller begge af den førsteShaft coupling (1) according to any one of the preceding claims 1 - 7, characterized in that the flexible damping element (5) is configured as a cross having four radiating arms (25, 26, 27, 28) joined in a common cross center. (29) has optionally crossed a thickness which substantially corresponds to the length of the female section (20) and the center of the cross fits together in the common narrow central section (15). Shaft coupling (1) according to any one of the preceding claims 5 - 8, characterized in that one or both of the first 2 DK 180365 B1 hulsektion (14) og den anden hulsektion (16) har et tværsnit, hvori længden af en bue af nævnte hulsektioners (14,16) cirkeludsnit svarer til eller er kortere end en maksimal vinkelafstand mellem naboarme (25,26,27,28) 1 et par af krydsets arme.The hole section (14) and the second hole section (16) have a cross section in which the length of an arc of said circular sections of said hole sections (14, 16) corresponds to or is shorter than a maximum angular distance between adjacent arms (25, 26, 27). , 28) 1 a pair of cross arms. 10.Akselkobling (1) ifølge ethvert af de foregående krav 1 - 9, kendetegnet ved at et aksialt strækkende sig koblingsmellemrum (35,36) er afgrænset mellem naboarme (25,26,27,28) i et armpar, når det fleksible dæmpningselement (5) er indsat i en tilhørende hulsektion (14,16).Shaft coupling (1) according to any one of the preceding claims 1 - 9, characterized in that an axially extending coupling gap (35,36) is delimited between adjacent arms (25,26,27,28) in an arm pair when the flexible damping element (5) is inserted into an associated hole section (14,16). 11.Elektrisk drivsystem (69) til rullelåg til en ladvogn, kendetegnet ved at drivsystemet (69) omfatter - en fjedrende akselkobling (1) ifølge ethvert af de foregående krav 1 - 10, - mindst en drivrem (74) til at drive den fjedrende akselkobling (1) ved hjælp af midst en elektrisk motor i operativ forbindelse med remskiven (2) til den drevne aksel, hvori drivsystemet (69) omfatter en drivrem (70) i operativ forbindelse med remskiven (3) til drivremmen.Electric drive system (69) for roller covers for a flatbed truck, characterized in that the drive system (69) comprises - a resilient shaft coupling (1) according to any one of the preceding claims 1 - 10, - at least one drive belt (74) for driving the resilient shaft coupling (1) by means of at least one electric motor in operative connection with the pulley (2) to the driven shaft, wherein the drive system (69) comprises a drive belt (70) in operative connection with the pulley (3) for the drive belt.
DKPA201970312A 2019-05-16 2019-05-16 A shaft coupling DK180365B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DKPA201970312A DK180365B1 (en) 2019-05-16 2019-05-16 A shaft coupling
PCT/EP2020/062296 WO2020229214A1 (en) 2019-05-16 2020-05-04 A shaft coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DKPA201970312A DK180365B1 (en) 2019-05-16 2019-05-16 A shaft coupling

Publications (2)

Publication Number Publication Date
DK201970312A1 DK201970312A1 (en) 2021-02-04
DK180365B1 true DK180365B1 (en) 2021-02-08

Family

ID=70682821

Family Applications (1)

Application Number Title Priority Date Filing Date
DKPA201970312A DK180365B1 (en) 2019-05-16 2019-05-16 A shaft coupling

Country Status (2)

Country Link
DK (1) DK180365B1 (en)
WO (1) WO2020229214A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB258061A (en) * 1925-08-15 1926-09-16 Enfield Cycle Co Ltd Improvements in or relating to shock-absorbing transmission couplings for use on motor cycles and the like
DE4129149C2 (en) * 1991-09-02 1996-01-11 Bahr Modultechnik Gmbh Gear or belt wheel that can be connected to a motor
FR2734034B1 (en) * 1995-05-12 1997-07-11 Hutchinson DECOUPLING DEVICE, ESPECIALLY A COUPLING PULLEY, FOR A MOTOR VEHICLE
DE10131331A1 (en) * 2001-06-28 2003-01-09 Ina Schaeffler Kg Device for torque transfer between rotary masses in IC engine, has damping and/or clamping bodies enabling relative movement in lower speed range and ensuring rigid coupling above this range
JP2005201433A (en) * 2003-12-15 2005-07-28 Sanden Corp Power transmission device
DE102009026553B4 (en) * 2009-04-06 2013-03-07 IDZ ingenieurbüro Dirk Zimmermann GmbH Torque transmission between a crankshaft of an internal combustion engine and the rotor of an electric machine
FR2991018B1 (en) * 2012-05-24 2015-07-24 Skf Ab PULLEY DEVICE FOR AIR CONDITIONING COMPRESSOR
CN202790443U (en) * 2012-08-06 2013-03-13 安徽江淮汽车股份有限公司 Vibration attenuation belt pulley of automobile engine

Also Published As

Publication number Publication date
WO2020229214A1 (en) 2020-11-19
DK201970312A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
AU2019222890B2 (en) Shading device for an architectural opening and method for adjusting an end stop position of the shading device
EP2204516B1 (en) Pool cleaning vehicle with endless loop track
US8127641B2 (en) Device to adjust the orientation of a mirror of a motorcar
US20090080096A1 (en) Powered telescoping vehicle external mirror
US20120077631A1 (en) V-belt transmission system combining friction transmission with mesh transmission
US8007386B2 (en) Blade tensioner with opposing spans
US11072976B2 (en) Methods and apparatus to reduce noise in motor assemblies
KR102017465B1 (en) Clutch apparatus for stabilizer
CN109219714B (en) Continuous transmission and tensioning system for a continuous transmission
KR200472441Y1 (en) Drum driving device for window shade
DK180365B1 (en) A shaft coupling
KR20140123450A (en) Drive device with overload protection
CN105264261A (en) Metallic belt for stepless transmission
CN101152933A (en) Roller blind assembly
EP2913111A1 (en) Mill roller transmission mechanism and mill comprising the mechanism
US6966312B1 (en) Single-cam compound bow with multiple idler wheels
US8419576B2 (en) Tensioner for a traction means such as a belt or the like
US20170355248A1 (en) Protection device for the passenger compartment of a vehicle
US10627186B2 (en) Crossbow with Belleville springs
US11927245B2 (en) Energy chain comprising rollers
JP2022113152A (en) Tooth jump protection device
US7311536B2 (en) Transmission device for transmitting electrical signals between a rotor and a stator
CN115698530A (en) Telescopic guide rail
CN112431503B (en) Linkage mechanism and flat sliding door
CN104859527A (en) Worm-gear winch

Legal Events

Date Code Title Description
PAT Application published

Effective date: 20201117

PME Patent granted

Effective date: 20210208