DK174757B1 - Mass flow meter with integration of acceleration forces on pipes and system using mass flow meter - Google Patents

Mass flow meter with integration of acceleration forces on pipes and system using mass flow meter Download PDF

Info

Publication number
DK174757B1
DK174757B1 DK200200805A DKPA200200805A DK174757B1 DK 174757 B1 DK174757 B1 DK 174757B1 DK 200200805 A DK200200805 A DK 200200805A DK PA200200805 A DKPA200200805 A DK PA200200805A DK 174757 B1 DK174757 B1 DK 174757B1
Authority
DK
Denmark
Prior art keywords
mass flow
flow meter
meter according
measured
measuring
Prior art date
Application number
DK200200805A
Other languages
Danish (da)
Inventor
Henning Max Hansen
Original Assignee
Siemens Flow Instr As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Flow Instr As filed Critical Siemens Flow Instr As
Priority to DK200200805A priority Critical patent/DK174757B1/en
Priority to PCT/DK2003/000340 priority patent/WO2003100354A2/en
Priority to AU2003227515A priority patent/AU2003227515A1/en
Application granted granted Critical
Publication of DK174757B1 publication Critical patent/DK174757B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/20Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus with provision for metering the liquids to be introduced, e.g. when adding syrups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/206Measuring pressure, force or momentum of a fluid flow which is forced to change its direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F13/00Apparatus for measuring by volume and delivering fluids or fluent solid materials, not provided for in the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

1 DK 174757 B11 DK 174757 B1

Massestrømningsmåler med integration af accelerationskræfter på rør samt system der anvender massestrømningsmålerenMass flow meter with integration of acceleration forces on pipes and system using mass flow meter

Opfindelsen vedrører en massestrømningsmåler samt et system der gør brug 5 af massestrømningsmåleren ved batch dispensing, d.v.s ved portionering af fluider.The invention relates to a mass flow meter as well as to a system which uses the mass flow meter for batch dispensing, i.e. for portioning of fluids.

Udmåling af fluider i portioner af en ønsket størrelse er en meget almindelig foreteelse i mange grene af industrien. I denne forbindelse dækker udtrykket 10 fluider over en meget bred vifte af medier med strømningsevne, nemlig ægte væsker, for eksempel mineralske olieprodukter, drikkevarer og flydende madvarer, gasser, faste stoffer med strømningsevne, som for eksempel fine pulvere, opslemninger og så videre. Et eksempel er fyldning af beholdere til salg. Beholderne skal fyldes hurtigt med en nøjagtig portion. Gentagen 15 overfyldning er lige så uacceptabel af økonomiske grunde som gentagen underfyldning, som af kunder og myndigheder kan blive betragtet som bedrageri. Ligeledes skal tilfælde af beholderoverløb på grund af overdreven fyldning undgås, idet dette kan føre til forurening af produktionsudstyr, produktionsstop og endog farlige situationer, som for eksempel brandfare.Measuring fluids in portions of a desired size is a very common occurrence in many branches of the industry. In this context, the term 10 fluids covers a very wide range of media with flowability, namely real liquids, for example, mineral oil products, beverages and liquid foods, gases, solids with flowability, such as fine powders, slurries and so on. An example is filling containers for sale. The containers must be filled quickly with an accurate portion. Repeat overfilling is just as unacceptable for financial reasons as repeated overfilling, which can be considered fraud by customers and authorities. Also, cases of container overflow due to excessive filling should be avoided as this can lead to contamination of production equipment, production stoppages and even dangerous situations, such as fire hazards.

2020

Et typisk system til udmåling af portioner indeholder en fluidkanal udstyret med en flowmåler og et elektrisk styret afspærringsorgan som foreksempel en ventil eller en pumpe, til at starte og stoppe fluidstrømmen til en doseringsdyse eller lignende. Flowmåler, ventil eller pumpe og styreenhed 25 kan være separate eller sammenbyggede enheder. Flowmåleren kan enten måle volumen eller masse. Denne opfindelse vedrører måling af masse.A typical system for measuring portions contains a fluid channel equipped with a flow meter and an electrically controlled shut-off means, for example a valve or pump, for starting and stopping the fluid flow to a metering nozzle or the like. Flow meter, valve or pump and controller 25 can be separate or assembled units. The flow meter can either measure volume or mass. This invention relates to mass measurement.

Det er kendt at måle massestrømning ved at måle virkninger af acceleration og eller deceleration af væsken, når væsken passerer en indsnævring f.eks.It is known to measure mass flow by measuring effects of acceleration and or deceleration of the fluid as the fluid passes a constriction e.g.

30 en blænde. Accelerationen måles da som en trykforskel før og efter indsnævringen. Andre trykforskels typer er kendt: venturirør, kritisk-strømnings-dyser og pitotrør. Disse giver ikke sand massestrømning, da 2 DK 174757 B1 visningen er afhængig af massefylden af væsken og hastigheden i anden potens: (1) AP = V2-p(v-v0)2 Ι2-ΔΡ (2) v = |— -V.30 an aperture. The acceleration is then measured as a pressure difference before and after the narrowing. Other types of pressure difference are known: venturi tubes, critical flow nozzles and pitot tubes. These do not give true mass flow, since the view is dependent on the density of the liquid and the velocity of the other power: (1) AP = V2-p (v-v0) 2 Ι2-ΔΡ (2) v = | - -V .

Her er v er hastigheden i indsnævringen, ΔΡ er trykfaldet, p er massefylden, 5 vo er hastigheden i indløbsrøret. Formlerne gælder kun for ideelle fluider. Der findes normerede tabeller for sammenhængen mellem blændens udformning og trykfaldet, som regel givet som korrektionsfaktorer der skal ganges på den teoretiske strømning, når der er afvigelser fra det ideelle.Here v is the velocity of the constriction, ΔΡ is the pressure drop, p is the density, 5 vo is the velocity of the inlet pipe. The formulas only apply to ideal fluids. There are standardized tables for the relationship between the aperture's design and the pressure drop, usually given as correction factors that must be multiplied by the theoretical flow when there are deviations from the ideal.

Andre principper kendes, hvor kræfterne på et rør måles, når en fluid presses 10 ud gennem en dyse. Kræfterne er proportionale med produktet af massestrømmen og hastigheden:Other principles are known where the forces on a pipe are measured when a fluid is pressed out through a nozzle. The forces are proportional to the product of the mass flow and velocity:

(3) F = Konst Qmm · vouf = Konst p A vJ(3) F = Art Qmm · vouf = Art p A vJ

15 Her er p er massefylden, A er tværsnitsarealet af røret, Vouf er strømningshastigheden ud af dysen og Qmass er massestrømmen. Her kræves igen kendskab til massefylden p for at løse ligningen med hensyn til massestrømmen Qmass· 20 Fra US 4,677,859 kendes en masseflowmåler, der gør brug af en momentmåling. Massefiowmåleren bygger på den grundtanke, at hvis man holder en målepind ind ind i en væskestrømning vil pindens udbøjning være et udtryk for flowet. I den konkrete konstruktion sættes et s-formet rør ind i serie med flowrøret sådan at fluiden går fra flowrøret ind i det s-formede rør 25 og ud i den fortsættende del af flowrøret igen. Når fluiden passerer s-røret opstår der i s'ets kurver normalkræfter, der måles af to krafttransducere, idet røret vil udbøjes. Massestrømsmåleren er i stand til at give en kontinuerlig udlæsning af det aktuelle masseflow, men det kræver en ekstra sensor i form af en hastighedssensor eller viden om fluidens densitet. En anden ulempe 3 DK 174757 B1 ved konstruktionen er, at flowrøret er brudt for at give plads til det s-formede målerør.Here, p is the density, A is the cross-sectional area of the tube, Vouf is the flow rate out of the nozzle and Qmass is the mass flow. Here we again need to know the density p to solve the equation with respect to the mass flow Qmass · 20 From US 4,677,859 a mass flow meter which uses a torque measurement is known. The mass flow meter is based on the basic idea that if you stick a measuring stick into a fluid flow, the deflection of the stick will be an expression of the flow. In the concrete construction, an s-shaped tube is inserted in series with the flow tube such that the fluid goes from the flow tube into the s-shaped tube 25 and out into the continuing part of the flow tube again. As the fluid passes through the s-tube, normal forces are measured in the s-curves measured by two force transducers, the tube being deflected. The mass flow meter is capable of providing a continuous readout of the current mass flow, but it requires an additional sensor in the form of a velocity sensor or knowledge of the density of the fluid. Another disadvantage of the construction is that the flow tube is broken to make room for the s-shaped measuring tube.

En fjerde type massestrømningsmålere er corioliskraft-baserede målere som 5 anvender coriolisaccelerationen til bestemmelse af massestrømning i vibrerende rør. Dette er eksempelvis kendt fra DE 19831505. Dette princip måler massestrømning direkte og er et princip der vinder stadig større udbredelse, men det har en enkelt ulempe. Når væsken ændrer hastighed opstår der kræfter på de svingende rør, der kan sætte dem i svingninger der 10 interfererer med de svingninger der anvendes til målingen. Herved opstår støj på målesignalet ved pludselige start og stop. Det giver en begrænsning når massestrømningsmåleren skal bruges til fyldning af små beholdere på kort tid som tidligere beskrevet.A fourth type of mass flow meters are coriolis force based meters which use the coriolis acceleration to determine mass flow in vibrating tubes. This is known, for example, from DE 19831505. This principle measures mass flow directly and is a principle that is gaining ever-increasing circulation, but it has a single disadvantage. As the fluid changes velocity forces on the oscillating tubes arise, which can put them into oscillations that interfere with the oscillations used for the measurement. This causes noise on the measuring signal at sudden start and stop. This provides a limitation when the mass flow meter is to be used for filling small containers in a short time as previously described.

15 Den foreliggende opfindelse har som opgave at fremstille en massestrømningsmåler der ikke har denne ulempe, men tværtimod udnytter de forstyrrende kræfter til at bestemme massestrømningen.It is the object of the present invention to produce a mass flow meter which does not have this disadvantage but, on the contrary, utilizes the interfering forces to determine the mass flow.

Den heri beskrevne opfindelse løser den stillede opgave ved at måle de 20 kræfter hidrørende fra acceleration og deceleration der opstår på rørene, når gennemstrømningen ved start og stop af en fluid ændrer sig og herefter foretage en integration af den målte størrelse for at finde den påtrykte massestrømning.The invention described herein solves the stated task by measuring the 20 forces resulting from acceleration and deceleration occurring on the pipes as the flow at start and stop of a fluid changes and then integrate the measured size to find the applied mass flow .

25 Ved at foretage endnu en integration af den målte størrelse kan den totale mængde, der er strømmet gennem massestrømningsmåleren siden start, findes.By further integrating the measured size, the total amount flowing through the mass flow meter since inception can be found.

Bestemmelsen af massestrømningen har vist sig at være særligt nøjagtig hvis 30 begyndelsesstrømningen ved begyndelsen af måleperioden kendes. Den kendte værdi har foretrukket størrelsen nul.The determination of the mass flow has been found to be particularly accurate if the initial flow at the beginning of the measurement period is known. The known value is preferably zero.

4 DK 174757 B14 DK 174757 B1

Den stillede opgave løses endvidere med et system til udmåling af portioner af fluid, hvor massestrømningsmåleren er en del af systemet, som indeholder en central flowstyreenhed og et afspærringsorgan. Portioneringen af fluid sker ved at den centrale flowstyreenhed eller massestrømningsmåleren åbner og S lukker for afspærringsorganet, og at der på massstrømningsmålerens målerør er anbragt en transducer til at måle den kraft, røret udsættes for af fluiden ved åbning og lukning af afspærringsorganet.The proposed task is further solved by a system for measuring portions of fluid, the mass flow meter being a part of the system containing a central flow control unit and a shut-off means. The portioning of fluid is accomplished by opening the central flow controller or mass flow meter and closing the shut-off means, and a transducer is provided on the mass flow meter measuring tube to measure the force exerted by the fluid upon opening and closing the shut-off means.

Herefter følger en gennemgang af opfindelsen med udgangspunkt i figurerne 10 hvorNext, a review of the invention follows on the basis of Figures 10 where

Fig.1 viser et bøjet målerør anbragt i en blok Fig.2 viser et målekredsløb ifølge opfindelsen Fig.3 viser en rørsløjfe med transducere ifølge opfindelsen 15 Fig.4 viser et portioneringssystem der gør brug af opfindelsen Fig.5 er et blokdiagram over signalbehandlingskredsløbetFig. 1 shows a bent measuring tube arranged in a block Fig. 2 shows a measuring circuit according to the invention Fig. 3 shows a pipe loop with transducers according to the invention Fig. 4 shows a portioning system using the invention Fig. 5 is a block diagram of the signal processing circuit

Figur 1 viser en simpel udformning af røret 1 holdt fast af en ubevægelig blok 2. Den øverste vandrette del med længden L er den del hvor kræfter fra 20 massestrømningsændringen giver anledning til et bøjningsmoment i røret, dette moment er størst der hvor røret går ind i ankerblokken.Figure 1 shows a simple configuration of the pipe 1 held by a movable block 2. The upper horizontal part of length L is the part where forces from the 20 mass flow change give rise to a bending moment in the pipe, this moment is greatest where the pipe enters. anchor block.

Newtons anden lov siger, at summen af kræfterne på et legeme er lig med ændringen af bevægelsesmængde pr tidsenhed: 25 (4) v ' ^ dt Væskens masse m udtrykkes ved A-p-Log væskens hastighed v vedNewton's second law states that the sum of the forces on a body is equal to the change in the amount of motion per unit of time: 25 (4) v '^ dt The mass of the fluid m is expressed at the velocity of the A-p-Log fluid v at

Qm/Ap. L er den længde af røret, som udsættes for kraften. Lader vi 30 væskestrømningen i røret 1 fastspændt i en ankerblok 2 som vist i Fig. 1.QM / Ap. L is the length of the pipe subjected to the force. Let us allow the fluid flow in the tube 1 to be clamped in an anchor block 2 as shown in FIG. First

5 DK 174757 B1 ændres fra O til Qm(t), så får vi en kraft F(t) på den vandrette del L af røret 1.5 DK 174757 B1 changes from O to Qm (t), then we get a force F (t) on the horizontal part L of the pipe 1.

Kraften udtrykkes ved ligning (5): (5) F(t) = L^& dt 5The force is expressed by Equation (5): (5) F (t) = L ^ & dt 5

Denne kraft kan måles med en krafttransducer. I den foretrukne udførelse bliver kraften målt med strain gauges anbragt uden på røret tæt ved ankerblokken 2.This power can be measured with a power transducer. In the preferred embodiment, the force measured with strain gauges is applied to the tube close to the anchor block 2.

Er kraften F(t) målt kan massestrømningen Qm(t) (kg/s) og den totale masse 10 Mass(t) (kg) beregnes ved henholdsvis integration og dobbelt integration: («) QÅt)°\'\n‘)-dt L 0 1 1 * (7) Massif) = — Ij>(/) dt dt ^00If the force F (t) is measured, the mass flow Qm (t) (kg / s) and the total mass 10 Mass (t) (kg) can be calculated by integration and double integration respectively ((«) QÅt) ° \ '\ n') -dt L 0 1 1 * (7) Massif) = - Ij> (/) dt dt ^ 00

Den målte kraft F(t) vil selv om strømningen er konstant kunne vise en værdi forskellig fra nul. Dette kan skyldes tyngdekraften eller unøjagtigheder i transduceren hidrørende fra temperaturændringer, ældning eller andet. Det 15 giver især ved lange måletider en meget stor fejl, idet den konstante fejl integreres to gange med hensyn til tiden og dermed bliver fejlen proportional med måletiden i anden potens. For at undgå at denne fejlmåling, aflæses kraften i et tidsrum hvor det vides at strømningen ikke ændrer sig, for eksempel i et tidsrum hvor der er lukket for strømningen. Den således fundne 20 kraft anvendes som nulpunkt i den efterfølgende måling. I Fig. 5. vises hvorledes signalbehandlingskredsløbet kunne udføres. Til venstre signalet F(t) fra krafttransduceren. Differensen af to på hinanden følgende samples AF(t) findes medens ventilen er lukket. Ved integration af denne størrelse findes igen F(t), men lige før ventilen åbnes sættes denne digitale integrator 25 på nul, hvorefter værdien F(t)-F(0) haves som resultat af integrationen. F(0) er kraften når strømningen er uændret (nul). Den fundne værdi divideres med længden L af det rørstykke der frembringer kraften. Efter endnu en digital integration fås massestrømningen Qm(t) og endnu en digital integration giver 6 DK 174757 B1 den totale mængde Mass(t), der er strømmet gennem røret siden ventilen blev åbnet.The measured force F (t), although the flow is constant, can show a value different from zero. This may be due to gravity or inaccuracies in the transducer resulting from temperature changes, aging or other. It 15, especially at long measurement times, gives a very large error, since the constant error is integrated twice in terms of time and thus the error becomes proportional to the measurement time in other power. In order to avoid this error measurement, the power is read for a period of time where it is known that the flow does not change, for example for a period when the flow is closed. The force thus found is used as the zero point in the subsequent measurement. In FIG. 5. shows how the signal processing circuit could be performed. To the left signal F (t) from the power transducer. The difference of two consecutive samples AF (t) is found while the valve is closed. When integrating this size again F (t) is found, but just before the valve is opened this digital integrator 25 is set to zero, after which the value F (t) -F (0) is kept as a result of the integration. F (0) is the force when the flow is unchanged (zero). The value found is divided by the length L of the pipe which produces the force. After yet another digital integration, the mass flow Qm (t) is obtained and yet another digital integration gives the total amount of Mass (t) that has flowed through the pipe since the valve was opened.

Fig.2 viser en bro 3 bestående af strain gauges med en 5 instrumenteringsforstærker 4 efterfulgt af en digital analog konverter 5 og en mikroprocessor 6. Andre typer transducere kan også anvendes. Til måling af acceleration kan et accelerometer anvendes. Kræfter måles med ohmske strain gauges som beskrevet, eller ved brug af en kapacitiv pick up. Hvis man ønsker at bestemme rørets udbøjning kan man f.x. bruge en lysgaffel. Til 10 måling af hastighed kan en elektromagnetisk pick up anvendes En ulempe ved at anvende strain gauges i forhold til de i vid udstrækning anvendte elektromagnetiske pickupper er, at strain gauges skal have tilført en spænding for at virke efter hensigten. Hvis den fornødne spænding ikke er til rådighed, for eksempel fordi antallet af ledninger til sensoren er begrænset, 15 kan en anden type sensorer, nemlig piezokeramiske pickupper, anvendes i stedet for strain gauges og monteres på samme måde og samme sted. Ved mekanisk deformation genererer den piezokeramiske pickup et signal, der kan bruges som udtryk for rørets bøjning. Fordelen ved piezokeramiske pickupper er typisk et højere temperaturområde og at de afgiver en spænding 20 uden behov for ekstra strømforsyning. Til gengæld giver strain gauges et mere robust signal og der findes også metoder til at fremstille strain gauges til høj temperatur. Anvendelsen af accelerometre kræver to ekstra integratorer, og elektromagnetiske pickupper og elektromagnetiske pickupper kræver én ekstra i forhold til strain gauges.Fig. 2 shows a bridge 3 consisting of strain gauges with a 5 instrumentation amplifier 4 followed by a digital analog converter 5 and a microprocessor 6. Other types of transducers can also be used. For measuring acceleration, an accelerometer can be used. Forces are measured with ohmic strain gauges as described, or using a capacitive pick up. If you want to determine the bending of the pipe, you can e.g. use a light fork. For the measurement of velocity, an electromagnetic pick-up can be used. One disadvantage of using strain gauges compared to the widely used electromagnetic pick-ups is that strain gauges must have applied a voltage to work as intended. If the required voltage is not available, for example, because the number of wires to the sensor is limited, another type of sensor, namely piezoceramic pickups, can be used instead of strain gauge and mounted in the same way and place. In mechanical deformation, the piezo-ceramic pickup generates a signal that can be used to express the bend of the tube. The advantage of piezo-ceramic pickups is typically a higher temperature range and that they supply a voltage 20 without the need for additional power supply. In contrast, strain gauges give a more robust signal and there are also methods of producing strain gauges for high temperature. The use of accelerometers requires two additional integrators, and electromagnetic pickups and electromagnetic pickups require one extra in relation to strain gauges.

2525

Fig. 3 viser en alternativ udformning af røret i forhold til figur 1, og har en rørsløjfe 9, der er fastholdt af en ankerklods 12. Tæt ved klodsen er der monteret strain gauges 10 (vist i udsnit på figuren) til måling af momentet der opstår som følge af accelerationskræfterne på røret. Indløb 7 og udløb 8 og 30 rørsløjfe kan udføres i et stykke rør.FIG. 3 shows an alternative configuration of the tube relative to Figure 1, and has a pipe loop 9 which is held by an anchor block 12. Close to the block are mounted strain gauges 10 (shown in section in the figure) for measuring the torque arising as due to the acceleration forces on the tube. Inlet 7 and outlet 8 and 30 pipe loop can be made in one piece of pipe.

7 DK 174757 B17 DK 174757 B1

Fig. 4. viser et fyldesystem hvor rørsløjfe 32, målerør 21, flowstyreenhed 33, massestrømningsmåler 23 og ventil 24 er forbundne. Indløb 27 og udløb 28 er fastholdt i en ankerblok 26 således at de står vinkelret på hinanden.FIG. 4 shows a filling system in which pipe loop 32, measuring tube 21, flow control unit 33, mass flow meter 23 and valve 24 are connected. Inlet 27 and outlet 28 are retained in anchor block 26 so that they are perpendicular to each other.

Systemet i Fig. 4. er den foretrukne udførelse, og kan anvendes til fyldning af 5 beholdere hvor fyldningen tager relativt kort tid. Massestrømningsmåleren 23 kontrollerer ventilen 24. Inden fyldningen påbegyndes måles kraften fra strain , gauge broen 3 (fig.2 samt 10, fig.3) via ledningerne 22 og denne kraft betragtes som nulpunkt og de to førnævnte integratorer nulstilles. Et startsignal på ledning 30 fra flowstyreenhed 33 sætter batch processen igang 10 så ventilen 24 åbnes med signal via ledning 31. Væsken begynder at strømme og fra fyldestudsen 29 doseres væske til beholder 25. På grund af væskestrømmen opstår kræfter på rørsløjfen, og strain gauge broen ændrer værdi. Den aflæste kraft minus værdien før start integreres fra start, og resultatet viser den øjeblikkelige massestrømning. Den øjeblikkelige 15 strømning integreres også fra start og den øjeblikkelige totale mængde findes. Når den totale mængde er lig med den ønskede mængde, fratrukket et eventuelt forventet efterløb på grund af forsinkelser i ventilen eller målekredsløbet, lukkes ventilen. Er strømningen forskellig fra gang til gang vil det forventede efterløb ændres proportionalt med strømningen. Fra EP 20 1132722 A2 er det kendt at foretage en sådan dynamisk kompensering for efterløbet.The system of FIG. 4. is the preferred embodiment and can be used for filling 5 containers where filling takes relatively short time. The mass flow meter 23 checks the valve 24. Before the filling is started, the force from the strain, gauge bridge 3 (Figs. 2 and 10, Fig. 3) is measured via the lines 22 and this force is considered zero and the two aforementioned integrators are reset. A starting signal on line 30 from flow controller 33 initiates batch process 10 so valve 24 opens with signal via line 31. Fluid starts flowing and from filler 29, fluid is dispensed to vessel 25. Due to fluid flow, forces on the tube loop and strain gauge bridge change value. The read power minus the value before start is integrated from the start and the result shows the instantaneous mass flow. The instantaneous flow is also integrated from the start and the instantaneous total quantity is found. When the total amount is equal to the desired amount, less any expected afterflow due to delays in the valve or the measuring circuit, the valve is closed. If the flow differs from time to time, the expected flow will change proportionally with the flow. From EP 20 1132722 A2 it is known to make such dynamic compensation for the afterflow.

Haves en naturligt pulserende strømning som fra en stempelpumpe, hvor det vides at strømningen er nul imellem hvert stempelslag, kan princippet også 25 anvendes. Her kan man så enten etablere en forbindelse mellem pumpen og måleren der fortæller, hvornår strømningen er nul. Eller der kan også laves en rutine der finder kraften når den har været konstant i en given tid, her vides det at strømningen er nul og at den ikke ændrer sig. Hvis den beregnede strømning samtidigt er nær nul må det antages at den virkelige strømning 30 reelt er nul og en ny korrektionsværdi Foam for kraften kan beregnes ud fra forrige korrektionsværdi FoN samt afvigelsen i det beregnede flow Qm(t) divideret med tiden t hvori der er målt og ganget med længden L.If a naturally pulsating flow is obtained as from a piston pump where it is known that the flow is zero between each piston stroke, the principle can also be applied. Here you can either establish a connection between the pump and the meter that tells when the flow is zero. Or a routine can be made that finds the power when it has been constant for a given time, here it is known that the flow is zero and that it does not change. If the calculated flow is simultaneously close to zero, it must be assumed that the actual flow 30 is in fact zero and a new correction value Foam for the force can be calculated from the previous correction value FoN as well as the deviation in the calculated flow Qm (t) divided by time t in which there is measured and multiplied by the length L.

8 DK 174757 B1 (8) Fo^=Fo„-L.M18 DK 174757 B1 (8) Fo ^ = Fo „-L.M1

Samme fremgangsmåde kan også anvendes i det tilfælde hvor ventilen 5 kontrolleres af massestrømningsmåleren 23.The same method can also be used in the case where the valve 5 is controlled by the mass flow meter 23.

Claims (23)

1. En massestrømningsmåler kendetegnet ved at have mindst ét bøjet rør (9,32) med hjælpemidler (3,10) til at måle kræfter på røret hidrørende fra S acceleration og deceleration rettet langs rørets akse ved start og stop af en fluid i røret, og hvor de målte kræfter underkastes en integration for at finde den påtrykte massestrømning.A mass flow meter characterized by having at least one bent tube (9.32) with aids (3.10) for measuring forces on the tube resulting from S acceleration and deceleration directed along the axis of the tube at the onset and stop of a fluid in the tube, and where the measured forces are subjected to integration to find the applied mass flow. 2. Massestrømningsmåler i henhold til krav 1 kendetegnet ved at den fundne 10 massestrømning (Qm(t)) integreres for at finde den totale mængde (Mass(t)) der er strømmet gennem måleren siden start.Mass flow meter according to claim 1, characterized in that the found mass flow (Qm (t)) is integrated to find the total amount (Mass (t)) that has flowed through the meter since the start. 3. Massestrømningsmåler i henhold til krav 1 eller 2 kendetegnet ved at massestrømningen beregnes ud fra kræfterne på røret i en tidsperiode hvortil 15 begyndelsesstrømningen kendes.Mass flow meter according to claim 1 or 2, characterized in that the mass flow is calculated from the forces on the pipe for a period of time for which the initial flow is known. 4. Massestrømningsmåler i henhold til krav 3 kendetegnet ved at begyndelsesstrømningen er nul.Mass flow meter according to claim 3, characterized in that the initial flow is zero. 5. Massestrømningsmåler i henhold til krav 1 kendetegnet ved at kræfterne på røret måles med en krafttransducer.Mass flow meter according to claim 1, characterized in that the forces on the pipe are measured with a power transducer. 6. Massestrømningsmåler i henhold til krav 5 kendetegnet ved at krafttransduceren er baseret på strain gauges (3,10). 256. A mass flow meter according to claim 5, characterized in that the power transducer is based on strain gauges (3.10). 25 7. Massestrømningsmåler i henhold til krav 5 kendetegnet ved at krafttransduceren er baseret på piezoelektriske materialer.Mass flow meter according to claim 5, characterized in that the power transducer is based on piezoelectric materials. 8. Massestrømningsmåler i henhold til krav 5 kendetegnet ved at kræfterne 30 måles ved hjælp af ændringer i permeabiliteten i et transducermateriale.Mass flow meter according to claim 5, characterized in that the forces 30 are measured by changes in the permeability of a transducer material. 9. Massestrømningsmåler i henhold til krav 1 kendetegnet ved at kræfterne måles ved at måle rørets udbøjning.Mass flow meter according to claim 1, characterized in that the forces are measured by measuring the deflection of the pipe. 9 DK 174757 B1 Patentkrav.9 DK 174757 B1 Patent claims. 10. Massestrømningsmåler i henhold til krav 9 kendetegnet ved at 5 ud bøjningen måles ved hjælp af strain gauges (10).Mass flow meter according to claim 9, characterized in that the 5 bend is measured by strain gauges (10). 10 DK 174757 B110 DK 174757 B1 11 DK 174757 B1 acceleration, hastighed, udbøjning eller kraft, og at det integrerede signal fra transduceren i tiden hvor hvor et afspærringsorgan (24) er lukket anvendes til beregning af nulpunkt for transduceren.11 DK 174757 B1 acceleration, velocity, deflection or force, and that the integrated signal from the transducer during the time when a closing means (24) is closed is used to calculate the zero of the transducer. 11. Massestrømningsmåler i henhold til krav 9 kendetegnet ved at udbøjningen måles ved hjælp af en kapacitiv pickup.Mass flow meter according to claim 9, characterized in that the deflection is measured by means of a capacitive pickup. 12. Massestrømningsmåler i henhold til krav 9 kendetegnet ved at udbøjningen måles ved hjælp af lys.Mass flow meter according to claim 9, characterized in that the deflection is measured by light. 13. Massestrømningsmåler i henhold til krav 1 kendetegnet ved at kræfterne beregnes ud fra en måling af rørets acceleration. 15Mass flow meter according to claim 1, characterized in that the forces are calculated from a measurement of the tube's acceleration. 15 14. Massestrømningsmåler i henhold til krav 13. kendetegnet ved at accelerationen måles ved hjælp af et accelerometer.Mass flow meter according to claim 13. characterized in that the acceleration is measured by means of an accelerometer. 15. Massestrømningsmåler i henhold til krav 1 kendetegnet ved at kræfterne 20 beregnes ud fra en måling af rørets hastighed.Mass flow meter according to claim 1, characterized in that the forces 20 are calculated from a measurement of the velocity of the pipe. 16. Massestrømningsmåler i henhold til krav 15 kendetegnet ved at hastigheden måles ved hjælp af en elektromagnetisk pickup.Mass flow meter according to claim 15, characterized in that the speed is measured by means of an electromagnetic pickup. 17. Massestrømningsmåler i henhold til krav 1 eller 2 kendetegnet ved at hjælpemidlet til at måle kræfter er en transducer (3.10) til måling af acceleration, hastighed, udbøjning eller kraft, og at signalet fra transduceren i tiden hvor et afspærringsorgan (24) er lukket anvendes som nulpunkt for transduceren.Mass flow meter according to claim 1 or 2, characterized in that the auxiliary for measuring forces is a transducer (3.10) for measuring acceleration, velocity, deflection or force, and that the signal from the transducer during the time when a shut-off means (24) is closed is used as the zero point for the transducer. 18. Massestrømningsmåler i henhold til krav 1 eller 2 kendetegnet ved at hjælpemidlet til at måle kræfter er en transducer (3,10) til måling af 30A mass flow meter according to claim 1 or 2, characterized in that the auxiliary measuring device is a transducer (3.10) for measuring 30 19. Massestrømningsmåler i henhold til krav 17 og 18 kendetegnet ved at det fundne nulpunkt fratrækkes den målte kraft før integrationen.Mass flow meter according to claims 17 and 18, characterized in that the found zero is subtracted from the measured force before the integration. 20. Massestrømningsmåler i henhold til et af de foregående krav kendetegnet ved at hjælpemidlerne til måling af kræfter på røret er anbragt tæt på en 10 ankerblok (2) i hvilken røret er fixeret.Mass flow meter according to one of the preceding claims, characterized in that the aids for measuring forces on the pipe are arranged close to an anchor block (2) in which the pipe is fixed. 21. System til udmåling af portioner af en fluid hvor systemet indeholder en central flowstyreenhed (33), en massestrømningsmåler. (23) indeholdende et målerør (32), og et afspærringsorgan (24) og hvor portioneringen af fluid sker 15 ved at åbne og lukke for afspærringsorganet kendetegnet ved at der på massestrømningsmålerens målerør (32) er anbragt en transducer (10) som måler den kraft (F(t)) målerøret udsættes for af fluiden ved åbning og lukning af afspærringsorganet.A system for measuring portions of a fluid wherein the system contains a central flow controller (33), a mass flow meter. (23) containing a measuring tube (32) and a shut-off means (24) and wherein the portioning of fluid is effected by opening and closing the shut-off means, characterized in that a transducer (10) is mounted on the measuring flow gauge of the mass flow meter (32). force (F (t)) the measuring tube is exposed by the fluid upon opening and closing the shut-off means. 22. System i henhold til krav 21 kendetegnet ved at massestrømningsmåleren foretager en integration af den målte kraft for at bestemme massestrømningen.A system according to claim 21, characterized in that the mass flow meter integrates the measured force to determine the mass flow. 23. System i henhold til krav 22 kendetegnet ved at massestrømningsmåleren 25 foretager en integration af den bestemte massestrømning for at bestemme den totale masse.System according to claim 22, characterized in that the mass flow meter 25 integrates the particular mass flow to determine the total mass.
DK200200805A 2002-05-24 2002-05-24 Mass flow meter with integration of acceleration forces on pipes and system using mass flow meter DK174757B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK200200805A DK174757B1 (en) 2002-05-24 2002-05-24 Mass flow meter with integration of acceleration forces on pipes and system using mass flow meter
PCT/DK2003/000340 WO2003100354A2 (en) 2002-05-24 2003-05-22 Mass flowmeter with integration of acceleration forces on a tube and system using the mass flowmeter
AU2003227515A AU2003227515A1 (en) 2002-05-24 2003-05-22 Mass flowmeter with integration of acceleration forces on a tube and system using the mass flowmeter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK200200805A DK174757B1 (en) 2002-05-24 2002-05-24 Mass flow meter with integration of acceleration forces on pipes and system using mass flow meter
DK200200805 2002-05-24

Publications (1)

Publication Number Publication Date
DK174757B1 true DK174757B1 (en) 2003-10-20

Family

ID=28685790

Family Applications (1)

Application Number Title Priority Date Filing Date
DK200200805A DK174757B1 (en) 2002-05-24 2002-05-24 Mass flow meter with integration of acceleration forces on pipes and system using mass flow meter

Country Status (3)

Country Link
AU (1) AU2003227515A1 (en)
DK (1) DK174757B1 (en)
WO (1) WO2003100354A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761134B2 (en) * 2006-02-17 2011-08-31 独立行政法人産業技術総合研究所 Mass flow meter
IT202100005384A1 (en) * 2021-03-09 2022-09-09 Caterina Mazzocchi MEASURING SYSTEM OF A PULSATING FLOW USING FORCE TRANSDUCERS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513625A (en) * 1983-06-30 1985-04-30 The Dow Chemical Company Flow meter and densitometer apparatus and method of operation
GB8420882D0 (en) * 1984-08-04 1984-09-19 British Petroleum Co Plc Flow meter
US4733569A (en) * 1985-12-16 1988-03-29 K-Flow Division Of Kane Steel Co., Inc. Mass flow meter
JPH04276519A (en) * 1991-03-04 1992-10-01 Mitsubishi Heavy Ind Ltd Apparatus for measuring mass flow pate of fluid
DK174559B1 (en) * 2000-02-11 2003-06-02 Danfoss As System for measuring portions of fluid

Also Published As

Publication number Publication date
AU2003227515A8 (en) 2003-12-12
AU2003227515A1 (en) 2003-12-12
WO2003100354A2 (en) 2003-12-04
WO2003100354A8 (en) 2004-12-16
WO2003100354A3 (en) 2004-11-18

Similar Documents

Publication Publication Date Title
CN102016519B (en) Method for generating a diagnostic from a deviation of a flow meter parameter
EP0017308B1 (en) Process and apparatus for metering, controlling and blending liquid flows
AU2007302610B2 (en) Dispensing apparatus and weighing process with control unit
US6601000B1 (en) Device and method for volume determination
US5121638A (en) Method and device for recording the flow rate of a stream of bulk material
CA2250519C (en) Precision liquid dispenser device
EP0670476B1 (en) A fluid sensor
DK174757B1 (en) Mass flow meter with integration of acceleration forces on pipes and system using mass flow meter
JP2024023472A (en) Vapor pressure verification using fluid density measurement value
US5551282A (en) Method and apparatus for measuring volume correction using molar quantities
JP2001515200A (en) Method and apparatus for monitoring the onset of liquid chemical vaporization
JP2023166540A (en) Flow steam pressure device and associated method
RU2008101777A (en) METHOD AND DEVICE FOR DETERMINING INSTANT MASS FLOW AT Pulsating Flows
JP7345053B2 (en) True vapor pressure and flashing detection device and related methods
RU2131027C1 (en) Device for measuring production rate of oil wells
Veje et al. The dynamics of granular flow in an hourglass
US20180321075A1 (en) Zeroing a Target Flowmeter
JPH04332824A (en) Method and system for measuring residual amount of bubbling liquid material
KR100466317B1 (en) Liquid measuring equipment
JP7258180B2 (en) Determination of Vapor Pressure Using Vapor Pressure Meter Factor
RU2073212C1 (en) Method for measurement of flow rate
RU2160432C1 (en) Gear to determine mass of oil product in closed vessel under pressure, predominantly in container-tank
SU922588A1 (en) Device for continuous measuring of liquid viscosity
RU62164U1 (en) "OMEGA" TWO PHASE FLOW METER FOR MEASURING PRODUCT DEBIT OF OIL WELLS
SU1380436A1 (en) Eluent flow indicator

Legal Events

Date Code Title Description
PBP Patent lapsed

Ref document number: DK