DK173515B1 - Process and apparatus for the controlled electrochemical deposition of metals and alloys involving the use of an acoustic flow - Google Patents

Process and apparatus for the controlled electrochemical deposition of metals and alloys involving the use of an acoustic flow Download PDF

Info

Publication number
DK173515B1
DK173515B1 DK199801656A DKPA199801656A DK173515B1 DK 173515 B1 DK173515 B1 DK 173515B1 DK 199801656 A DK199801656 A DK 199801656A DK PA199801656 A DKPA199801656 A DK PA199801656A DK 173515 B1 DK173515 B1 DK 173515B1
Authority
DK
Denmark
Prior art keywords
alloys
ultrasonic
process according
metals
acoustic flow
Prior art date
Application number
DK199801656A
Other languages
Danish (da)
Inventor
Per Moeller
Leif Bjoernoe
Jens Hald
Jens Dahl Jensen
Original Assignee
Per Moeller
Leif Bjoernoe
Jens Hald
Jens Dahl Jensen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Per Moeller, Leif Bjoernoe, Jens Hald, Jens Dahl Jensen filed Critical Per Moeller
Priority to DK199801656A priority Critical patent/DK173515B1/en
Publication of DK199801656A publication Critical patent/DK199801656A/en
Application granted granted Critical
Publication of DK173515B1 publication Critical patent/DK173515B1/en

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

DK 173515 B1 Nærværende patent omhandler en fremgangsmåde og et apparat, hvor elektrokemisk deponering af rene metaller eller legeringer udføres under anvendelse af såkaldt akustisk strømning i elektrolytten. Typen af elektrolyt vil normalt være vandig, men metoden kan ligeledes anvendes i organiske 5 elektrolytter og saltsmelter. Fokus for patentet er deponering af metaller og legeringer på komponenter som anvendes indenfor det mikromekaniske- eller, mikroelektroniske fagområde, f.eks. miniaturiserede mekaniske komponenter, sensorer, printkontakter, mikrofoner, nanowires og legeringsmodulerede multilag (eng. Compositional Modulated Alloys, CMA's).DK 173515 B1 This patent relates to a method and apparatus wherein electrochemical deposition of pure metals or alloys is carried out using so-called acoustic flow in the electrolyte. The type of electrolyte will usually be aqueous, but the method can also be used in organic electrolytes and salt melts. The focus of the patent is the deposition of metals and alloys on components used in the micro-mechanical or microelectronic field, e.g. miniaturized mechanical components, sensors, print switches, microphones, nanowires and alloy modulated multilayers (Compositional Modulated Alloys, CMAs).

1010

Ultralydomrøring er en velkendt teknologi indenfor galvanoindustrien, anvendt til både forbehandlingsprocesser og enkelte pletteringsprocesser.Ultrasonic agitation is a well-known technology in the galvano industry, used for both pre-treatment and single plating processes.

I forbehandlingsøjemed er ultralydomrøring i alkaliske dyppeaffedtere velkendt, hvor den kraftige agitation fra ultralydkilden effektiviserer renseprocessen som 15 beskrevet i Sinners renseteori, hvor de fire faktorer omrøring, temperatur, tid og badkemi kontrollerer renseprocessen.For pretreatment purposes, ultrasonic agitation in alkaline dipping degreasers is well known, where the powerful agitation from the ultrasonic source streamlines the purification process as described in Sinner's purification theory, where the four factors of agitation, temperature, time and bath chemistry control the purification process.

Ultralydkilder har ligeledes været anvendt som et middel til at forøge udfældningshastigheden i både kemiske og elektrolytiske 20 metaludfældningsprocesser. Man udnytter i denne sammenhæng metalionernes forøgede mobilitet i elektrolytten under ultralydomrøring, hvorved grænsestrømtætheden for metaludfældningen forøges. Grænsestrømtætheden er defineret i et potential/strøm-diagram som det punkt hvor en stigning i påtrykt potential ikke længere påvirker den observerede strømtæthed.Ultrasonic sources have also been used as a means of increasing the precipitation rate in both chemical and electrolytic metal precipitation processes. In this context, the increased mobility of the metal ions in the electrolyte under ultrasonic agitation is utilized, thereby increasing the boundary current density of the metal precipitate. The boundary current density is defined in a potential / current diagram as the point where an increase in the applied potential no longer affects the observed current density.

2525

Brugen af ultralyd i elektrokemiske pletteringsbade er kendt fra bl.a. U.S. Patent nr. 3,351,539 af Branson, som beskriver et system til statiske elektropletteringsprocesser. Problemet med de hidtil offentliggjorte metoder er, at de alle opererer med ultralyd af en type, som fremkalder kavitationseffekter i 30 pletteringselektrolytten. Kavitation er til gavn for renseprocesser, men generelt er denne opståen og kollaps af luftbobler i elektrolytten tæt på substratoverfladen under elektrokemisk deponering af metal ikke ønskværdig. I ovennævnte patent af Branson undgås stående bølger i elektrolytten ved at pulsere styresignalet til ultralydkilden.The use of ultrasound in electrochemical plating baths is known from e.g. U.S. Patent No. 3,351,539 by Branson, which describes a system for static electroplating processes. The problem with the previously published methods is that they all operate with ultrasound of a type which induces cavitation effects in the plating electrolyte. Cavitation is beneficial for purification processes, but generally this occurrence and collapse of air bubbles in the electrolyte close to the substrate surface during electrochemical deposition of metal is not desirable. In the above-mentioned patent by Branson, standing waves in the electrolyte are avoided by pulsing the control signal to the ultrasonic source.

35 GB offentliggørelsesskrift nr. 2.064.398 beskriver bl.a. elektroplettering, hvor der anvendes en transducer monteret på en fleksibel holder kan rettes mod arbejdsstedet, og hvor frekvensen ligger mellem 50 kHz og 10 MHz. I GB offentliggørelsesskrift nr. 2.075.898 beskrives ringformede lydbølgegeneratorer 40 (ultralydtransducer), typisk monteret omkring elektroden. Effekten er i begge tilfælde en omrøring af væsken (electrolytten) for at opnå en ensartet ionkoncentration nær arbejdsstedet, hvilket giver en mere ensartet udfældning på substratet.35 GB Publication No. 2,064,398 discloses, inter alia, electroplating using a transducer mounted on a flexible holder can be directed to the work site and the frequency is between 50 kHz and 10 MHz. GB Publication No. 2,075,898 describes annular sound wave generators 40 (ultrasonic transducers), typically mounted around the electrode. In both cases, the effect is a stirring of the liquid (electrolyte) to achieve a uniform ionic concentration near the work site, which gives a more uniform precipitation on the substrate.

45 I dynamiske systemer, f.eks. til kontinuert plettering i forbindelse med elektroforming, f.eks. EP 0 248 118 hvor lydbølge-agitation anvendes til at sørge DK 173515 B1 for tilførsel af nye metalioner til substratoverfladen, ved omrøring af elektrolytten i nærheden af den bevægede flade som skal pletteres, under den elektrolytiske udfældning, hvorved udfældningshastighed, duktilitet af det deponerede metal og komfinhed (mindre komstruktur) af det deponerede metal forøges. Ifølge skriftet 5 kan transducerne, fortrinsvis ultralydgeneratorer, enten indbygges i en af elektroderne eller placeres i kontakt med en af elektroderne eller placeres i elektrolyttens strømningsretning. Strømningen af elektrolytten skabes vha. en pumpe.45 In dynamic systems, e.g. for continuous plating in connection with electroforming, e.g. EP 0 248 118 where sound wave agitation is used to provide DK 173515 B1 for supply of new metal ions to the substrate surface, by stirring the electrolyte near the moving surface to be plated, during the electrolytic precipitation, thereby precipitating rate, ductility of the deposited metal and increased complexity (minor grain structure) of the deposited metal. According to the specification 5, the transducers, preferably ultrasonic generators, can either be built into one of the electrodes or placed in contact with one of the electrodes or placed in the direction of flow of the electrolyte. The flow of the electrolyte is created by a pump.

I U.S. patent nr. 5,653,860, udtaget af Mitsubishi Semiconductor America Inc., 10 fjernes gasbobler fra katodeoverfladen under elektrolytisk metaludfældning v.h.a.In the U.S. No. 5,653,860, issued by Mitsubishi Semiconductor America Inc., gas bubbles are removed from the cathode surface during electrolytic metal precipitation by

en ultralydtransducer, som får selve katodeoverfladen til at vibrere.an ultrasonic transducer which causes the cathode surface to vibrate itself.

I U.S. patent nr. 2.470.775 beskrives elektroplettering med periodisk pulsvending, hvorved der opnås et glat og plastisk lag med maksimal glansgivende effekt samt 15 en hurtigere udfældning.In the U.S. Patent No. 2,470,775 discloses electroplating with periodic pulse reversing, thereby obtaining a smooth and plastic layer with maximum glossy effect and a faster precipitation.

Det er altså kendt at anvende ultralyd i forbindelse med en kontrolleret elektrokemisk udfældning af metaller og legeringer på et substrat, ligesom det er kendt at anvende periodisk pulsvending for at få en bedre belægning.Thus, it is known to use ultrasound in conjunction with a controlled electrochemical precipitation of metals and alloys on a substrate, and it is known to use periodic pulse reversal to obtain a better coating.

20 Fremfor at fokusere på de ovennævnte omrørings-/agitationseffekter koncentrerer nærværende patent sig om anvendelsen af såkaldt akustisk strømning og dens effekter på reaktionsmekanismerne ved elektrokemisk udfældning af metaller og legeringer, f.eks. anvendt ved plettering/fremstilling af mikromekaniske/rnikroelektroniske komponenter og multilagdelte 25 legeringsbelægninger, såkaldte CMA-belægninger. CMA-betegnelsen stammer fra engelsk “Compositional Modulated Alloys” og defineres ί denne sammenhæng som multilagdelte metalstrukturer, hvor sammensætningen kan varieres enten som en gradueret legeringsændring igennem materialet eller som gentagne enkeltlag med fastlagt kemisk sammensætning. Muligheden for at 30 fremstille disse CMA-strukturer ved elektrokemisk udfældning afhænger af elektrolyt-kemi, og pletteringsparametre, hvilket har været beskrevet af Despic [A.R.Despic, V.D. Jovic, J. Electrochem. Soc. 134 (1987), 3004. A.R.Despic, V.D. Jovic, J. Electrochem. Soc. 136 (1989), 1651].20 Instead of focusing on the aforementioned stirring / agitation effects, the present patent focuses on the use of so-called acoustic flow and its effects on the reaction mechanisms of electrochemical precipitation of metals and alloys, e.g. used in plating / manufacturing micromechanical / microelectronic components and multi-layered alloy coatings, so-called CMA coatings. The CMA designation derives from English “Compositional Modulated Alloys” and is defined in this context as multi-layered metal structures, where the composition can be varied either as a graduated alloy change through the material or as repeated single layers of determined chemical composition. The ability to produce these CMA structures by electrochemical precipitation depends on electrolyte chemistry and plating parameters, which have been described by Despic [A.R.Despic, V.D. Jovic, J. Electrochem. Soc. 134 (1987), 3004. A.R.Despic, V.D. Jovic, J. Electrochem. Soc. 136 (1989), 1651].

35 Traditionel anvendelse af ultralyd til fremkaldelse af bevægelse af væsker, herunder til blandingsprocesser i forbindelse med rensning og omrøring, er karakteriseret ved brug af høj akustisk intensitet, hvor kavitation udgør den grundlæggende proces for fremkaldelse af bevægelsen. Kavitation er en voldsomt virkende proces, hvis virkeområder og virkninger kun meget vanskeligt lader sig styre. Kavitation kan 40 kort beskrives som dannelse, pulsering og sammenfald af bobler, et forløb der fører til en intensiv og hurtig blandingsproces i den ultralydbestrålede væske, i dette tilfælde en elektrolyt. I stedet for at anvende kavitation som grundlag for væskebevægelsen, som der gøres i de hidtidige patenter og patentansøgninger, vil akustisk strømning danne grundlag for væskebevægelsen i det foreliggende patent.35 Traditional use of ultrasound to induce movement of fluids, including for mixing and cleaning processes, is characterized by the use of high acoustic intensity, with cavitation forming the basic process for evoking movement. Cavitation is a fiercely active process whose spheres and effects are very difficult to control. Cavitation can be briefly described as the formation, pulsation and coincidence of bubbles, a process that leads to an intensive and rapid mixing process in the ultrasonic irradiated liquid, in this case an electrolyte. Instead of using cavitation as a basis for fluid movement, as is done in previous patents and patent applications, acoustic flow will form the basis for fluid movement in the present patent.

45 Den akustiske strømning, der er karakteriseret ved at være kavitations- og boblefri, fremkaldes af udstrålingen af ultralyd fra een eller flere transducere.45 The acoustic flow, characterized by being cavitation and bubble-free, is elicited by the radiation of ultrasound from one or more transducers.

2 DK 173515 B12 DK 173515 B1

Ultralydfrembragt akustisk strømning afviger afgørende fra sædvanlig anvendt ultralyd, som frembringer væskebevægelse baseret på kavitation i væskemediet (blandingsprocesser). Medens blandingsprocessemes væskebevægelser er karakteriserede ved at være 3-dimensionale, hvor væskepartikleme bevæges i og 5 roteres omkring akser i tre rumlige retninger, og hvor der normalt anvendes ultralyd frekvenser mellem 20 kHz og 50 kHz, og hvor den anvendte ultralyd intensitet er så høj, at kavitation danner grundlaget for væskebevægelsen, er den akustiske strømning karakteriseret ved, at der etableres en stationær og overvejende een-dimensional parallelstrømning i en retning vinkelret på ultralydtransduceren og 10 strømmende bort fra transduceren.Ultrasound-generated acoustic flow differs significantly from commonly used ultrasound, which produces fluid movement based on cavitation in the fluid medium (mixing processes). While the fluid movements of the mixing processes are characterized by being 3-dimensional, where the fluid particles are moved in and rotated about axes in three spatial directions, and where ultrasonic frequencies between 20 kHz and 50 kHz are normally used and the ultrasonic intensity used is so high. that cavitation forms the basis for fluid movement, the acoustic flow is characterized by establishing a stationary and predominantly one-dimensional parallel flow in a direction perpendicular to the ultrasonic transducer and flowing away from the transducer.

Akustisk strømning i en væske frembringes ved lavere ultralydintensiteter end den veldefinerede grænseværdi intensitet i W/cm2, der fører til kavitation i væsken, [Grænseværdier for kavitation, se f.eks. R. Esche, Untersuchung der 15 Schwingungskavitation in Fliissigkeiten, Acustica, 2, 1952, Beih., AB 208]. Derved udgås dannelse af bobler i væsken. Grænseværdien for ultralydintensitet, der fører til forekomsten af kavitation afhænger af den anvendte ultralydfrekvens, og den stiger med frekvensen. Grænseværdien for kavitation ved forskellige frekvenser afhænger på afgørende vis af arten af den anvendte væske (elektrolyt), og må i hvert 20 enkelt tilfælde bestemmes gennem eksperimentelle målinger. Ved at anvende ultralydintensiteter under grænseværdien for kavitation og ved frekvenser fra ca. 60 kHz og til over 20 MHz er det muligt helt at undgå virkningerne af bobledannelse (kavitation) i den etablerede akustiske strømning.Acoustic flow in a liquid is produced at lower ultrasonic intensities than the well-defined limit value intensity in W / cm2 leading to cavitation in the liquid, [Limit values for cavitation, see e.g. R. Esche, Examination of Fluctuating Cavitation in Fluid Viscosity, Acustica, 2, 1952, Beih., AB 208]. This eliminates the formation of bubbles in the liquid. The threshold for ultrasound intensity leading to the occurrence of cavitation depends on the ultrasonic frequency used and it increases with frequency. The threshold value for cavitation at different frequencies depends crucially on the nature of the liquid (electrolyte) used, and must be determined in each case by experimental measurements. By using ultrasonic intensities below the cavitation limit value and at frequencies of approx. 60 kHz and above 20 MHz it is possible to completely avoid the effects of bubble formation (cavitation) in the established acoustic flow.

25 Den mekanisme i ultralydfeltet, der fører til frembringelse af akustisk strømning, kan forklares ved, at der etableres en gradient i det af ultralydtransduceren frembragte strålingstryk i elektrolytten på grund af absorptionen af ultralydenergi i transducerens lydfelt. Trykgradientens retning er vinkelret på ultralydtransducerens overflade, og den akustiske strømning finder sted i trykgradientens retning.The mechanism of the ultrasonic field leading to the generation of acoustic flow can be explained by establishing a gradient in the radiation pressure produced by the ultrasonic transducer in the electrolyte due to the absorption of ultrasonic energy in the transducer's sound field. The direction of the pressure gradient is perpendicular to the surface of the ultrasonic transducer and the acoustic flow takes place in the direction of the pressure gradient.

3030

Forekomsten af viskositet i en elektrolyt vil føre til forøget absorption, og dermed til forstærkning af trykgradienten, der driver den akustiske strømning.The occurrence of viscosity in an electrolyte will lead to increased absorption, and thus to amplification of the pressure gradient driving the acoustic flow.

Akustisk strømning kan effektivt frembringes i selv meget viskose væsker [W.L.Acoustic flow can be effectively produced in even very viscous fluids [W.L.

35 Nyborg, Acoustical Steaming. Li "Physical Acoustics", W.P. Mason (Ed.),35 Nyborg, Acoustical Steaming. Li "Physical Acoustics", W.P. Mason (Ed.),

Academic Press, 1965, Vol. Π B, 265 - 331; L.K. Zarembo, Acoustical Streaming. Li "High-Intensity Ultrasonic Fields". L.D. Rozenberg (Ed.), Plenum Press, 1971,135 - 199; M. Wiene, Acoustical streaming produced by high-intensity ultrasound.Academic Press, 1965, Vol. Π B, 265 - 331; L. K. Zarembo, Acoustical Streaming. Li "High-Intensity Ultrasonic Fields". L. D. Rozenberg (Ed.), Plenum Press, 1971,135 - 199; M. Wiene, Acoustical streaming produced by high-intensity ultrasound.

M.Sc. thesis, Dept. Industrial Acoustics, Technical University of Denmark, 1996.M.Sc. thesis, Dept. Industrial Acoustics, Technical University of Denmark, 1996.

40 (På dansk)]40 (in Danish)]

Da strømningshastigheden i den akustiske strømning er styret af lydtrykket i ultralydbølgen foran transduceren, kan strømningshastigheden i elektrolytten let 45 tilpasses enhver belægningsproces for metaller og legeringer ved at variere 3 DK 173515 B1 trykamplituden i ultralydbølgen.Since the flow rate of the acoustic flow is controlled by the sound pressure of the ultrasonic wave in front of the transducer, the flow rate of the electrolyte can easily be adapted to any coating process for metals and alloys by varying the pressure amplitude of the ultrasonic wave.

Den stationære og bobleforureningsfri strømning af en elektrolyt, der således kan etableres under kontrollerede forhold, vil tillade en transport af metalioner i en 5 elektro-pletteringsproces, og vil tillade at kontrollere ionkoncentrationsgradienten i det strømningsfrembragte grænselag nær en fast overflade, og vil tillade at styre potentialet i overflade belægningsprocessen, herunder at styre produktionen af sammensætnings-modulerede legeringer (CMA). Kontrollen af de diffusionsbaserede processer vil blive udført ved at tilpasse den geometriske 10 udformning af de anvendte ultralydtransducere til de flader, der skal metalbelægges, ved at optimere afstanden mellem transducer og belægningsflader, ved at regulere lydtrykket i ultralydbølgen, ved at udnytte såvel monokromatiske som bredbånds ultralydsignaler, hvor tidsforløbet for signalerne og disses spektrale sammensætning er tilpasset den særlige metalbelægningsproces, der ønskes udført.The stationary and bubble pollution-free flow of an electrolyte, thus capable of being established under controlled conditions, will allow the transport of metal ions in an electroplating process, and will allow checking the ion concentration gradient in the flow-generated boundary layer near a solid surface, and will allow control. the potential of the surface coating process, including controlling the production of composition-modulated alloys (CMA). The control of the diffusion-based processes will be carried out by adapting the geometric design of the applied ultrasonic transducers to the surfaces to be metal coated, by optimizing the distance between the transducer and coating surfaces, by controlling the sound pressure in the ultrasonic wave, utilizing both monochromatic and broadband. ultrasonic signals where the time course of the signals and their spectral composition are adapted to the particular metal coating process that is desired to be carried out.

1515

De anvendte ultralydtransducere til frembringelse af akustisk strømning vil overvejende være baserede på piezoelektriske (typisk moderne PZT forbindelser eller BaTiCb) skivematerialer, med eller uden backingmaterialer og med eller uden akustisk impedanstilpasningslag på skivernes sende sider. Lav-impedante 20 backingmaterialer kan benyttes for at optimere den udstrålede ultralydenergi i retningen mod de flader, der skal metalbelægges. Formen på den/de piezoelektriske skive(r) kan være cirkulære, rektangulære, eller skiverne kan have en hvilken som helst form, der tillader dem at udgøre dele af en ultralydantenne. For at undgå kemiske reaktioner ved de piezoelektriske materialer og/eller deres backing- og 25 impedanstilpasningslag, samt for at undgå et frembringe en elektrisk kortslutning af de piezoelektriske skiver, vil en coatning (belægning med et isolerende lag) at den piezoelektriske transducer finde sted.The ultrasonic transducers used to generate acoustic flow will be predominantly based on piezoelectric (typically modern PZT compounds or BaTiCb) disc materials, with or without backing materials and with or without acoustic impedance matching layer on the transmitted sides of the discs. Low-impedance 20 backing materials can be used to optimize the radiated ultrasonic energy in the direction toward the surfaces to be coated. The shape of the piezoelectric disc (s) may be circular, rectangular, or the discs may have any shape that allows them to form portions of an ultrasonic antenna. In order to avoid chemical reactions of the piezoelectric materials and / or their backing and impedance matching layers, and to avoid generating an electrical short circuit of the piezoelectric discs, a coating (coating with an insulating layer) will take place for the piezoelectric transducer.

For at undgå frembringelsen af stående ultralydbølger i den tank, hvori de 30 elektrolytiske processer finder sted, kan tanken indvendig være beklædt med et reflektionsdæmpende materiale, såvel som at særligt tilpassede tidsforløb for ultralydsignaleme kan blive brugt.In order to avoid the generation of standing ultrasonic waves in the tank in which the 30 electrolytic processes take place, the tank may be internally lined with a reflection damping material, as well as that specially adapted time lags for the ultrasound signals may be used.

To hovedgrupper af procesopstillinger til elektroplettering ved brug af akustisk 35 strømning vil blive brugt. I den første hovedgruppe af elektropletteringssystemer, der udnytter akustisk strømning, vil transduceren være placeret bag ved anoden, der er udformet som en gitter struktur (transducer sendefladen vil typisk være parallel med den overflade, der skal metalbelægges). Elektrolytten kan strømme igennem anoden til katoden (den overflade, der ønskes metalbelagt), hvor strømningen sker 40 vinkelret på katodeoverfladen, der drejer strømningsretningen til en strømning parallel med katodeoverfladen. En returstrømning til transduceren efter strømning langs katodeoverfladen vil naturligt forekomme på grundlag af den ved kontinuitetsligningen beskrevne massebevarelse. Den første hovedgruppe af procesopstillinger er vist på figur 1. Figur 1 viseret vinkelret indfaldende 45 strømningssystem med en gitterformet anode for frembringelse af akustisk strømning i henhold til den foreliggende opfindelse. Systemet på figur l består af en 4 DK 173515 B1 anode 1, en katode (belægningsemne) 2, en ultralydtransducer 3, en ultralydabsorberende/spredende belægning 4, og en elektrolyt 5. Figur 1 viser desuden strømlinier i den akustiske strømning 6 og forekomsten af et stagnationspunkt 7 på belægningsemnets overflade.Two main groups of electroplating process setups using acoustic flow will be used. In the first major group of electroplating systems utilizing acoustic flow, the transducer will be located behind the anode designed as a grating structure (the transducer transmitting surface will typically be parallel to the surface to be metal coated). The electrolyte can flow through the anode to the cathode (the surface desired to be metal coated), where the flow occurs perpendicular to the cathode surface, which turns the flow direction to a flow parallel to the cathode surface. A return current to the transducer after flow along the cathode surface will naturally occur on the basis of the mass conservation described by the continuity equation. The first major set of process arrays is shown in Figure 1. Figure 1 illustrates a perpendicular incident flow system with a lattice-shaped anode for generating acoustic flow according to the present invention. The system of Figure 1 consists of a 4 anode 1, an cathode (coating blank) 2, an ultrasonic transducer 3, an ultrasonic absorbing / scattering coating 4, and an electrolyte 5. Figure 1 further shows streamlines in the acoustic flow 6 and the occurrence of a stagnation point 7 on the surface of the coating blank.

5 I den anden hovedgruppe af procesopstillinger til elektroplettering ved brug af akustisk strømning vil een eller flere ultralydtransducere være anbragt på en sådan måde at den frembragte parallelstrømning ikke sker vinkelret på katodeoverfladen, men danner en vinkel på 0°-180° med denne flade, det foretrukne vinkelinterval er 10 20°-160°. I denne opstilling kan elektrolytten strømme uforstyrret af anoden til katodeoverfladen, se figur 2. Figur 2 viser en skråt indfaldende parallelstrømning i henhold til den foreliggende opfindelse. Systemet i figur 2 omfatter en anode 1, en katode (belægningsemne) 2, en ultralydtransducer 3, en ultralydabsorberende/spredende belægning 4, en elektrolyt 5, en ekstra 15 ultralydtransducer 6. Figur 2 viser desuden strømlinier i den akustiske strømning 7, og et stagnationspunkt 8.In the second main set of electroplating process arrangements using acoustic flow, one or more ultrasonic transducers will be arranged in such a way that the generated parallel flow does not occur perpendicular to the cathode surface but forms an angle of 0 ° to 180 ° with this surface. preferred angular range is 20 ° -160 °. In this arrangement, the electrolyte can flow undisturbed by the anode to the cathode surface, see Figure 2. Figure 2 shows an oblique incident parallel flow according to the present invention. The system of Figure 2 comprises an anode 1, a cathode (coating blank) 2, an ultrasonic transducer 3, an ultrasonic absorbing / scattering coating 4, an electrolyte 5, an additional 15 ultrasonic transducer 6. Figure 2 further shows streamlines in the acoustic flow 7, and a stagnation point 8.

Den geometriske udformning af ultralydtransduceme tilpasses formen af de emner, der skal metalbelægges. I tilfælde af metalbelægning af et cylinderformet emne, vil 20 ultralydtransduceren bestå af en kombination (en antenne) af flere piezoelektriske elementer og sammensat på en måde, der giver transduceren en cylindrisk form, hvor de elektrisk parallelkoblede piezoelektriske elementer frembringer en akustisk strømning vinkelret ind mod overfladen af emnet (katoden), der skal elektropletteres, se for eksempel figur 3.The geometric design of the ultrasonic transducers is adapted to the shape of the items to be coated. In the case of metal coating a cylindrical workpiece, the ultrasonic transducer will consist of a combination (an antenna) of several piezoelectric elements and composed in a manner that gives the transducer a cylindrical shape, whereby the electrically parallel piezoelectric elements produce an acoustic flow perpendicular to the see the surface of the workpiece (cathode) to be electroplated, see for example Figure 3.

2525

Figur 3 viser et multi-element transducersystem, der frembringeren akustisk strømning i henhold til den foreliggende opfindelse. Elektropletteringssystemet i figur 3 omfatter en anode 1, en katode (belægningsemne) 2, en multi-element ultralydtransducer (antenne) 3, en ultralydabsorberende/spredende belægning 4, og 30 en elektrolyt 5. Figur 3 viser desuden forløbet af strømlinier i den frembragte akustiske strømning 6.Figure 3 shows a multi-element transducer system that produces acoustic flow according to the present invention. The electroplating system of Figure 3 comprises an anode 1, a cathode (coating blank) 2, a multi-element ultrasonic transducer (antenna) 3, an ultrasonic absorbing / scattering coating 4, and an electrolyte 5. Figure 3 further shows the course of streamlines in the generated acoustic flow 6.

I alle de af opfindelsen omfattede elektropletteringssystemer er eventuel forekomst af stående ultralydbølger undgået ved at anbringe et ultralydabsorberende og/eller 35 ultralydspredende materiale på særligt udvalgte steder langs tankens inderside.In all the electroplating systems encompassed by the invention, any occurrence of standing ultrasonic waves is avoided by placing an ultrasound absorbing and / or 35 ultrasound spreading material at particularly selected locations along the inside of the tank.

Stederne for placeringen af dette materiale er bestemt af antallet af ultralydtransducere, udformningen af transducere og emner til elektroplettering, osv.The locations of the location of this material are determined by the number of ultrasonic transducers, the design of transducers and electroplating workpieces, etc.

At kunne kontrollere mobiliteten af ion-specier i pletteringselektrolytter er af 40 afgørende betydning for den samlede kontrol af den elektrokemiske udfældningsproces. Ved at introducere specifikt designet strømning omkring katodeoverfladen under metaldeponering kan massetransport-fænomener i elektrolytten styres og herved mulliggøre øget kontrol med pletteringshastighed, materialefordeling samt mikrostruktur og herved egenskaber af den deponerede 45 metallegering.Being able to control the mobility of ion species in plating electrolytes is of crucial importance for the overall control of the electrochemical precipitation process. By introducing specifically designed flow around the cathode surface during metal deposition, mass transport phenomena in the electrolyte can be controlled thereby enabling increased control of plating speed, material distribution as well as microstructure and thus properties of the deposited metal alloy.

Under elektrolytisk udfældning af metallegeringer observeres en af to 5During electrolytic precipitation of metal alloys, one of two 5 is observed

Claims (19)

1. Fremgangsmåde til kontrolleret elektrokemisk deponering af metaller og legeringer på et substrat i en væskebaseret electrolyt under anvendelse af ultralyd, kendetegnet ved, at der frembringes akustisk strømning 10 (retningsbestemt ultralydstrømning uden kavitation) ved at anvende ultralydfrekvenser mellem 60 kHz og 20 MHz, og særlig moduleret/pulserende udfældningsstrøm/potential.A method of controlled electrochemical deposition of metals and alloys on a substrate in a liquid-based electrolyte using ultrasound, characterized in that acoustic flow 10 (directional ultrasonic flow without cavitation) is generated using ultrasonic frequencies between 60 kHz and 20 MHz. particularly modulated / pulsating precipitation current / potential. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at der anvendes legeringer af typen Fe + et eller flere metaller fra 8. Hovedgruppe, fortrinsvisProcess according to claim 1, characterized in that alloys of the type Fe + are used or one or more metals from 8. Main group, preferably 3. Fremgangsmåde ifølge krav 1,kendetegnet ved, at der anvendes Cu-In- Se-legeringer.Process according to claim 1, characterized in that Cu-In-Se alloys are used. 4. Fremgangsmåde ifølge krav 1,kendetegnet ved, at der anvendes legeringer af typen zink + et eller flere af metallerne jern, kobolt, nikkel, tin 20 eller mangan.Process according to claim 1, characterized in that alloys of the zinc type + one or more of the metals are used iron, cobalt, nickel, tin 20 or manganese. 5. Fremgangsmåde ifølge krav I, kendetegnet ved, at der anvendes Fe-Cr-Ni-legeringer.Process according to claim 1, characterized in that Fe-Cr-Ni alloys are used. 6. Fremgangsmåde ifølge krav 1,kendetegnet ved, at der anvendes legeringer af typen Ni + et eller flere af metallerne krom, kobolt, kobber, tin 25 eller palladium.Process according to claim 1, characterized in that alloys of the Ni + type are used one or more of the metals chromium, cobalt, copper, tin 25 or palladium. 7. Fremgangsmåde ifølge krav l,kendetegnet ved, at der anvendes Arsen-legeringer.Process according to claim 1, characterized in that Arsenic alloys are used. 8. Fremgangsmåde ifølge krav 1,kendetegnet ved, at der anvendes ethvert enkeltmetal i det periodiske system (som lader sig udfælde elektrokemisk fra 30 en væskebaseret elektrolyt).Process according to claim 1, characterized in that every single metal is used in the periodic system (which can be electrochemically precipitated from a liquid-based electrolyte). 9. Fremgangsmåde ifølge krav 1-8, kendetegnet ved, at substratet er en mikrokomponent med en kompleks tredimensional geometri.Method according to claims 1-8, characterized in that the substrate is a microcomponent with a complex three-dimensional geometry. 10. Fremgangsmåde ifølge krav 1-8, kendetegnet ved, at der fremstilles nanowires.Process according to claims 1-8, characterized in that nanowires are produced. 11. Fremgangsmåde ifølge krav 1-8, ken de tegn et ved, at substratet er en printplade med huller (gennemplettering).A method according to claims 1-8, characterized in that the substrate is a printed circuit board (holes). 12. Fremgangsmåde ifølge krav 1-8,kendetegnet ved, at at der fremstilles 40 DK 173515 B1 5 multilagdelte metalbelægninger.Process according to claims 1-8, characterized in that multi-layered metal coatings are produced. 13. Fremgangsmåde ifølge krav 1-12, kendetegn et ved, at styresignaleme til ultralydtransducere er frekvens- og eller amplitudemodulerede.Method according to claims 1-12, characterized in that the control signals for ultrasonic transducers are frequency and or amplitude modulated. 14. Fremgangsmåde ifølge krav 1-13,kendetegnet ved, at der anvendes en jO akustisk lydfælde for at undgå stående bølger i elektrolytten.Method according to claims 1-13, characterized in that a 10 acoustic sound trap is used to avoid standing waves in the electrolyte. 15. Fremgangsmåde ifølge krav 1-14, kendetegnet ved, at den akustiske lydfælde er fremstilet af et akustisk dæmpende eller spredende materiale.Method according to claims 1-14, characterized in that the acoustic sound trap is made of an acoustically damping or dispersing material. 15 Fe-Ni-legeringer.15 Fe-Ni alloys. 16. Fremgangsmåde ifølge krav 1-15, kendetegnet ved, at indfaldsvinklen mellem den akustisk strømnings retning og substratets overflade ligger i 15 intervallet 0°-180°, med et foretrukket interval på 30°-150°.Method according to claims 1-15, characterized in that the angle of incidence between the direction of the acoustic flow and the surface of the substrate is in the range 0 ° -180 °, with a preferred range of 30 ° -150 °. 17. Fremgangsmåde ifølge krav 1-16, kendetegnet ved, at den akustiske strømningshastighed reguleres af lydtrykket fra ultralydkilden.Method according to claims 1-16, characterized in that the acoustic flow rate is controlled by the sound pressure from the ultrasonic source. 18. Fremgangsmåde ifølge krav 1-17, kendetegnet ved, at ultralydkilden udformes efter formen af substratet.Method according to claims 1-17, characterized in that the ultrasonic source is formed according to the shape of the substrate. 19. Apparat til elektrokemisk deponering af metaller/legeringer, kendetegnet ved, at det indeholder en eller flere ultralydtransducere, placeret som anført i krav 16 (frembringende retningsbestemt akustisk strømning), en lydfælde til modvirkning af stående bølgefænomener, en pulsensretter samt computerkontrol af den elektrolytiske udfældningsstrøm/potential og 25 ultralydtransduceme. 30 35Apparatus for electrochemical deposition of metals / alloys, characterized in that it contains one or more ultrasonic transducers, as defined in claim 16 (generating directional acoustic flow), a sound trap for counteracting standing wave phenomena, a pulse rectifier and computer control of the electrolytic precipitation current / potential and the 25 ultrasonic transducers. 30 35
DK199801656A 1998-12-18 1998-12-18 Process and apparatus for the controlled electrochemical deposition of metals and alloys involving the use of an acoustic flow DK173515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK199801656A DK173515B1 (en) 1998-12-18 1998-12-18 Process and apparatus for the controlled electrochemical deposition of metals and alloys involving the use of an acoustic flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK199801656A DK173515B1 (en) 1998-12-18 1998-12-18 Process and apparatus for the controlled electrochemical deposition of metals and alloys involving the use of an acoustic flow
DK165698 1998-12-18

Publications (2)

Publication Number Publication Date
DK199801656A DK199801656A (en) 2000-06-19
DK173515B1 true DK173515B1 (en) 2001-01-22

Family

ID=8106952

Family Applications (1)

Application Number Title Priority Date Filing Date
DK199801656A DK173515B1 (en) 1998-12-18 1998-12-18 Process and apparatus for the controlled electrochemical deposition of metals and alloys involving the use of an acoustic flow

Country Status (1)

Country Link
DK (1) DK173515B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055245A3 (en) * 2002-12-18 2004-09-02 Siemens Ag Method for the deposition of an alloy on a substrate
CN110441780A (en) * 2019-08-21 2019-11-12 中国海洋大学 A kind of ultrasonic phase array relevance imaging method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055245A3 (en) * 2002-12-18 2004-09-02 Siemens Ag Method for the deposition of an alloy on a substrate
CN110441780A (en) * 2019-08-21 2019-11-12 中国海洋大学 A kind of ultrasonic phase array relevance imaging method

Also Published As

Publication number Publication date
DK199801656A (en) 2000-06-19

Similar Documents

Publication Publication Date Title
TWI433965B (en) Apparatus and method for the electrolytic treatment of a plate-shaped product
US20230311171A1 (en) Cleaning apparatus and method, and monitoring thereof
US6368482B1 (en) Plating processes utilizing high intensity acoustic beams
KR960705964A (en) Ultrasonic Agitator
JP2002121699A (en) Electroplating method using combination of vibrating flow and impulsive plating current of plating bath
CN107723761A (en) A kind of device and method of the fine electro-deposition of laser-impact piezoelectric ceramics localization
CN101675469B (en) Methods and apparatuses of microbeamforming with adjustable fluid lenses
CN107835720B (en) Cleaning apparatus and method using acoustic transducers
DK173515B1 (en) Process and apparatus for the controlled electrochemical deposition of metals and alloys involving the use of an acoustic flow
Hihn et al. Sonoelectrochemistry: both a tool for investigating mechanisms and for accelerating processes
KR20040035757A (en) Ultrasonically-enhanced electroplating apparatus and methods
JP2002053999A (en) Barrel electroplating method for extremely small articles
Zhai et al. Fabrication of micro pits based on megasonic assisted through-mask electrochemical micromachining
JP2016515668A (en) Method and apparatus for uniformly metallizing a substrate
Tan et al. Developing high intensity ultrasonic cleaning (HIUC) for post-processing additively manufactured metal components
US20210139115A1 (en) Apparatus and Method for Prevention and Treatment of Marine Biofouling
US5460859A (en) Method and system for dip coating an article having large open areas or a multiplicity of apertures
Gadkari et al. Micro fabrication using electro deposition and ultrasonic acoustic liquid manipulation
Drake Electrodeposition in ultrasonic fields
US6016817A (en) Method and device for the treatment of plate-shaped workpieces having small holes
Goel et al. Experimental investigations and statistical modeling of ultrasonic assisted jet electrochemical micro-drilling process with pulsed DC
US11158889B2 (en) Apparatuses and methods for acoustic and current manipulation of anode interface deposits in lithium anode batteries and other battery systems
CN114959815A (en) Method and equipment for improving electroplating rate
CA3217938A1 (en) System and method for electroforming a component
JP2009097023A (en) Ozone water treatment method and ozone water treatment apparatus

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PUP Patent expired

Expiry date: 20181218