DK172126B1 - Windmill sail - Google Patents

Windmill sail Download PDF

Info

Publication number
DK172126B1
DK172126B1 DK120095A DK120095A DK172126B1 DK 172126 B1 DK172126 B1 DK 172126B1 DK 120095 A DK120095 A DK 120095A DK 120095 A DK120095 A DK 120095A DK 172126 B1 DK172126 B1 DK 172126B1
Authority
DK
Denmark
Prior art keywords
wind turbine
half shells
joints
turbine blade
blade
Prior art date
Application number
DK120095A
Other languages
Danish (da)
Other versions
DK120095A (en
Inventor
Henrik Stiesdal
Martin Winther-Jensen
Original Assignee
Bonus Energy As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bonus Energy As filed Critical Bonus Energy As
Priority to DK120095A priority Critical patent/DK172126B1/en
Publication of DK120095A publication Critical patent/DK120095A/en
Application granted granted Critical
Publication of DK172126B1 publication Critical patent/DK172126B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Description

i DK 172126 B1in DK 172126 B1

VINDMØLLEVINGEWIND TURBINE BLADE

Opfindelsen angår en vindmøllevinge omfattende to halvskaller, der udgør i det mindste en del af vingens overflade og 5 sammenføjes ved samlinger langs for- og bagkanten af vin- gen.The invention relates to a wind turbine blade comprising two half shells which form at least part of the surface of the blade and are joined together at joints along the front and rear edges of the blade.

Vindmøllevinger udsættes for store, varierende belastninger under drift, og det er derfor af den største vigtighed, at 10 vingestrukturen har den fornødne styrke og kan fremstilles i den rigtige kvalitet.Wind turbine blades are exposed to large, varying loads during operation, so it is of the utmost importance that the 10 blade structure has the required strength and can be manufactured in the right quality.

Vindmøllevinger udføres ofte som skalkonstruktioner i kom-positmaterialer, for eksempel glasfiberarmeret polyester 15 eller lamineret træ. I den mest almindelige udførelse samles en vindmøllevinge af to halvskaller, der sammenføjes i for- og bagkant, for eksempel ved limning. Halvskallerne er ofte udført i et laminat med varierende egenskaber efter korden for den pågældende position, for eksempel i en sand-20 wichkonstruktion i den bageste del af profilet, mens det styrkebærende laminat er anbragt på det sted, hvor vingen er tykkest. Halvskallerne understøttes normalt med en eller flere bjælker inden i vingens hulrum. Formålet med disse bjælker er at bidrage til overførelse af forskydningskræf-25 ter samt at forhindre foldning af halvskallerne. Bjælkerne sammenføjes med halvskallerne ved limning, idet bjælkerne fremstilles i U- eller I-form, hvor flangerne danner anlægsflade mod halvskallerne.Wind turbine blades are often performed as shell structures in composite materials, for example fiberglass reinforced polyester 15 or laminated wood. In the most common embodiment, a wind turbine blade is assembled by two half shells joined together at the front and rear edges, for example by gluing. The half-shells are often made in a laminate having varying properties according to the cord for that position, for example in a sandwich structure in the rear of the profile, while the strength-bearing laminate is placed at the point where the blade is thickest. The half shells are usually supported with one or more beams within the wing cavity. The purpose of these beams is to contribute to the transfer of shear forces and to prevent folding of the half shells. The beams are joined to the half shells by gluing, the beams being made in U or I shape, where the flanges form abutment surface against the half shells.

30 Det er kendt, at det til tider kan være svært at sikre en tilfredsstillende kvalitet af de limsamlinger, som etableres i vingens indre til sammenføjning af halvskallerne indbyrdes og til sammenføjning af halvskaller og bjælker. Der er flere årsager til dette problem. For det første tilveje-35 bringes limsamlingerne ved for- og bagkant og mellem bjælke og halvskaller som regel med ubearbejdede flader på skal- DK 172126 B1 2 laminaternes inderside. Det medfører, at limfladen kun er defineret indenfor et vist toleranceområde. Dertil kommer for for- og bagkantlimningens vedkommende, at skal-laminatet må aftrappes hen imod halvskallens kant for at give en 5 limfuge med nogenlunde ensartet tykkelse. Denne aftrapning kan ikke altid tilvejebringes med de nødvendige tolerancer, og en reel tilpasning vil i virkeligheden kræve bearbejdning af samlefladerne, hvilket vil medføre en kraftig fordyrelse i forhold til de metoder, der anvendes nu. For det 10 andet kan de deformationer, som opstår i vingens halvskaller i forbindelse med små variationer i fremstillingsprocessen, give et varierende gab inde i vingens hulrum, så det er svært at sikre en fuldstændig udfyldning med lim af mellemrummet mellem bjælke og halvskal. Endelig er limsam-15 lingerne som regel umulige at efterkontrollere visuelt, og de er også svære at kontrollere ved NDT-metoder på grund af det aftrappede laminat og den irregulære geometri.30 It is known that it can sometimes be difficult to ensure a satisfactory quality of the glue joints which are established in the interior of the blade for joining the half shells together and for joining half shells and beams. There are several reasons for this problem. First, the adhesive joints are provided at the front and back edges and between the beam and semi-shells usually with uncoated surfaces on the inside of the laminates. This means that the glue surface is defined only within a certain tolerance range. In addition, in the case of the front and back edge gluing, the shell laminate must be scrapped towards the edge of the half shell to give a 5 glue joint of approximately uniform thickness. This escalation may not always be provided with the necessary tolerances, and a real adjustment will in fact require machining of the interfaces, which will result in a high costing compared to the methods currently used. Second, the deformations that occur in the blade's half shells in connection with small variations in the manufacturing process can cause a varying gap within the blade's cavity, so that it is difficult to ensure complete filling with glue of the space between the beam and half shell. Finally, the adhesive joints are usually impossible to visually post-check, and are also difficult to control by NDT methods because of the stepped laminate and the irregular geometry.

Sammenfattende har problemer med limsamlinger i kendte 20 vindmøllevinger ofte deres årsag i, at den styrkebærende limsamling i for- og bagkant udføres på eller i umiddelbar tilknytning til den ene side af et laminat, der på sin anden side udgør vingens overflade, at geometrierne i limsamlingerne mellem halvskaller og bjælke(r) er følsomme over-25 for deformationer og toleranceafvigelser i halvskallerne, og at limsamlingerne generelt er meget svære eller umulige at efterkontrollere.In summary, problems with adhesive joints in known 20 wind turbine blades often have their cause in that the strength-bearing adhesive joint in the front and rear edges is performed on or directly adjacent to one side of a laminate, which on the other hand forms the blade surface, that the geometries in the adhesive joints between half shells and beam (s) are sensitive to deformation and tolerance deviations in the half shells and that the adhesive joints are generally very difficult or impossible to control.

Det er ligeledes kendt, at det ikke umiddelbart er muligt 30 at erstatte limsamlingerne i for- og bagkant ved andre samlingsformer, for eksempel nitte- eller boltesamlinger, da limsamlingernes umiddelbare tilknytning til vingens overflade medfører, at sådanne alternative samlingselementer vil have en ugunstig indvirkning på vingens aerodynamiske 35 egenskaber, herunder støjudsendelsen.It is also known that it is not immediately possible to replace the glue joints in the front and back edges of other joints, for example rivet or bolt joints, since the direct connection of the glue joints to the surface of the blade causes such alternative joints to have an adverse effect on the aerodynamic characteristics of the wing, including the noise emission.

3 DK 172126 B13 DK 172126 B1

Det er ligeledes kendt, at der er en række alternative udførelsesformer for vingestrukturer, som på hver deres måde kan undgå dele af de ovenfor nævnte problemer med limsamlinger. I en typisk udførelse har vingen en bærende bjælke, 5 og halvskallerne danner hovedsageligt en kappe omkring den bærende bjælke. Bjælken kan for eksempel være udført ved samling af løse elementer, eller ved vikling. Halvskallerne forbindes indbyrdes ved limning og fastholdes også til bærebjælken ved limning. I denne udførelse er kvaliteten af 10 for- og bagkantlimningen i princippet ikke helt så væsentlig som for den udførelse, der er beskrevet ovenfor, idet bærebjælken overfører forskydningskræfterne. I praksis er det imidlertid svært at undgå, at halvskallerne kommer til at overføre en del af kræfterne. Samtidig bliver forbindel-15 sen mellem bjælke og halvskaller om muligt endnu vigtigere end ved udførelsen ovenfor, og også her har man det problem, at limningen i praksis er meget svær at efterkontrollere. På lignende vis har andre alternative udførelser hver deres fordele og ulemper, men dog som regel med limsamlin-20 gerne som et væsentligt usikkerhedsmoment.It is also known that there are a number of alternate embodiments of blade structures which in each way can avoid parts of the above-mentioned problems with adhesive joints. In a typical embodiment, the wing has a supporting beam, and the half shells mainly form a sheath around the supporting beam. The beam may, for example, be made by assembling loose elements, or by winding. The half shells are joined together by gluing and also held to the support beam by gluing. In this embodiment, the quality of the 10 front and rear edge bonding is not, in principle, quite as significant as that of the embodiment described above, with the support beam transferring the shear forces. In practice, however, it is difficult to prevent half shells from transferring part of the forces. At the same time, if possible, the connection between beam and semi-shells becomes even more important than in the above-mentioned embodiment, and also here the problem is that the gluing in practice is very difficult to control. Similarly, other alternative designs each have their advantages and disadvantages, but usually with glue joints as a significant element of uncertainty.

Det er formålet med den foreliggende opfindelse at angive en vindmøllevinge eller en sådan opbygning af en vindmøllevinge, som på en særlig enkel måde undgår de kendte proble-25 mer med limning.It is the object of the present invention to provide a wind turbine blade or such structure of a wind turbine blade which in a particularly simple manner avoids the known problems of sizing.

Dette formål opnås ved en vindmøllevinge af den i indledningen omhandlede art, hvilken vindmøllevinge ifølge opfindelsen er særegen ved, at samlingerne på den enkelte halv-30 skals for- og bagkant består af fladedele, der strækker sig omtrent i vingens symmetriplan, hvilke fladedele ligger inden for vingens kontur og er dækket af afskærmninger, og at halvskallerne udgør vingens bærende del og sammen med afskærmningerne danner vingens aerodynamiske overflade.This object is achieved by a wind turbine blade of the kind referred to in the introduction, which wind turbine blade according to the invention is peculiar in that the joints on the front and rear edges of each half-shell consist of surface parts extending approximately in the plane of symmetry of the blade, which surface parts lie within for the contour of the wing and is covered by guards, and that the half shells form the bearing part of the wing and together with the guards form the aerodynamic surface of the wing.

Vingen udføres således som en konstruktion samlet af to 35 4 DK 172126 B1 halvskaller, som ikke fuldt ud frembringer vingens tværsnit, der fuldendes ved at tilføje afdækninger af for-og/eller bagkant efter samling af halvskallerne.The blade is thus constructed as a structure assembled by two half shells, which do not fully produce the cross section of the blade, which is completed by adding front and / or rear edge covers after assembly of the half shells.

5 Ved at udføre vingen som en konstruktion, der er samlet af to halvskaller, som ikke fuldt ud frembringer vingens tværsnit, kan samlingerne mellem halvskallerne blive adskilt fra vingens aerodynamik. Derved opnås, at samlingerne kan udføres mellem plane fladedele, som er nemme at tilve-10 jebringe og kontrollere. Samlingerne kan for eksempel udføres som læbesamlinger med ensartet tykkelse, så tværsnittet af vingens styrkebærende del nærmest får form af to modstående badekar.5 By performing the wing as a structure composed of two half shells which do not fully produce the cross section of the wing, the joints between the half shells can be separated from the wing's aerodynamics. This results in the fact that the joints can be made between flat surface parts which are easy to provide and control. The joints can, for example, be made as lip joints of uniform thickness, so that the cross-section of the wing's strength-bearing part is almost shaped by two opposing bathtubs.

15 Ifølge opfindelsen er det fordelagtigt, at fladedelene har form som læber, der strækker sig i modsatte retninger i vingens symmetriplan. Herved tilvejebringes en særlig enkel form for en læbesamling, der er nem at kontrollere.According to the invention, it is advantageous for the flat parts to have the form of lips extending in opposite directions in the plane of symmetry of the blade. This provides a particularly simple form of a lip assembly that is easy to control.

20 Ved at udføre den styrkebærende del af vingen ifølge opfindelsen vil de bjælker, der normalt anbringes inde i vingen til at sikre mod foldning og for at bidrage til optagelse af forskydningskræfter, i mange tilfælde kunne udelades, da de formdele, der svarer til badekarrets sider, kan overtage 25 bjælkernes funktion.By carrying out the strength-bearing part of the blade according to the invention, the beams normally placed inside the blade to secure against folding and to contribute to shear forces can in many cases be omitted, since the mold parts corresponding to the sides of the bathtub , can take over the function of 25 beams.

Ved at udføre den styrkebærende del af vingen ifølge opfindelsen kan samlingerne mellem de to halvskaller bestå af limsamlinger, der kan suppleres eller erstattes med bolte-30 eller nittesamlinger af halvskallernes læber. Herved opnås mulighed for ekstra sikkerhed i den kritiske samling mellem de to halvskaller.By carrying out the strength-bearing portion of the blade according to the invention, the joints between the two half shells may consist of glue joints which can be supplemented or replaced with bolts or rivet joints of the half shells lips. This allows for extra security in the critical joint between the two half shells.

Ved at udføre den styrkebærende del af vingen ifølge opfin-35 delsen udgøres den aerodynamiske form for en stor del af denne styrkebærende del. Sammenlignet med kendte udførelser 5 DK 172126 B1 med bærebjælke opnås derved en besparelse.By carrying out the strength-bearing part of the blade according to the invention, the aerodynamic form constitutes a large part of this strength-bearing part. Compared to known embodiments 5 S 172126 B1 with support beam is thereby obtained a saving.

Ved at udføre vingen som en konstruktion, hvor de aerodynamiske afdækninger af for- og bagkant er løse dele, der 5 fremstilles for sig og efterfølgende monteres på den bæren- * de konstruktion, kan der på en særlig enkel måde opnås mu lighed for at ændre vingens aerodynamiske egenskaber uden at det stiller krav om ændring af de væsentligste støbeforme, der benyttes ved fremstillingen. En ændring kan udføres 10 ved modifikation af forkant-støbeformen, som kun udgør en beskeden andel af de samlede støbeforme. Desuden kan forkanten, hvis nøjagtige form er afgørende for væsentlige aspekter af vingens aerodynamik, støbes komplet, så der ikke er finish-tolerancer, der ellers kan give problemer ved 15 traditionelle forkant-limsamlinger. Tilsvarende giver støbning af bagkant-delen i ét stykke mulighed for at lægge en kraftig fiberforstærkning ud i bagkantens tyndeste del, som ellers traditionelt bliver meget sårbar.By designing the wing as a structure where the front and rear edge aerodynamic covers are loose parts which are manufactured separately and subsequently mounted on the supporting structure, a particularly simple way to change the aerodynamic characteristics of the blade without requiring modification of the main molds used in the manufacture. A change can be made by modifying the leading edge mold, which constitutes only a modest proportion of the total molds. In addition, the leading edge, whose precise shape is essential to essential aspects of the wing's aerodynamics, can be completely molded so that there are no finish tolerances that could otherwise cause problems with 15 traditional front edge adhesive joints. Similarly, molding the one-piece backing allows one to apply a strong fiber reinforcement to the thinnest part of the backing, which otherwise becomes very vulnerable.

20 Ved at udføre vingen som en konstruktion, hvor for- og bagkant monteres som løse dele på den bærende konstruktion ved en fleksibel samling, for eksempel en polyurethan-limsam-ling, kan der på en særlig enkel måde opnås en stor strukturel dæmpning, i det mindste for svingninger i kantvis 25 retning. Forudsætningen er, at i det mindste én af de to vingekanter udføres med en stivhed, der har en sådan størrelse, at vingekanten giver et ikke forsvindende bidrag til hele vingens stivhed, og at den valgte limtype har en viskøs dæmpning.By designing the blade as a structure in which the front and rear edges are mounted as loose parts on the supporting structure by a flexible joint, for example a polyurethane glue joint, a large structural damping can be achieved in a particularly simple manner, in at least for oscillations in an oblique direction. The assumption is that at least one of the two blade edges is made with a stiffness such that the blade edge makes a non-vanishing contribution to the entire blade stiffness and that the adhesive type selected has a viscous damping.

3030

Ved at udføre vingen som en konstruktion, hvor for- og bagkant fremstilles i andre materialer end det materiale, som den bærende del fremstilles i, kan forskellige nye egenskaber opnås. Forkanten kan vakuum-formes i et vejrbestandigt 35 termoplast, for eksempel ABS, hvilket giver en meget billig løsning. Bagkanten kan udføres i segmenter af aluminium, 6 DK 172126 B1 hvilket giver mulighed for en meget spids bagkant, der samtidig vil være en effektiv lynsikring. Begge kanter kan også udføres i et materiale, som har væsentligt større dæmpning end selve det styrkebærende laminat, hvorved den sam-5 lede strukturelle dæmpning forbedres.By designing the blade as a structure in which the front and rear edges are made of materials other than the material in which the supporting part is made, various new properties can be obtained. The leading edge can be vacuum-formed in a weather-resistant thermoplastic, for example ABS, which provides a very inexpensive solution. The trailing edge can be made in segments of aluminum, 6 DK 172126 B1 which allows for a very pointed trailing edge, which will at the same time be an effective lightning protection. Both edges can also be made of a material which has substantially greater cushioning than the strength-bearing laminate itself, thereby improving the overall structural cushioning.

Vindmøllevingen ifølge opfindelsen forklares nærmere i det følgende ved hjælp af på tegningen viste udførelsesformer, hvor: 10The wind turbine blade according to the invention is explained in more detail below by means of embodiments shown in the drawing, in which:

Fig. 1 viser i tværsnit opbygningen af en kendt vindmøllevinge med halvskaller og indvendig bærebjælke i form af en I-bjælke, 15 fig. 2 viser en detalje af bagkantsamlingen på vindmølle vingen ifølge fig. 1, fig. 3 viser i tværsnit opbygningen af en kendt vindmøllevinge med en viklet bærebjælke, 20 fig. 4 viser i tværsnit et eksempel på en vindmøllevinge ifølge opfindelsen, fig. 5 viser et eksempel på en vindmøllevinge ifølge op-25 findelsen, hvor limsamlingen er suppleret med bol te, og fig. 6 viser i tværsnit et eksempel på en vindmøllevinge ifølge opfindelsen, hvor for- og bagkant er ombyt-30 telige til udgaver med ændrede aerodynamiske egenskaber.FIG. 1 is a cross-sectional view of the structure of a known semi-shells wind turbine blade and internal support beam in the form of an I-beam; FIG. 2 shows a detail of the trailing edge assembly of the wind turbine blade according to FIG. 1, FIG. 3 is a cross-sectional view of the structure of a known wind turbine blade with a wound support beam; FIG. 4 is a cross-sectional view showing an example of a wind turbine blade according to the invention; 5 shows an example of a wind turbine blade according to the invention, where the glue assembly is supplemented with bolte tea; and FIG. 6 shows in cross section an example of a wind turbine blade according to the invention, where the front and rear edges are interchangeable for versions with altered aerodynamic properties.

I fig. 1 ses et eksempel på opbygningen af en kendt vindmøllevinge, der omfatter to halvskaller 1 og 2. De to halv-35 skaller 1 og 2 er forbundet med limsamlinger 3 og 4 i henholdsvis for- og bagkant, og ydersiderne af halvskallerne 1 7 DK 172126 B1 og 2 udgør tilsammen vingens aerodynamiske overflade. Forkantens limsamling er udført med en separat laske 5. En li-bjælke 6 er limet til halvskallerne 1 og 2 inden i vingen og bidrager til stivheden mod foldning samt til overførelse 5 af forskydningskræfter.In FIG. 1 shows an example of the construction of a known wind turbine blade comprising two half shells 1 and 2. The two half-shells 1 and 2 are connected to glue joints 3 and 4 at the front and rear edges respectively, and the outer sides of the half shells 1 7 DK 172126 B1 and 2 together form the aerodynamic surface of the wing. The front glue joint is made with a separate groove 5. A li beam 6 is glued to the half shells 1 and 2 within the wing and contributes to the stiffness against folding and to the transfer 5 of shear forces.

I fig. 2 ses et nærbillede af en typisk limsamling i bagkanten. For at få en nogenlunde ensartet tykkelse af limfugen 7 er det nødvendigt, at laminatet i halvskallerne 8 og 10 9 er aftrappet. Hvis bagkanten 10 skal være forholdsvis tynd, som det ofte er ønskeligt ud fra støjhensyn, kan det være svært at få en tilstrækkelig håndteringsstyrke, eftersom det tyndeste stykke normalt vil udgøres af lim uden fiberforstærkning .In FIG. 2 is a close-up view of a typical adhesive joint at the rear edge. In order to obtain a fairly uniform thickness of the glue joint 7, it is necessary that the laminate in the half shells 8 and 10 9 is stepped. If the trailing edge 10 is to be relatively thin, as is often desirable from the noise point of view, it may be difficult to obtain a sufficient handling strength, since the thinnest piece will usually be glue without fiber reinforcement.

15 I fig. 3 ses et andet eksempel på opbygningen af en kendt vindmøllevinge. En bærende bjælke 11, der i dette tilfælde er fremstillet ved vikling, er fastgjort til de to halvskaller 12 og 13 med limsamlinger 14 og 15. Halvskallerne 20 12 og 13 er sammenføjet ved limsamlinger 16 og 17 i hen holdsvis for- og bagkant. Forkantens limsamling er udført med en separat laske 16.In FIG. 3 shows another example of the construction of a known wind turbine blade. A supporting beam 11, made in this case by winding, is attached to the two half shells 12 and 13 with glue joints 14 and 15. The half shells 20 12 and 13 are joined by glue joints 16 and 17 at the front and rear edges, respectively. The front glue joint is made with a separate wax 16.

I fig. 4 ses et eksempel på en vindmøllevinge ifølge opfin-25 delsen. Vingen består af en centerdel 18 fremstillet af to halvskaller 19 og 20, der hver er udført som et laminat af ensartet tykkelse, og hvor halvskallernes 19, 20 ydersider udgør en del af vingens aerodynamiske overflade. Halvskallerne 19, 20 er samlet ved limning mellem læber 21 og 22 30 ved for- henholdsvis bagkant. Løse for- og bagkantdele 23 og 24 er fastgjort til den bærende centerdel 18 ved ikke-styrkebærende limfuger 25 og 26. Ydersiderne af læberne 21 og 22 udgør ikke en del af vingens aerodynamiske overflade, hvilken aerodynamiske overflade først opnås efter fastgø-35 reisen af de løse for- og bagkantdele 23 og 24.In FIG. 4 shows an example of a wind turbine blade according to the invention. The blade consists of a center portion 18 made of two half shells 19 and 20, each formed as a laminate of uniform thickness, the outer sides of the half shells 19, 20 forming part of the wing's aerodynamic surface. The half shells 19, 20 are joined by gluing between lips 21 and 22 30 at the trailing edge, respectively. Loose front and rear edge portions 23 and 24 are attached to the supporting center portion 18 by non-strength bearing adhesive joints 25 and 26. The outer faces of the lips 21 and 22 do not form part of the aerodynamic surface of the blade, which aerodynamic surface is obtained only after the travel of the loose front and rear edge portions 23 and 24.

8 DK 172126 B1 I fig. 5 ses en udgave af samlingen mellem to halvskaller i en centerdel i en vinge ifølge opfindelsen, hvor en limsamling 27 er suppleret med bolte 28. For at undgå problemer med krybning af kompositmaterialet, er boltene 28 forsynet 5 med tallerkenfjedre 29 til at opretholde forspændingen uanset sætning af kompositmaterialet.8 DK 172126 B1 In fig. 5 shows an edition of the joint between two half shells in a center part of a blade according to the invention, where a glue assembly 27 is supplemented with bolts 28. In order to avoid problems with creeping of the composite material, the bolts 28 are provided with plate springs 29 to maintain the prestressing regardless setting of the composite material.

I fig. 6 ses et eksempel på, hvordan for- og bagkantdelene i en vinge ifølge opfindelsen kan udskiftes til udgaver med 10 væsentligt anderledes aerodynamiske egenskaber. De normale for- og bagkantdele 30 og 31 erstattes med udgaver 32 og 33, der giver større lift, men tidligere stall.In FIG. Figure 6 shows an example of how the front and rear edge parts of a blade according to the invention can be exchanged for versions with substantially different aerodynamic properties. The normal front and rear edge parts 30 and 31 are replaced with versions 32 and 33, giving greater lift but earlier stall.

Claims (8)

9 DK 172126 B19 DK 172126 B1 1. Vindmøllevinge omfattende to halvskaller (19, 20), der udgør i det mindste en del af vingens overflade og sammen-5 føjes ved samlinger langs for- og bagkanten af vingen, kendetegnet ved, at samlingerne på den enkelte halvskals (19, 20) for- og bagkant består af fladedele (21 henholdsvis 22), der strækker sig omtrent i vingens symmetriplan, hvilke fladedele (21, 22) ligger inden for vingens 10 kontur og er dækket af afskærmninger (23 henholdsvis 24), og at halvskallerne (19, 20) udgør vingens bærende del og sammen med afskærmningerne (23, 24) danner vingens aero dynamiske overflade.A wind turbine blade comprising two half shells (19, 20) forming at least part of the surface of the blade and joined together at joints along the front and rear edges of the blade, characterized in that the joints on each half shell (19, 20) ) front and rear edges consist of surface portions (21 and 22, respectively) extending approximately in the plane of symmetry, which surface portions (21, 22) lie within the contour of the blade 10 and are covered by guards (23 and 24, respectively) and that the half shells ( 19, 20) constitute the bearing portion of the blade and together with the guards (23, 24) form the aero dynamic surface of the blade. 2. Vindmøllevinge ifølge krav 1, kendetegnet ved, at fladedelene (21, 22) har form som læber, der strækker sig i modsatte retninger i vingens symmetriplan.Wind turbine blade according to claim 1, characterized in that the flat parts (21, 22) are in the form of lips extending in opposite directions in the plane of symmetry of the blade. 3. Vindmøllevinge ifølge krav 1-2, kendetegnet 20 ved, at samlingerne mellem de to halvskallers (19, 20) fladedele (21, 22) er en limsamling (27).Wind turbine blade according to claims 1-2, characterized in that the joints between the surface parts (21, 22) of the two semi-shells (19, 20) are an adhesive joint (27). 4. Vindmøllevinge ifølge krav 1-3, kendetegnet ved, at samlingerne mellem de to halvskallers (19, 20) fla- 25 dedele (21, 22) er en bolte- eller nittesamling (28).Wind turbine blade according to claims 1-3, characterized in that the joints between the flat parts (21, 22) of the two half shells (19, 20) are a bolt or rivet joint (28). 5. Vindmøllevinge ifølge ethvert af de foregående krav, kendetegnet ved, at samlingerne mellem de to halvskallers (19, 20) fladedele (21, 22) er en kombineret 30 limsamling (27) og bolte- eller nittesamling (28).Wind turbine blade according to any one of the preceding claims, characterized in that the joints between the two parts of the two half shells (19, 20) are a combined 30 glue joint (27) and bolt or rivet joint (28). 6. Vindmøllevinge ifølge ethvert af de foregående krav, kendetegnet ved, at afskærmningerne (23, 24) er fastgjort til halvskallerne (19, 20) med en lim, som har 35 viskøs dæmpning. 10 DK 172126 B1Wind turbine blade according to any one of the preceding claims, characterized in that the guards (23, 24) are attached to the half shells (19, 20) with a glue having a viscous damping. 10 DK 172126 B1 7. Vindmøllevinge ifølge ethvert af de foregående krav, kendetegnet ved, at afskærmningerne (23, 24) er fremstillet separat og består af formfast materiale.Wind turbine blade according to any one of the preceding claims, characterized in that the guards (23, 24) are made separately and consist of mold-resistant material. 8. Vindmøllevinge ifølge krav 7, kendetegnet ved, at afskærmningerne (23, 24) er udført i et andet materiale end det, der er benyttet til halvskallerne (19, 20), for eksempel et termoplast eller et metal.Wind turbine blade according to claim 7, characterized in that the guards (23, 24) are made of a material other than that used for the half shells (19, 20), for example a thermoplastic or a metal.
DK120095A 1995-10-25 1995-10-25 Windmill sail DK172126B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK120095A DK172126B1 (en) 1995-10-25 1995-10-25 Windmill sail

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK120095 1995-10-25
DK120095A DK172126B1 (en) 1995-10-25 1995-10-25 Windmill sail

Publications (2)

Publication Number Publication Date
DK120095A DK120095A (en) 1997-04-26
DK172126B1 true DK172126B1 (en) 1997-11-17

Family

ID=8102106

Family Applications (1)

Application Number Title Priority Date Filing Date
DK120095A DK172126B1 (en) 1995-10-25 1995-10-25 Windmill sail

Country Status (1)

Country Link
DK (1) DK172126B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087572A1 (en) * 2002-04-15 2003-10-23 Ssp Technology A/S A blade for a wind turbine and a method of assembling laminated profiles for a blade
EP2596237A4 (en) * 2010-05-26 2015-11-11 Meteco Oy Rotor blade and method for making the same
EP3218597B1 (en) 2014-11-10 2019-03-27 Polytech A/S Polyurethane material, process for preparing such material and protective cover for wind turbine blade
EP3803105B1 (en) 2018-05-31 2022-04-06 Vestas Wind Systems A/S Wind turbine blade leading edge fairing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201309184D0 (en) * 2013-05-22 2013-07-03 4Navitas Green Energy Solutions Ltd Vertical axis wind turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087572A1 (en) * 2002-04-15 2003-10-23 Ssp Technology A/S A blade for a wind turbine and a method of assembling laminated profiles for a blade
AU2003236193B2 (en) * 2002-04-15 2006-10-26 Ssp Technology A/S A blade for a wind turbine and a method of assembling laminated profiles for a blade
US7179059B2 (en) 2002-04-15 2007-02-20 Ssp Technology A/S Blade for a wind turbine and a method of assembling laminated profiles for a blade
EP2596237A4 (en) * 2010-05-26 2015-11-11 Meteco Oy Rotor blade and method for making the same
EP3218597B1 (en) 2014-11-10 2019-03-27 Polytech A/S Polyurethane material, process for preparing such material and protective cover for wind turbine blade
US11629689B2 (en) 2014-11-10 2023-04-18 Polytech A/S Polyurethane material, process for preparing such material and protective cover for wind turbine blade
EP3803105B1 (en) 2018-05-31 2022-04-06 Vestas Wind Systems A/S Wind turbine blade leading edge fairing

Also Published As

Publication number Publication date
DK120095A (en) 1997-04-26

Similar Documents

Publication Publication Date Title
US4696623A (en) Helicopter rotor blade made from a multispar composite material with torsion compartments and a process for manufacturing same
US4935277A (en) Blade constructed of composite materials, having a structural core and a covering of profiled cladding, and process for manufacturing the same
US4806077A (en) Composite material blade with twin longeron and twin box structure having laminated honeycomb sandwich coverings and a method of manufacturing same
US5129787A (en) Lightweight propulsor blade with internal spars and rigid base members
KR100369691B1 (en) Method and apparatus for forming airfoil structures
US4213739A (en) Helicopter rotor blade
US3028292A (en) Method of manufacturing plastic rotor blades
RU2600416C2 (en) Gradually height decreasing curved composite stringers and respective panels
ES2399158T3 (en) Reinforced wind turbine blade
AU2014201861B2 (en) Lower joints between outboard wing boxes and centre wing sections of aircraft wing assemblies
EP2772351B1 (en) Composite laminated plate having reduced crossply angle
US2479342A (en) Composite structure for use in aircraft construction
US4188171A (en) Rotor blade internal damper
EP0948085A2 (en) Composite isogrid structures for parabolic surfaces
RU2671453C2 (en) Aircraft side of body joint
US7285326B2 (en) Lightweight structure particularly for an aircraft
BRPI0613658A2 (en) method for connecting at least two sheet-like formations, specifically at least two metal sheets to a lightweight structure, as well as lightweight connection
GB2032508A (en) Force distribution element for a sandwich-form structural element
US4304376A (en) Composite honeycomb core structures and single stage hot bonding method of producing such structures
WO2015134823A1 (en) Wind turbine blade spar web having enhanced buckling strength
DK172126B1 (en) Windmill sail
KR20010050385A (en) Reinforced and lightweight motor-vehicle bonnet
US8651819B2 (en) Anti-ovalization tool for introduction into a wind turbine blade root and method of reducing ovalization of a wind turbine blade root
US2941603A (en) Helicopter rotor blade
CN111746778A (en) Reinforced structural component for an aircraft

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PUP Patent expired

Expiry date: 20151025