DK164665B - PYROTECHNICAL RANGE - Google Patents

PYROTECHNICAL RANGE Download PDF

Info

Publication number
DK164665B
DK164665B DK426783A DK426783A DK164665B DK 164665 B DK164665 B DK 164665B DK 426783 A DK426783 A DK 426783A DK 426783 A DK426783 A DK 426783A DK 164665 B DK164665 B DK 164665B
Authority
DK
Denmark
Prior art keywords
smoke
cesium
pyrotechnic
pyrotechnic smoke
red phosphorus
Prior art date
Application number
DK426783A
Other languages
Danish (da)
Other versions
DK426783A (en
DK426783D0 (en
DK164665C (en
Inventor
Manfred Weber
Original Assignee
Piepenbrock Pyrotechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Piepenbrock Pyrotechnik Gmbh filed Critical Piepenbrock Pyrotechnik Gmbh
Publication of DK426783D0 publication Critical patent/DK426783D0/en
Publication of DK426783A publication Critical patent/DK426783A/en
Publication of DK164665B publication Critical patent/DK164665B/en
Application granted granted Critical
Publication of DK164665C publication Critical patent/DK164665C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D3/00Generation of smoke or mist (chemical part)
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Botany (AREA)
  • Glass Compositions (AREA)
  • Air Bags (AREA)
  • Fireproofing Substances (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Powder Metallurgy (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

iin

DK 164665 BDK 164665 B

Den foreliggende opfindelse angår pyrotekniske røgsatser, der fremkalder røg, der er uigennemtrængelig i det synlige og infrarøde spektrum.The present invention relates to pyrotechnic smoke rates which produce smoke that is impervious to the visible and infrared spectrum.

Kunstig røg anvendes inden for teknikken for det første til at holde 5 frost borte fra beplantninger (især frugt- eller vinbeplantninger).Artificial smoke is used in the art firstly to keep 5 frosts away from plantings (especially fruit or vine plantings).

Dertil fremstilles normalt enten røg- eller olietåge, eller der udsprøjtes en fin vandtåge, der endvidere kan være stabiliseret med glycerin, fedtalkoholer eller lignende, og udbredes over den kultur, der skal beskyttes, i et mere eller mindre tykt lag for at reflektere 10 den fra jorden udstrålede varme og dermed forhindre afkøling. Disse tåger eller skyer må følgelig opretholdes over længere tid, dvs. det gennem udkondensering og vindbevægelse opståede tab må løbende fornys. Til dette formål anvendes derfor fortrinsvis kontinuerligt arbej dende anlæg.In addition, either smoke or oil mist is usually prepared, or a fine mist of water, which may also be stabilized with glycerin, fatty alcohols or the like, is sprayed and spread over the culture to be protected in a more or less thick layer to reflect it. radiated heat from the earth, thus preventing cooling. Accordingly, these fogs or clouds must be maintained for a longer period, ie. the losses incurred through condensation and wind movement must be continuously renewed. For this purpose, therefore, continuous working systems are preferably used.

15 Kunstige tåger finder endvidere anvendelse fremfor alt inden for den militære sektor til sløring af militære anlæg, troppeformationer og køretøjer. Især ved beskyttelse af troppeformationer og køretøjer gælder det om i kortere tid at unddrage modstanderen direkte observation deraf, hvortil der sædvanligvis i retning af modstanderen 20 afskydes en pyroteknisk ladning, der fordeler sig i lighed med et haglskud og danner mange røgfremkaldende partikler, der sørger for en særdeles hurtig og regelmæssig tilsløring af større arealer (jfr.15 Artificial fogs are also used above all in the military sector for blurring of military installations, troop formation and vehicles. Especially when protecting troop formation and vehicles, it is important to avoid direct observation of the opponent for a shorter period of time, to which a pyrotechnic charge, usually distributed like a shotgun, is usually dispensed and forms many smoke-producing particles which provide a very fast and regular blurring of larger areas (cf.

DE-AS 30 31 369 og den deri citerede litteratur).DE-AS 30 31 369 and the literature cited therein).

Til dette formål kendes et stort antal forskellige røg- og tågeblan-25 dinger. Eksempelvis kan nævnes titantetrachlorid, siliciumtetra- chlorid, chlorsulfonsyre eller kombinationer deraf med ammoniak eller svovltrioxid som flydende røgdannere eller rødt phosphor, HC-blandin-ger (hexachlorethan/zink/zinkoxid) og ammoniumperchlorat/zinkoxid som faste røgdannere. Ved anvendelse omdannes disse stoffer enten 30 gennem en sekundær forbrændingsreaktion eller gennem de ved deres omsætning med hinanden frigjorte egnede produkter. Afgørende for røgdannelsens kvalitet er dannelseshastigheden, udbredelseskoncentrationen og -formen såvel som varigheden af røgsløret. Der kendes allerede røgblandinger, der er egnede til alle disse formål (jfr.To this end, a large number of different smoke and fog mixtures are known. For example, titanium tetrachloride, silicon tetrachloride, chlorosulfonic acid or combinations thereof with ammonia or sulfur trioxide such as liquid fumigants or red phosphorus, HC mixtures (hexachloroethane / zinc / zinc oxide) and ammonium perchlorate / zinc oxide as solid fumigants may be mentioned. In use, these substances are converted either through a secondary combustion reaction or through the suitable products released by their reaction. Crucial to the quality of the smoke formation is the rate of formation, the concentration and shape of the distribution, as well as the duration of the smoke veil. Smoke mixtures suitable for all these purposes are already known (cf.

35 tysk fremlæggelsesskrift nr. DE-AS 30 31 369).35 German submission no. DE-AS 30 31 369).

DK 164665 BDK 164665 B

22

Se fx tyske offentliggørelsesskrifter 25 56 256, 25 09 539, 18 12 027, 30 12 405, 27 29 055, 27 43 363, 19 13 790, og tysk fremlæggelsesskrift nr. 12 46 488.See, for example, German publication publications 25 56 256, 25 09 539, 18 12 027, 30 12 405, 27 29 055, 27 43 363, 19 13 790, and German publication no. 12 46 488.

Med hensyn til en bred anvendelse inden for den moderne forsvars-5 teknik har disse blandinger dog en ganske væsentlig ulempe. Medens det tidligere især kom an på at opnå en i synligt lys så tæt røg som muligt, råder militære observatører i dag yderligere over infrarødt pejleudstyr og varmebilledeudstyr, der udnytter det faktum, at militære mål, på grund af deres energiomsætning, udsender meget intensiv 10 varmestråling, som kan detekteres på stor afstand. Da visse bølgelængder absorberes selektivt af atmosfæriske bestanddele såsom CO2 og vanddamp, arbejder sådant udstyr fortrinsvis i atmosfærens såkaldte "vinduer", der befinder sig ved 0,7-1,5 /xm, 2-2,5 /xm, 3-5 /xm og 8-12 /xm. Især bestræber man sig på at arbejde i området 8-12 /xm, 15 eftersom forstyrrelser på grund af røg, dis og normale tåger i dette område antager et minimum. I modsætning hertil er det derfor pyrotekniske røgsatsers opgave at tilvejebringe en absorption eller reflektion af IR-strålingen i dette område, der er så høj som mulig.However, for a wide application in the modern defense technique, these blends have a considerable disadvantage. While the former mainly came to achieve a visible smoke as dense as possible, military observers today still have infrared detectors and thermal imaging equipment that exploit the fact that military targets, due to their energy conversion, emit very intense 10 heat radiation that can be detected at a great distance. Since certain wavelengths are selectively absorbed by atmospheric constituents such as CO2 and water vapor, such equipment preferably operates in the so-called "windows" of the atmosphere which are at 0.7-1.5 µm, 2-2.5 µm, 3-5 xm and 8-12 / xm. In particular, efforts are made to work in the area of 8-12 µm, 15 as disturbances due to smoke, haze and normal fog in this area assume a minimum. In contrast, it is the task of pyrotechnic smoke rates to provide an absorption or reflection of the IR radiation in this range that is as high as possible.

Fra EP-A 37.515 er det endvidere kendt at kombinere røg fra halogen-20 donorer/metalpulvere eller phosphorrøg med en yderligere sekundær røg af organiske syrer eller mikroballoner, for dermed at opnå større agglomerater, som også udviser lysabsorption i området >8 /xm. De i disse blandinger som oxidationsmiddel anvendte alkalimetalsalte (natrium-, kalium-, lithiumnitrat) bevirker bl.a. også en sighalvirk-25 ning (farvning af flammen), som imidlertid ikke er egnet til at ændre den infrarøde absorption.Furthermore, from EP-A 37,515 it is known to combine smoke from halogen-20 donors / metal powders or phosphorous smoke with an additional secondary smoke of organic acids or microballoons, thus obtaining larger agglomerates which also exhibit light absorption in the range> 8 µm. The alkali metal salts (sodium, potassium, lithium nitrate) used in these mixtures cause, inter alia, also a six-half effect (staining of the flame), which, however, is not suitable for altering the infrared absorption.

Her udover indeholder de fleste pyrotekniske røgsatser ætsende, giftige eller stærkt sure komponenter såsom phosphorpentoxid, saltsyre, svovlsyre, titan- eller zinksalte, der i røgen forekommer i 30 koncentrationer, der er overordentlig skadelige for mennesker og planter. Ved tilsætning af metaloxider, puffersubstanser og ammoniumforbindelser har man derfor i de fleste hidtidige røgsatser sørget for, at den frembragte røg kun er så svagt sur som muligt eller neutral. Den foreliggende opfindelses opgave ligger derfor også i atIn addition, most pyrotechnic smoke kits contain corrosive, toxic or highly acidic components such as phosphorus pentoxide, hydrochloric acid, sulfuric acid, titanium or zinc salts found in the smoke at 30 concentrations which are extremely harmful to humans and plants. Therefore, in the addition of metal oxides, buffer substances and ammonium compounds, in most previous smoke rates, the smoke produced is only as slightly acidic as possible or neutral. The object of the present invention therefore lies in that

DK 164665 BDK 164665 B

3 modificere de kendte røgsatser på en sådan måde, at disse om muligt ikke reagerer surt.3 modify the known smoke rates in such a way that, if possible, they do not react acidically.

Disse opgaver løses på overraskende måde ved de i kravene beskrevne foranstaltninger, dvs. ved at der til i og for sig kendte røgsatser 5 baseret på halogendonorer samt metalpulvere og/eller -oxider eller baseret på rødt phosphor, idet røgsatsen endvidere indeholder alkalimetalsalte, endvidere tilblandes caesiumforbindelser, der ved afbrænding dispergeres og absorberer stråling i det infrarøde område.These tasks are surprisingly solved by the measures described in the requirements, ie. in addition, to known smoke rates 5 based on halogen donors as well as metal powders and / or oxides or based on red phosphorus, the smoke rate further containing alkali metal salts, further mixing cesium compounds which are dispersed and burning radiation in the infrared area.

Ved denne tilsætning af caesiumforbindelser nedsættes gennemsigtig-10 heden af røgen i IR-lys overraskende ganske betragteligt, især i infrarødt lys med bølgelængder på 3-5 eller 8-12 μπι, idet det endnu ikke har kunnet fastslås, hvorpå dette beror.By this addition of cesium compounds, the transparency of the smoke in IR light is surprisingly reduced considerably, especially in infrared light with wavelengths of 3-5 or 8-12 μπι, as it has not yet been established why this is due.

Eftersom caesiumsalte som bekendt i det nærinfrarøde område op til 12 μτη ikke udviser nogen absorptioner, der kan føres tilbage til sving-15 ning, og for hvilke caesiumionerne er ansvarlige (caesiumhalogenider udviser ingen, caesiumnitrat kun nitratgruppens svingning ved 7,2 jim), kan en direkte absorption af IR-lyset ikke komme på tale for effekten. Eftersom de anvendte mængder er relativt små sammenlignet med mængden af den samlede røgsats, svarende til kun gennemsnitlig 20 25%, og sammenlignet med de øvrige røgdannende komponenter kun er til stede i ringe mængde, kan forøgelsen af partikeltallet af det dis-pergerede system heller ikke gøres ansvarlig for effekten. Eftersom synkehastigheden og kondenserbarheden af de dannede røgskyer efter de hidtidige observationer ikke adskiller sig fra de tilsvarende røg-25 satser uden tilsætning af caesiumsalte, synes ej heller en forbedring af spredningsvirkningen af de frembragte partikler at være ansvarlig for effekten. Hvis det antages, at Stoke's lov gælder for disse partikler som en første tilnærmelse, dvs. at synkehastigheden er proportional med kvadratet af partikeldiameteren, ville en forøgelse 30 af partikeldiameteren fra 1 μ i sædvanlige røgsatser til 10 μ, der ville være nødvendig for en effektiv spredning i IR-området fra 8 til 12 μπι, betyde en forøgelse af synkehastigheden med en faktor 100.Since, as is well known in the near-infrared region, up to 12 μτη of cesium salts exhibit no absorbable tracings and for which the cesium ions are responsible (none of the cesium halides, the cesium nitrate exhibits only the nitrate group oscillation at 7.2 µm), a direct absorption of the IR light does not qualify for the effect. Since the amounts used are relatively small compared to the amount of the total smoke rate, corresponding to only an average of 20 25%, and compared to the other smoke-forming components are only present in small amounts, the increase in the particle number of the dispersed system cannot, either. be made responsible for the effect. Also, since the rate of sinking and condensability of the resulting smoke clouds does not differ from the corresponding smoke rates without the addition of cesium salts to date, no improvement in the scattering effect of the particles produced appears to be responsible for the effect. Assuming that Stoke's law applies to these particles as a first approximation, viz. that the sink rate is proportional to the square of the particle diameter, an increase of 30 the particle diameter from 1 µ in conventional smoke rates to 10 µ, which would be necessary for an effective spread in the IR range of 8 to 12 µπι, would increase the sink rate by a factor 100.

Det må derfor være forbeholdt videre undersøgelser at finde en tilfredsstillende teori for, hvorfor de pyrotekniske røgsatser ifølgeIt must therefore be reserved for further studies to find a satisfactory theory as to why the pyrotechnic smoke rates according to

DK 164665 BDK 164665 B

4 opfindelsen udviser en tilfredsstillende tæthed såvel i det synlige som i det infrarøde område.4 the invention exhibits a satisfactory density both in the visible and in the infrared range.

Den foreliggende opfindelse har endvidere haft den opgave, at forøge røgudbyttet fra phosphorholdige røgsatser.The present invention further has the object of increasing the smoke yield from phosphorus-containing smoke rates.

5 De sædvanligvis anvendte metaller magnesium og titan fører efter afbrænding af røgsatsen til et askeindhold på 60-70%.5 The commonly used metals magnesium and titanium lead to an ash content of 60-70% after burning the smoke rate.

Det lykkes overraskende nok at forøge effektiviteten af sådanne røgsatser ved i stedet for magnesium og titan at anvende en zirconi-um/nikkellegering, fortrinsvis med 70% zirconium og 30% nikkel. Aske-10 indholdet af sådanne satser kan derigennem sænkes til 5%. Tilsætning af bor virker i samme retning og forbedrer endvidere IR-absorptionen.Surprisingly, they succeed in increasing the efficiency of such smoke rates by using a zirconium / nickel alloy instead of magnesium and titanium, preferably with 70% zirconium and 30% nickel. The ash content of such rates can thereby be lowered to 5%. Addition of boron works in the same direction and further improves IR absorption.

Ved tilsætning af ammoniumchlorid kan effektiviteten forøges yderligere.By adding ammonium chloride, the efficiency can be further increased.

En stor fordel ved de ovenfor beskrevne røgsatser ligger i, at de er 15 passivt virksomme. Det betyder, at de ikke udviser nogen egen varme-toning og derfor ikke ændrer omgivelsesbilledet i infrarødt observationsudstyr.A major advantage of the smoke rates described above is that they are passively active. This means that they do not exhibit their own heat toning and therefore do not change the ambient image in infrared observation equipment.

I følgende eksempler sammenlignes en række røgsatser ifølge opfindelsen med tilsvarende røgsatser uden tilsætningen ifølge opfindelsen.In the following examples, a number of smoke rates according to the invention are compared with corresponding smoke rates without the addition of the invention.

20 EKSEMPEL 1EXAMPLE 1

Ammoniumperchloratrøg 1,7 kg aramoniumperchlorat, 1,5 kg zinkoxid, 0,8 kg polychloriospren og 0,5 kg ammoniumchlorid forarbejdes til en pasta med en opløsning af 0,5 kg dioctylphthalat ill methanol. Blandingen trykkes gennem 25 en si med en maskestørrelse på 0,3-0,5 mm og tørres på bakker. Det tørrede granulat presses derefter ifølge tysk fremlæggelsesskrift 30 31 369 ved et tryk på 50-150 MPa til presselegemer på ca. 50 g. I alt 20 presselegemer forenes i overensstemmelse med eksempel 2 iAmmonium perchlorate smoke 1.7 kg aramonium perchlorate, 1.5 kg zinc oxide, 0.8 kg polychlorosprene and 0.5 kg ammonium chloride are processed into a paste with a solution of 0.5 kg dioctyl phthalate ill methanol. The mixture is pressed through a sieve with a mesh size of 0.3-0.5 mm and dried on trays. The dried granules are then compressed according to German Laid-Open Specification 30 31 369 at a pressure of 50-150 MPa for press bodies of approx. A total of 20 press members are united in accordance with Example 2 i

DK 164665 BDK 164665 B

5 tysk fremlæggelsesskrift 30 31 369 med en tændsats i et kunststofeller metalhylster til dannelse af en ladning.5 German presentation written 30 31 369 with a spark plug in a plastic or metal casing to form a charge.

Tændsatsen har følgende bestanddele: Magnesiumpulver (1,2 kg), berlinerblåt (0,9 kg), amorft bor (2,39 kg), pulverformet chlorparaffin 5 (0,8 kg) og sortkrudtsmel (4,71 kg). Magnesiumpulveret og berliner blåt forblandes; chlorparaffinen, opløst i 2 1 perchlorethylen, sættes dertil og blandes i. Det amorfe bor sættes til, og blandings-processen fortsættes i 5 minutter. Som sidste bestanddel blev sortkrudtet sat til, blandet med de andre bestanddele i 10 minutter, 10 tørret og presset ved 150 MPa.The ignition kit has the following components: Magnesium powder (1.2 kg), Berlin blue (0.9 kg), amorphous boron (2.39 kg), powdered chloro paraffin 5 (0.8 kg) and black powdered flour (4.71 kg). The magnesium powder and berlin blue are premixed; The chloro paraffin, dissolved in 2 L of perchloroethylene, is added and mixed. The amorphous boron is added and the mixing process is continued for 5 minutes. As the final ingredient, the black powder was added, mixed with the other ingredients for 10 minutes, 10 dried and pressed at 150 MPa.

Den samme blanding som ovenfor blev yderligere tilblandet 0,4 kg caesiumnitrat og blev på samme måde forarbejdet til presselegemer med en vægt på ca. 50 g. Som før blev i alt 20 presselegemer sammen med en tændsats i et hylster forenet til en ladning.The same mixture as above was further mixed with 0.4 kg of cesium nitrate and was similarly processed into press bodies weighing approx. 50 g. As before, a total of 20 press bodies, together with a spark plug in a casing, were united to a charge.

15 Til bedømmelse af røgvirkningen blev 3 til ca. 40°C opvarmede hvide plader anbragt i terrænet med en indbyrdes afstand på 10 m og blev på en afstand af 100 m observeret med infrarøde og optiske observations-apparater ved bølgelængder på 10 μτα, 3,5 μτα og 0,6 μτα. Røgladninger af den ovenfor beskrevne sammensætning blev ved hjælp af en driv-20 ladning skudt ud ca. 40-50 m foran målet, hvor der i løbet af sekunder dannede sig en 3-15 m høj og 25-40 m bred og dyb røgmur. Ved temperaturer på 22eC og en relativ luftfugtighed på 48% opnåedes de i følgende tabel anførte afdækningsforhold.15 To assess the smoke effect, 3 to approx. 40 ° C heated white plates placed in the terrain at a distance of 10 m and observed at a distance of 100 m with infrared and optical observation apparatus at wavelengths of 10 μτα, 3.5 μτα and 0.6 μτα. Smoke charges of the above-described composition were ejected with the aid of a drive charge. 40-50 m in front of the target, where within 3 seconds a 3-15 m high and 25-40 m wide and deep smoke wall formed. At temperatures of 22 ° C and a relative humidity of 48%, the coverage conditions given in the following table were obtained.

Med "særdeles god" forstås en afdækning på 95-100%, dvs. målet lader 25 sig ikke mere skelne fra baggrunden. Med "god" forstås en afdækning på 80-95%, dvs. målet kan knapt nok skelnes. Med "moderat” forstås en afdækning på 50-80%. Med "dårlig" forstås en afdækning på under 50%, ved hvilken målet tydeligt kan ses.By "extremely good" is meant a hedge of 95-100%, ie. the target can no longer be distinguished from the background. By "good" is meant a hedge of 80-95%, ie. the target can hardly be distinguished. "Moderate" means a hedge of 50-80% and "bad" means a hedge of less than 50%, by which the target can be clearly seen.

Tabel 1 30 _ 0,6 μ 3,5 /i 10 μTable 1 30 _ 0.6 µ 3.5 / i 10 µ

Perchlorat god dårlig dårligPerchlorate good bad bad

Perchlorat/CsNOj særdeles god god godPerchlorate / CsNOj very good good good

DK 164665 BDK 164665 B

6 EKSEMPEL 2 Hexachlorethanrøg 2,5 kg hexachlorethan, 0,8 kg zinkoxid, 0,4 kg siliciumpulver, 0,3 kg aluminiumpulver og 0,3 kg amorft bor blev blandet grundigt og blev 5 sammen med 2 kg af en 10% elastomerbinderopløsning i acetone omdannet til pasta i en alter. Blandingen blev på samme måde som i eksempel 1 forarbejdet til presselegemer, der blev isoleret ved hjælp af et yderligere overtræk af methacrylharpiks og blev i overensstemmelse med eksempel 1 forenet til røgladninger.EXAMPLE 2 Hexachloroethane smoke 2.5kg hexachloroethane, 0.8kg zinc oxide, 0.4kg silica powder, 0.3kg aluminum powder and 0.3kg amorphous boron were thoroughly mixed and 5 together with 2kg of a 10% elastomer binder solution in acetone converted into pasta in an altar. In the same way as in Example 1, the mixture was processed into press bodies which were isolated by a further coating of methacrylic resin and were combined to smoke charges in accordance with Example 1.

10 Den samme blanding som ovenfor, dog med tilsætning af 1 kg caesium-nitrat, blev på samme måde forarbejdet til røgladninger.10 The same mixture as above, however, with the addition of 1 kg of cesium nitrate, was similarly processed into smoke charges.

Røgvirkningen blev bestemt ifølge eksempel 1, hvorved de i følgende tabel 2 viste værdier blev opnået. Den dannede røg havde en pH- værdi på ca. 5-7. Elastomeren bestod af butadien. Polybutadien er ligeledes 15 anvendeligt.The smoke effect was determined according to Example 1, whereby the values shown in the following Table 2 were obtained. The resulting smoke had a pH of approx. 5-7. The elastomer consisted of butadiene. Polybutadiene is also useful.

Tabel 2 0,6 μ 3,5 μ 10 μ HG-blanding særdeles god moderat moderat 20 HC/CsCl særdeles god særdeles god særdeles god EKSEMPEL 3 Rød phosphorrøg 0,65 kg rødt phosphor, 0,15 kg jern(III)oxid, 0,15 kg aluminiumpulver 25 og 0,15 kg magnesiumpulver æltes med 0,2 kg 10%'s elastomerbinder og forarbejdes til presselegemer ifølge eksempel 1.Table 2 0.6 μ 3.5 μ 10 μ HG mixture very good moderately moderate 20 HC / CsCl very good very good very good EXAMPLE 3 Red phosphorus smoke 0.65 kg red phosphorus, 0.15 kg iron (III) oxide, 0.15 kg of aluminum powder 25 and 0.15 kg of magnesium powder are kneaded with 0.2 kg of 10% elastomer binder and processed into press bodies according to Example 1.

På samme måde forarbejdes blandinger, der endvidere indeholder 0,40 kg caesiumnitrat, til presselegemer.Similarly, mixtures which further contain 0.40 kg of cesium nitrate are processed into press bodies.

DK 164665 BDK 164665 B

7 Røgvirkningen bestemmes ifølge eksempel 1, hvorved de i følgende tabel 3 viste resultater opnås.7 The smoke effect is determined according to Example 1, whereby the results shown in the following Table 3 are obtained.

Tabel 3 5 0,6 μ 3,5 μ 10 μTable 3 5 0.6 µ 3.5 µ 10 µ

Phosphor særdeles god dårlig dårligPhosphorus very good bad bad

Phosphor/CsN03 særdeles god særdeles god særdeles godPhosphorus / CsN03 very good very good very good

Phosphor/Rbn03 særdeles god særdeles god god 10 EKSEMPEL 4 0,65 hexachlorethan, 0,2 kg siliciumpulver og 0,15 kg aluminiumpulver blandes og presses under lavt tryk i et hylster, der er forbundet med en driv- og tændsats.Phosphorus / Rbn03 Extremely Good Extremely Good 10 EXAMPLE 4 0.65 hexachloroethane, 0.2 kg of silicon powder and 0.15 kg of aluminum powder are mixed and pressed under low pressure in a sleeve connected to a drive and ignition kit.

På samme måde forarbejdes blandinger, der endvidere indeholder 15 0,01-0,10 kg caesiumchlorid.Similarly, mixtures which further contain 0.01-0.10 kg of cesium chloride are processed.

Der opnås følgende røgvirkninger: 0,6 μ 3,5 μ 10 μ HC-røg god moderat moderat 20 HC-CsCl særdeles god særdeles god særdeles god I nedenstående eksempler angives de afprøvede opskrifter. Som binder anvendes butadien (polybutadien).The following smoke effects are obtained: 0.6 µ 3.5 µ 10 µ HC smoke good moderate moderate 20 HC-CsCl very good very good very good The examples below show the tested recipes. As a binder, butadiene (polybutadiene) is used.

EKSEMPEL 5 25 55% Rødt phosphor.EXAMPLE 5 55% Red Phosphorus.

23% Caesiumnitrat.23% cesium nitrate.

12% Zirconium/nikkellegering 70:30.12% Zirconium / Nickel Alloy 70:30.

10% Butadien.10% butadiene.

DK 164665 BDK 164665 B

8 EKSEMPEL 6 55% Rødt phosphor.EXAMPLE 6 55% Red Phosphorus.

20% Caesiumnitrat.20% cesium nitrate.

4% Manganpulver.4% manganese powder.

5 6% Zirconium/nikkellegering 70:30.5 6% Zirconium / Nickel Alloy 70:30.

5% Fint aluminiumpulver.5% Fine aluminum powder.

10% Butadien.10% butadiene.

EKSEMPEL 7 27% NH4CIO4.EXAMPLE 7 27% NH 4 ClO 4.

10 8% Zr/Ni 70:30.10 8% Zr / Ni 70:30.

5% Fint aluminiumpulver.5% Fine aluminum powder.

25% CsN03.25% CsNO3.

25% NH4CI 10% Butadien.25% NH 4 Cl 10% Butadiene.

15 EKSEMPEL 8 43,75% Rødt phosphor.EXAMPLE 8 43.75% Red Phosphorus.

33,00% CsN03.33.00% CsNO3.

6,00% Amorft bor.6.00% Amorphous boron.

4,75% Titanpulver, mindre end 100 μη.4.75% Titanium powder, less than 100 μη.

20 12,50% Polybutadien.12.50% Polybutadiene.

EKSEMPEL 9 43,75% Rødt phosphor.EXAMPLE 9 43.75% Red Phosphorus.

33,00% CsN03.33.00% CsNO3.

6,00% Amorft bor.6.00% Amorphous boron.

25 4,75% Zirconium/nikkellegering 70:30.4.75% Zirconium / Nickel Alloy 70:30.

12,50% Makroplast B 202 (butadien i opløsningsmiddel fremstillet af Henkel,12.50% Macroplastic B 202 (butadiene in solvent manufactured by Henkel,

Diisseldorf, BRD).Diisseldorf, BRD).

Claims (11)

1. Pyroteknisk røgsats, der frembringer røg, der er uigennemtrængelig i det synlige og infrarøde område, baseret på halogendonorer samt metalpulvere og/eller -oxider eller baseret på rødt phosphor, idet 5 røgsatsen endvidere indeholder alkalimetalsalte, kendetegnet ved, at røgsatsen endvidere er tilblandet caesiumforbindelser, der ved afbrænding dispergeres og absorberer stråling i det infrarøde område.1. Pyrotechnic smoke rate which produces smoke which is impermeable in the visible and infrared area based on halogen donors as well as metal powders and / or oxides or based on red phosphorus, the smoke rate further comprising alkali metal salts, characterized in that the smoke rate is further admixed cesium compounds which, upon firing, disperse and absorb radiation in the infrared region. 2. Pyroteknisk røgsats ifølge krav 1, 10 kendetegnet ved, at indholdet af caesiumforbindelser er 0,5-50%.Pyrotechnic smoke rate according to claim 1, 10, characterized in that the content of cesium compounds is 0.5-50%. 3. Pyroteknisk røgsats ifølge krav 2, kendetegnet ved, at indholdet af caesiumforbindelser er 5-25%.Pyrotechnic smoke rate according to claim 2, characterized in that the content of cesium compounds is 5-25%. 4. Pyroteknisk røgsats ifølge et hvilket som helst af kravene 1-3, kendetegnet ved, at den indeholdte caesiumforbindelse er caesiumchlorid, caesiumbromid, caesiumnitrat eller caesiumoxid.Pyrotechnic smoke rate according to any one of claims 1-3, characterized in that the cesium compound contained is cesium chloride, cesium bromide, cesium nitrate or cesium oxide. 5. Pyroteknisk røgsats ifølge et hvilket som helst af kravene 1-4, kendetegnet ved,* at caesiumforbindelsen blandes til en 20 hexachlorethansats med silicium og aluminium som metalpulver.A pyrotechnic smoke kit according to any one of claims 1-4, characterized in that the cesium compound is mixed into a hexachloroethane kit with silicon and aluminum as metal powder. 6. Pyroteknisk røgsats ifølge krav 5, kendetegnet ved, at den indeholder 50-70 vægtprocent hexachlorethan, 20-40 vægtprocent silicium- og/eller aluminiumpulver og 25 1-20 vægtprocent caesiumforbindelse.The pyrotechnic smoke kit according to claim 5, characterized in that it contains 50-70% by weight of hexachloroethane, 20-40% by weight of silicon and / or aluminum powder and 1-20% by weight of cesium compound. 7. Pyroteknisk røgsats ifølge krav 7, kendetegnet ved, at cæsiumforbindelsen er blandet i en røgsats indeholdende rødt phosphor. DK 164665 BThe pyrotechnic smoke set according to claim 7, characterized in that the cesium compound is mixed in a smoke set containing red phosphorus. DK 164665 B 8. Pyroteknisk røgsats ifølge krav 7, kendetegnet ved, at den indeholder zirconium/nikkellege-ring, fortrinsvis i legeringsforholdet 70/30.Pyrotechnic smoke kit according to claim 7, characterized in that it contains zirconium / nickel alloy, preferably in the alloy ratio 70/30. 9. Pyroteknisk røgsats ifølge krav 8, 5 kendetegnet ved, at den endvidere indeholder amorft bor.Pyrotechnic smoke kit according to claims 8, 5, characterized in that it further contains amorphous boron. 10. Pyroteknisk røgsats ifølge krav 8 og 9, kendetegnet ved, at den har følgende blandingsforhold: rødt phosphor 30-50% zircon/nikkel 3-15% 10 bor 5-20% caesiumforbindelse 5-25% og eventuelt aluminiumpulver i mængder på fra 3 til 20%.Pyrotechnic smoke rate according to claims 8 and 9, characterized in that it has the following mixing ratio: red phosphorus 30-50% zircon / nickel 3-15% 10 boron 5-20% cesium compound 5-25% and optionally aluminum powder in amounts of from 3 to 20%. 11. Pyroteknisk røgsats ifølge et hvilket som helst af kravene 8-10, kendetegnet ved, at den er tilsat ammoniumchlorid i mæng- 15 der på 5-25%.Pyrotechnic smoke rate according to any one of claims 8-10, characterized in that it is added ammonium chloride in amounts of 5-25%.
DK426783A 1982-10-16 1983-09-19 PYROTECHNICAL RANGE DK164665C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3238444 1982-10-16
DE3238444A DE3238444C2 (en) 1982-10-16 1982-10-16 Pyrotechnic smoke packs

Publications (4)

Publication Number Publication Date
DK426783D0 DK426783D0 (en) 1983-09-19
DK426783A DK426783A (en) 1984-04-17
DK164665B true DK164665B (en) 1992-07-27
DK164665C DK164665C (en) 1992-12-14

Family

ID=6175923

Family Applications (1)

Application Number Title Priority Date Filing Date
DK426783A DK164665C (en) 1982-10-16 1983-09-19 PYROTECHNICAL RANGE

Country Status (14)

Country Link
EP (1) EP0106334B1 (en)
JP (1) JPS6042194B2 (en)
KR (1) KR910000506B1 (en)
AR (1) AR231962A1 (en)
AT (1) ATE40101T1 (en)
CA (1) CA1237581A (en)
DE (2) DE3238444C2 (en)
DK (1) DK164665C (en)
ES (1) ES8602564A1 (en)
FI (1) FI76066C (en)
IL (1) IL69859A (en)
NO (1) NO158375C (en)
SG (1) SG80491G (en)
ZA (1) ZA837647B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8820660D0 (en) * 1988-09-01 1988-11-16 Astra Holdings Plc Smoke producing article
DE4016854A1 (en) * 1990-05-25 1991-11-28 Diehl Gmbh & Co Camouflage and swap device
DE4327976C1 (en) * 1993-08-19 1995-01-05 Buck Chem Tech Werke Flare charge for producing decoys
DE19601506C2 (en) * 1996-01-17 2000-05-18 Rheinmetall W & M Gmbh Method and device for generating a visual barrier using an artificial fog
DE19914097A1 (en) 1999-03-27 2000-09-28 Piepenbrock Pyrotechnik Gmbh Pyrotechnic active mass for generating an aerosol that is highly emissive in the infrared and impenetrable in the visual
DE19914033A1 (en) 1999-03-27 2000-09-28 Piepenbrock Pyrotechnik Gmbh Process for generating a camouflage fog that is transparent on one side in the infrared spectral range
DE10152023B4 (en) * 2001-10-22 2005-06-16 Buck Neue Technologien Gmbh Shock insensitive smoke projectiles
DE10308307B4 (en) * 2003-02-26 2007-01-04 Buck Neue Technologien Gmbh Projectile and submunition with preload body
JP4969841B2 (en) * 2005-01-19 2012-07-04 日本工機株式会社 Infrared shielding fuming composition
JP4969842B2 (en) * 2005-12-09 2012-07-04 日本工機株式会社 Red phosphorus fuming composition and method for producing the same
CN107021865A (en) * 2017-05-26 2017-08-08 北京理工大学 May interfere with visible ray, infrared and millimeter wave wide-band Smoke Material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE378780C (en) * 1922-05-03 1923-08-01 Harry James Nichols Smoke generator
GB1454258A (en) * 1972-08-23 1976-11-03 Secr Defence Smoke generating compositions
DE3012405A1 (en) * 1980-03-29 1981-10-01 Pyrotechnische Fabrik F. Feistel GmbH + Co KG, 6719 Göllheim COMBINATION FOG

Also Published As

Publication number Publication date
DE3238444C2 (en) 1986-10-30
JPS59131592A (en) 1984-07-28
CA1237581A (en) 1988-06-07
JPS6042194B2 (en) 1985-09-20
DE3378977D1 (en) 1989-02-23
AR231962A1 (en) 1985-04-30
DK426783A (en) 1984-04-17
SG80491G (en) 1991-11-15
EP0106334B1 (en) 1989-01-18
FI833595A0 (en) 1983-10-04
KR910000506B1 (en) 1991-01-26
NO158375B (en) 1988-05-24
ZA837647B (en) 1984-07-25
EP0106334A2 (en) 1984-04-25
IL69859A (en) 1989-01-31
DK426783D0 (en) 1983-09-19
NO158375C (en) 1988-08-31
ES526488A0 (en) 1985-12-01
FI76066C (en) 1988-09-09
ATE40101T1 (en) 1989-02-15
EP0106334A3 (en) 1985-12-04
ES8602564A1 (en) 1985-12-01
FI76066B (en) 1988-05-31
DK164665C (en) 1992-12-14
FI833595A (en) 1984-04-17
NO833739L (en) 1984-04-17
DE3238444A1 (en) 1984-08-02
KR840006473A (en) 1984-11-30

Similar Documents

Publication Publication Date Title
ES2218106T3 (en) PYROTECHNICAL ACTIVE MASS INTENDED FOR THE PRODUCTION OF A STRONGLY EMISSIVE AEROSOL IN THE INFRARED AND IMPENETRABLE SPECTRAL REGION IN THE VISIBLE SPECTRAL REGION.
DK164665B (en) PYROTECHNICAL RANGE
EP0329718B1 (en) Pyrotechnical mixture for producing a smoke screen
DE4030430C1 (en) Compsn. for generating IR-opaque smoke, esp. for camouflage - contains magnesium@ powder, fluoro:polymer, chloro:paraffin and aromatic cpd., esp. anthracene, phthalic anhydride, 2-benzoyl-pyridine etc.
EP2468700B1 (en) Pyrotechnic decoy material for infra-red decoys
US4238254A (en) Pyrotechnic smoke charge containing guanidine nitrate
US3274035A (en) Metallic composition for production of hygroscopic smoke
US3607472A (en) White smoke composition containing red phophorous
US5098488A (en) Composition
US5071497A (en) Composition for use in flares
US11225442B2 (en) Visual and infrared signature powder and preparation methods thereof
US4708869A (en) Persistent incapacitating chemical warfare composition and its use
RU2090548C1 (en) Pyrotechnical composition for deposit inducing
EP0639547B1 (en) Composition for the production of smoke opaque to infrared radiation
US20080257194A1 (en) Non-Toxic Metallic-Boron-Containing Ir Tracer Compositions and Ir Tracer Projectiles Containing the Same for Generating a Dim Visibility Ir Trace
US3329624A (en) Composition for producing smoke
US20060219339A1 (en) Non-toxic, metallic-metal free zinc peroxide-containing, IR tracer compositions and IR tracer projectiles containing same for generating a dim visibility IR trace
US20060231179A1 (en) Non-toxic, metallic-boron-containing, IR tracer compositions and IR tracer projectiles containing the same for generating a dim visibility IR trace
RU2090549C1 (en) Composition for cloud and mist dispersing
USH1194H (en) Riot control agent
JPH07172970A (en) Smoking composition
SU140630A1 (en) Pyrotechnic composition for anti-hail missiles and ammunition
Walker Screening Smokes.
US20080307995A1 (en) Non-Toxic Metallic-Metal Free Zinc Peroxide-Containing Ir Tracer Compositions and Ir Tracer Projectiles Containing Same for Generating a Dim Visibility Ir Trace
SU770705A1 (en) Binder composition for electrode coating

Legal Events

Date Code Title Description
PUP Patent expired