DK163912B - PROCEDURE FOR MIXING FLUIDS WITH GAS SPECIES - Google Patents

PROCEDURE FOR MIXING FLUIDS WITH GAS SPECIES Download PDF

Info

Publication number
DK163912B
DK163912B DK197183A DK197183A DK163912B DK 163912 B DK163912 B DK 163912B DK 197183 A DK197183 A DK 197183A DK 197183 A DK197183 A DK 197183A DK 163912 B DK163912 B DK 163912B
Authority
DK
Denmark
Prior art keywords
supply line
air
jet
nozzle
water
Prior art date
Application number
DK197183A
Other languages
Danish (da)
Other versions
DK197183D0 (en
DK197183A (en
DK163912C (en
Inventor
Michel Schweizer
Johann Vermes
Original Assignee
Voest Alpine Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3519954&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK163912(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Voest Alpine Ag filed Critical Voest Alpine Ag
Publication of DK197183D0 publication Critical patent/DK197183D0/en
Publication of DK197183A publication Critical patent/DK197183A/en
Publication of DK163912B publication Critical patent/DK163912B/en
Application granted granted Critical
Publication of DK163912C publication Critical patent/DK163912C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1294"Venturi" aeration means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/454Mixing liquids with liquids; Emulsifying using flow mixing by injecting a mixture of liquid and gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • B01F25/211Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers the injectors being surrounded by guiding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/931Flow guiding elements surrounding feed openings, e.g. jet nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Treating Waste Gases (AREA)

Description

DK 163912 BDK 163912 B

Opfindelsen angår en fremgangsmåde til blanding af væsker med gasarter, især indføring af gasarter i en væske under dennes væskeoverflade, ved hvilken både gassen og væsken ledes til en dyse under tryk. Især er det for beluft-5 ningsanlæg til de biologiske trin af spildevandsrensningsanlæg af væsentlig betydning, at den luft, der indføres i væsken, blandes med vandet på den mest intensive måde, således at der skaffes og opretholdes et for bakterieaktiviteten egnet milieu. Kendte indretninger af den i indledningen 10 nævnte art er forsynet med separate tilførselsledninger for luft og vand. Det er især kendt alene at indblæse en gasstråle under væskeoverfladen. Endvidere er det kendt, at lade den væske cirkulere, der skal beluftes, og ligeledes igen sprøjte den ind i et bassin under væskens overflade, 15 hvorved denne cirkulerende væske, før den indsprøjtes, bør indsuge den gas, der tjener til beluftningen eller blandes i separate blandekamre med den gas, der skal indføres. Ved disse kendte anlæg anvendes væskestrålens kinetiske energi således dels til indsugning og dels til transport af den 20 gas, der skal tilføres.The invention relates to a process for mixing liquids with gases, in particular the introduction of gases into a liquid below its liquid surface, in which both the gas and the liquid are fed to a pressurized nozzle. In particular, for aeration systems for the biological stages of wastewater treatment plants, it is essential that the air introduced into the liquid be mixed with the water in the most intensive manner to provide and maintain a suitable environment for the bacterial activity. Known devices of the kind mentioned in the preamble 10 are provided with separate air and water supply lines. In particular, it is known to blow a gas jet under the liquid surface alone. Furthermore, it is known to circulate the liquid to be aerated and also again inject it into a basin beneath the surface of the liquid, whereby this circulating liquid, before injecting it, should suck in the gas which serves the aeration or is mixed into it. separate mixing chambers with the gas to be introduced. Thus, in these known systems, the kinetic energy of the liquid jet is used partly for suction and partly for transporting the gas to be supplied.

Fra "Journal of the Water Pollution Control Federation", bd. 41, nr. 10 (oktober 1969), side 1726-36 kendes et apparat til blanding af væsker roed gasarter, ved hvilket både gassen og væsken under tryk indføres i en blandedyse.From the "Journal of the Water Pollution Control Federation", vol. 41, No. 10 (October 1969), pages 1726-36, is known apparatus for mixing liquids of red gases, in which both the gas and the liquid are pressurized into a mixing nozzle.

25 Gassen sammenblandes herved inden i en blandedyse intensivt med væsken, og den gasbobleholdige blanding udsprøjtes nedenunder væskeoverfladen.The gas is thereby intensively mixed within a mixing nozzle with the liquid, and the gas bubble-containing mixture is sprayed below the liquid surface.

Fra FR offentliggørelsesskrift nr. 2 326 384 kendes en indretning, ved hvilken luft tilføres trykløst og medrives 30 af en væskekappe. Indretningen udmunder ovenover væskeoverfladen for at sikre en gennemblanding af strålen før indtrængningen i væskeoverfladen. Fra EP offentliggørelsesskrift nr. 44 498 kendes et apparat til begasning af væsker eller suspensioner, ved hvilket en vandstråle deles over en konisk 35 kappe og indsuger gas over en afrivningskant. Den på denne måde dannede blandingsstråle udsprøjtes derpå via yderligereFrom FR Publication No. 2,326,384, a device is known in which air is supplied without pressure and entrained by a liquid jacket. The device opens above the liquid surface to ensure a blending of the jet prior to penetration into the liquid surface. EP Publication No. 44 498 discloses an apparatus for the gasification of liquids or suspensions, in which a jet of water is divided over a conical sheath and sucks gas over a tear-off edge. The mixing jet thus formed is then extruded via further

DK 163912 BDK 163912 B

2 ledeindretninger, hvorved der sikres en intensiv blanding af gassen med væsken før udsprøjtningen. Fra DE offentliggørelsesskrift nr. 3 028 987 kendes injektorer, ved hvilke gas kan tilføres under tryk. Gasluftblandingen udsprøjtes 5 gennem en anden dyse, hvorved der igen sikres en intensiv blanding. US patentskrift nr. 3 775 314 viser og beskriver en indretning, ved hvilken væske i en højtrykszone sættes i rotation og efterfølgende udsprøjtes i et medium med væsentlig lavere tryk. Ved udsprøjtningen skal der herved opnås 10 et partielt vakuum, hvorved der ved temperaturer under 30°C tilstræbes en isdannelse, idet isen skal medføre gasbobler.2 guiding devices, thereby ensuring an intensive mixing of the gas with the liquid before the spraying. DE Publication No. 3,028,987 discloses injectors by which gas can be supplied under pressure. The gas-air mixture is sprayed 5 through another nozzle, thereby again ensuring an intensive mixture. U.S. Patent No. 3,775,314 discloses and describes a device in which liquid in a high pressure zone is rotated and subsequently sprayed in a medium of substantially lower pressure. In the spraying, a partial vacuum must thereby be obtained, whereby an ice formation is sought at temperatures below 30 ° C, the ice having to cause gas bubbles.

Det er opfindelsens formål at tilvejebringe en fremgangsmåde af den i indledningen nævnte art, ved hvilket væskestrålens kinetiske energi kan udnyttes bedre, og som 15 resulterer i en særlig fin og på simpel måde regulerbar fordeling af gassen i væsken. Til opnåelse af dette formål består opfindelsen i det væsentlige i, at væskestrålen ved hjælp af ledeindretninger indføres således, at den senest ved dysens udstrømningsende i det mindste delvis omhyller 20 gasstrålen, hvorpå findelingen af gasstrålen foretages efter udslyngningen i væsken. Ved en fremgangsmåde af denne art formes væskestrålen med dens totale kinetiske energi på en sådan måde, at den på samme tid under tryk tilførte gas efter udstrømningen fra dysen er nødt til at gennemtrænge væske-25 strålen, hvorved der fremkommer en særlig fin opdeling af gasstrålen i fine gasblærer. Effektiviteten ved opdelingen i gasblærer forøges jo mere kinetisk energi hos væskestrålen, der forbruges ved opdelingen af gasstrålen. På denne måde opstår en blandingsstråle med fine bobler, ved hvilken gas-30 transporten bliver regulerbar uafhængigt af væsketransporten, idet virkningen af en blandedyse af denne art ikke beror på injektorprincippet. Væskestrålens kinetiske energi anvendes til frembringelse af grænseflader eller til forøgelse af overflader, idet transporten af gassen ikke bevirkes af 35 selve væskestrålen, men alene er afhængig af gastrykket. Væskestrålens kinetiske energi kan således som helhed ind-It is the object of the invention to provide a method of the kind mentioned in the preamble, in which the kinetic energy of the liquid jet can be better utilized and which results in a particularly fine and easily controllable distribution of the gas in the liquid. In order to achieve this object, the invention essentially consists in introducing the liquid jet by means of guiding means so that it at least at the outlet end of the nozzle at least partially encloses the gas jet, after which the comminution of the gas jet is effected after discharge into the liquid. In a method of this kind, the liquid jet is formed with its total kinetic energy in such a way that at the same time the pressurized gas, after the discharge from the nozzle, has to penetrate the liquid jet, resulting in a particularly fine partitioning of the gas jet. in fine gas blisters. The efficiency of the division into gas blisters increases the more kinetic energy of the liquid jet consumed by the division of the gas jet. In this way, a mixing bubble of fine bubbles arises, whereby the gas transport becomes adjustable independently of the liquid transport, the effect of a mixing nozzle of this kind not being based on the injector principle. The kinetic energy of the liquid jet is used to generate interfaces or to increase surfaces, since the transport of the gas is not effected by the liquid jet itself, but depends solely on the gas pressure. Thus, the kinetic energy of the liquid jet can be incorporated as a whole.

DK 163912 BDK 163912 B

3 drages til fordeling af gasboblerne i væsken.3 is drawn to disperse the gas bubbles into the liquid.

Ifølge en foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen udmunder væskestrålen uden for luftstrålen og formes til en i tværsnit cirkelformet stråle.According to a preferred embodiment of the method according to the invention, the liquid jet opens outside the air jet and is formed into a cross-sectional jet.

5 Således kan væskestrålen, især vandstrålen, på simpel måde rettes mod ledeindretningen. Ledeindretninger af denne art kan have en krum, fortrinsvis halvcirkelformet overflade, hvis konkave side vender mod vandstrålen, hvorved der sker en i det mindste delvis omhylning af gasstrømmen. Udformnin-10 gen kan imidlertid også være valgt således, at dysemundingen sammen med aksen for vandtilførselskanalen indeslutter en spids vinkel, idet luften eller oxygenet tilføres gennem radiale åbninger i vandtilførselsledningen inden dysemundingen, og at vandet, der tilføres i vandtilførselsledningens 15 akseretning, inden udstrømningen gennem dysemundingen rettes mod siden af den vinkelbøjede del af vandtilførselsledningen eller dysemundingen. Omhylningen af gasstrålen sker herved umiddelbart efter det sted, hvor væskestrålen kolliderer med vandtilførselsledningens væg eller med dysemundingen.Thus, the liquid jet, especially the water jet, can be simply directed to the guide device. Conduits of this kind may have a curved, preferably semicircular surface, the concave side of which faces the jet of water, thereby providing at least a partial envelope of the gas flow. However, the design may also be selected such that the nozzle orifice together with the axis of the water supply channel encloses a pointed angle, the air or oxygen being supplied through radial openings in the water supply line prior to the nozzle opening and the water supplied in the axis of the water supply line 15 before flowing through the nozzle. the nozzle mouth is directed to the side of the angled portion of the water supply line or nozzle mouth. The gas jet is thereby enveloped immediately after the place where the liquid jet collides with the wall of the water supply pipe or with the nozzle mouth.

20 Udformningen kan imidlertid også være valgt på en sådan måde, at luft- eller oxygentilførselsledningen i det mindste i området, der vender mod dysemundingen, er anbragt koaksialt med vandtilførselsledningen, og at vandtilførselsledningens indvendige diameter er større end luft- og oxygentilførsels-25 ledningens ydre diameter. Ved denne udformning sker der en direkte koncentrisk udstrømning af væske- og gasstrålen, hvorved væskestrålen omgiver gasstrålen.However, the design may also be selected in such a way that at least in the area facing the nozzle mouth the air or oxygen supply line is arranged coaxially with the water supply line and the internal diameter of the water supply line is greater than the outside of the air and oxygen supply line. diameter. In this embodiment, a direct concentric outflow of the liquid and gas jet occurs, whereby the liquid jet surrounds the gas jet.

Luft- eller oxygentilførselsledningen og vandtilførselsledningen udmunder fortrinsvis i samme radiale plan.The air or oxygen supply line and the water supply line preferably open in the same radial plane.

30 Som et alternativ til vinkelbøjningen af vandtilførselsledningen inden udstrømningsdysen, kan udformningen vælges således, at luft- eller oxygentilførselsledningen tilsluttes vandtilførselsledningen fra siden, og at der i strømningsretningen før tilslutningen af luft- eller oxygentilførselsled-35 ningen, anbringes afbøjningsindretninger som f.eks. dyser, spirallegemer og lignende i vandtilførselsledningen, og som30 As an alternative to the angular bending of the water supply line prior to the outflow nozzle, the design may be selected such that the air or oxygen supply line is connected to the side water supply line and that in the flow direction before the connection of the air or oxygen supply line, deflection devices are provided. nozzles, coil bodies and the like in the water supply line, and the like

DK 163912BDK 163912B

4 retter vandet mod blandedysens inderside, før dette forlader blandedysen. Ved en udformning af denne art sker der på grund af strømningsledelegemet en kollision af vandstrålen med tilførselsledningens inderside eller med dysen, hvilket 5 resulterer i den ønskede omhylning af gasstrålen.4 directs the water to the inside of the mixing nozzle before leaving the mixing nozzle. In a design of this kind, due to the flow guide body, a collision of the water jet occurs with the inside of the supply line or with the nozzle, which results in the desired envelope of the gas jet.

I alle tilfælde skal gassen eller luften og væsken tilføres under væskeoverfladen, hvorved fortrinsvis dysemundingsakserne, og i det mindste luftstrålens stråleakser, er orienteret afvigende fra den lodrette retning, fortrinsvis 10 i det væsentlige orienteret i vandret retning. Foruden en særlig effektiv indføring af gasarter i væsker opnås ved blandedyser af denne art også den fordel, at det er muligt i vidt omfang at regulere den indførte gas- eller luftmængde, uden at ændre den indførende vandmængde, udelukkende ved at 15 forandre gassens tryk. Ved en regulering af denne art indføres forskellige gasmængder med en konstant virkningsgrad og således særlig økonomisk i den væske, der skal behandles.In all cases, the gas or air and the liquid must be supplied below the liquid surface, whereby preferably the nozzle orifices, and at least the jet of the air jet, are oriented deviating from the vertical direction, preferably 10 substantially oriented in the horizontal direction. In addition to a particularly efficient introduction of gases into liquids, by mixing nozzles of this kind, the advantage is also that it is possible to control the introduced gas or air flow to a large extent, without changing the introducing water quantity, merely by changing the pressure of the gas. In a regulation of this kind, various quantities of gas are introduced with a constant efficiency and thus particularly economical in the liquid to be treated.

Ved at holde en konstant vandmængde, der for enhver forud fastlagt dysegeometri kan bestemmes som en optimal drifts-20 vandmængde, er det muligt ved den laveste driftsydelse at opnå forskellige koncentrationer af gassen eller luften alene ved at gas- eller luftmængden forandres. Det er således muligt at opnå en regulering af gasmængden ved konstant høj virkningsgrad ved blanding af væsker med gasarter.By maintaining a constant volume of water which, for any predetermined nozzle geometry, can be determined as an optimum operating water volume, it is possible at the lowest operating performance to achieve different concentrations of the gas or air simply by changing the gas or air volume. Thus, it is possible to achieve a regulation of the amount of gas at a constant high efficiency by mixing liquids with gases.

25 Opfindelsen skal i det følgende beskrives nær mere, idet der henvises til tegningen, på hvilken fig. 1 viser en første udførelsesform for en blandedyse ifølge opfindelsen, fig. 2 til 5 modificerede udførelsesformer for 30 den i fig. 1 viste dyse, fig. 6 et billede i retning af pilen VI i fig. 5, fig. 7 et tværsnit af et stråledannende legeme, som kan anvendes ved den i fig. 1 viste udførelsesform, 35The invention will now be described in more detail with reference to the drawing, in which: FIG. 1 shows a first embodiment of a mixing nozzle according to the invention; FIG. 2 to 5 modified embodiments of the embodiment of FIG. 1; FIG. 6 is a view in the direction of arrow VI in FIG. 5, FIG. 7 is a cross-section of a beam forming body which can be used in the embodiment of FIG. 1, 35

DK 163912BDK 163912B

5 0 fig· 8 et billede af det i fig. 7 viste strå ledannende legeme set i retning af pilen VIII i fig. 7, fig. 9 og 10 en yderligere udførelsesform med parallelt anbragte væske- og gasledninger, idet fig. 10 viser udførelsesformen set i retning af pilen X i fig. 9, 5 fig. 11 og 12 yderligere udførelsesformer for blandedyser vist svarende til fig. 1 til 5, fig. 13 og 14 en yderligere udførelsesform, idet fig. 14 viser udførelsesformen set i retning af pilen XIV i fig. 13, 10 fig. 15 og 16 en udførelsesform, ved hvilken vanddysernes mundingsakser skærer luftdysens mundingsakse, idet fig. 16 viser udførelsesformen set i retning af pilen XVI i fig. 15.5 is a view of the embodiment of FIG. 7, the conductive body shown in the direction of arrow VIII in FIG. 7, FIG. 9 and 10 show a further embodiment with parallel liquid and gas lines, FIG. 10 shows the embodiment seen in the direction of arrow X in FIG. 9, FIG. 11 and 12 further embodiments of mixing nozzles shown corresponding to FIGS. 1 to 5, FIG. 13 and 14 are a further embodiment, fig. 14 shows the embodiment seen in the direction of arrow XIV in FIG. 13, 10 FIG. 15 and 16 show an embodiment in which the nozzles of the water nozzles intersect the nozzle of the air nozzle, fig. 16 shows the embodiment seen in the direction of arrow XVI in FIG. 15th

Fig. 1 viser en vandtilførselsledning 1, i 15 hvilken der er indsat et hvirveldannende legeme 2, et såkaldt spiralhoved, til hvilket der slutter sig et stråleformende legeme 3. Legemet 3 kan f.eks. forme vandstrålen til en flad stråle. Det er i hvert fald nødvendigt, at legemet 3 frembringer en afbøjning af vandstrålen på en sådan måde, at 20 denne endnu inden den forlader dysen 4 enten kolliderer med tilledningsrørets indervæg 5 eller med dysen 4 for på denne måde at omhylle den gennem lufttilførselsledningen 6 tilførte luftstråle.FIG. 1 shows a water supply line 1, in which is inserted a swirling body 2, a so-called spiral head, to which joins a beam-forming body 3. The body 3 can e.g. shape the jet of water into a flat jet. In any case, it is necessary that the body 3 produces a deflection of the water jet in such a way that, even before leaving the nozzle 4, it either collides with the inner wall of the supply pipe 5 or with the nozzle 4 in order to enclose it supplied through the air supply line 6 air jet.

Ved den i fig. 2 viste udførelsesform omgiver 25 røret 1 i området ved dysens munding 4 ledningen 6 koncentrisk, hvorved der fremkommer en direkte omhylning af luftstrålen.In the embodiment shown in FIG. 2, the pipe 1 in the region at the mouth of the nozzle 4 surrounds the conduit 6 concentrically, thereby providing a direct envelope of the air jet.

Ved den i fig. 3 viste udførelsesform er røret 1 inden dysen 4 udformet med et knæk, så at vandstrålen 30 2 vil støde på røret l's indervæg 5. Også ved denne udførelsesform sker der en, i det mindste delvis, omhylning af den gennem luftrøret 6 tilførte luftstråle.In the embodiment shown in FIG. 3, the pipe 1 before the nozzle 4 is designed with a crack so that the water jet 30 2 will bump the inner wall 5. of the pipe 1. In this embodiment, too, at least partially, the air jet supplied through the trachea 6 takes place.

Ved den i fig. 4 viste udførelsesform er der afbildet et fra leoemet 3 i fig. 1 afvigende stråleformende 35In the embodiment shown in FIG. 4, a view from the leum 3 of FIG. 1 deviating beamforming 35

DK 163912 BDK 163912 B

6 o legeme. Også her formes vandstrålen 7 således, at denne, før den forlader dysen 4, kolliderer med tilledningsrørets inder-væg 5, således at omhylningen af den gennem tilførselsledningen 6 tilførte luftstråle sikres.6 o body. Here, too, the water jet 7 is formed so that it, before leaving the nozzle 4, collides with the inner wall 5 of the supply pipe, so that the casing of the air jet supplied through the supply line 6 is secured.

Ved de i fig. 5 og 6 viste udførelsesformer 5 sker lufttilførselen 6 i endeområdet for vandtilførselsledningen 1, og dette endeområde af vandtilførselsledningen 1 er udformet som en ledeindretning. Ved denne udførelsesform omhyller vandstrålen i det mindste delvis luftstrålen og for-lader således endevæggen 8 omtrent laminært strømmende sammen med den fra ledningen 6 udstrømmende luftstrøm. Hverken ved denne udførelsesform eller ved de i fig. 1 til 4 viste udførelsesformer inddrages vandstrålens kinetiske energi på nogen måde til transport af luften eller gassen, og gennem-15 hvirvlingen af luften med vandet sker efter udstrømningen fra dysen eller tilførselsledningernes endeområder.In the FIG. 5 and 6, the air supply 6 takes place in the end area of the water supply line 1 and this end area of the water supply line 1 is designed as a guide device. In this embodiment, the water jet at least partially envelops the air jet, thus leaving the end wall 8 approximately laminar flowing together with the air flow flowing from the conduit 6. Neither in this embodiment nor in those of FIG. 1 to 4, the kinetic energy of the water jet is in any way involved in transporting the air or gas, and the whirling of the air with the water occurs after the outflow from the nozzle or the end areas of the supply lines.

Ved det i fig. 7 og 8 viste stråleformende legeme 3 formes vandstrålen til en cirkelformet stråle, hvor cirkelen kun afbrydes i området for legemet 3's fastgørelse 2Q i vandtilførselsledningen l*s indre.In the embodiment shown in FIG. 7 and 8, the beam-forming body 3 is formed into a circular beam, where the circle is interrupted only in the region of the attachment 2Q of the body 3 in the interior of the water supply line 1 *.

Ved de i fig. 9 og 10 viste udførelsesformer er vandtilførselsledningen 1 anbragt parallelt med gas- eller lufttilførselsledningen 6. En sådan udførelse kan nemt tilpasses til beluftningsbassinets tværsnit og størrelse, idet 25 lufttilførselsledningen 6 gennemtrænger vandtilførselsledningen 1 via radiale kanaler 9. Vandtilførselsledningen 1 har ligeledes radiale forlængelser 10, med hvilke de radiale kanaler 91 s endeområder omhylles, så at der også her sker en omhylning af gasstrålen med vandstrålen.In the FIG. 9 and 10, the water supply line 1 is arranged parallel to the gas or air supply line 6. Such an embodiment can be easily adapted to the cross section and size of the aeration basin, the air supply line 6 penetrating the water supply line 1 via radial channels 9. The water supply line 1 also has radial lengths the end regions of the radial ducts 91 being enclosed so that there is also an envelope of the gas jet with the water jet.

30 Formen af vand- og gasstrålernes udløbsåbninger kan varieres på mange måder. I fig. 11 er mundingsområdet 11 af lufttilførselsledningen 6 formet som en trompet og omhyllet af et analogt udformet vandtilførselsrør 1. Ved udførelsesformen i fig. 12 har både lufttilførselsledningen 6 og 35 vandtilførselsledningen 1 en dyseformet forsnævring nær endeområdet 12.30 The shape of the outlet openings of the water and gas jets can be varied in many ways. In FIG. 11, the orifice region 11 of the air supply line 6 is shaped like a trumpet and enclosed by an analogously shaped water supply pipe 1. In the embodiment of FIG. 12, both the air supply line 6 and 35 the water supply line 1 have a nozzle-shaped constriction near the end region 12.

77

DK 163912 BDK 163912 B

0 Ved den i fig. 13 og 14 viste udførelsesform tilføres vandet lufttilførselsledningen 6 gennem en vandtilførselsledning 1, der er tilsluttet på siden, så at vandstrå- ‘ len støder mod lufttilførselrøret 6's kappe, og på denne måde fremskaffer den ønskede omhylning af luftstrålen.0 In the embodiment of FIG. 13 and 14, the water is supplied to the air supply conduit 6 through a side water supply conduit 1 so that the jet of water abuts the sheath of the air supply conduit 6, thus providing the desired envelope of the air jet.

55

Ved den i fig. 15 og 16 viste udførelsesform er udmundingen af lufttilførselsledningen 6 adskilt fra to vandtilførselsledninger 1.In the embodiment shown in FIG. 15 and 16, the outlet of the air supply line 6 is separated from two water supply lines 1.

Vandtilførselsledningerne 1 er her anbragt i et fælles plan, og akserne 13 for vandtilførselsledningernes dysemundinger skærer udmundingen for lufttilførselsledningen 6. Vandstrålen afbøjes af luften og bevæger sig i en kreds omkring lufttilførselsledningen 6's mundingsakse 14. Også ved denne udførelsesform anvendes vandstrålens totale kinetiske energi til fordeling af luften i fine småblærer og går således 15 ikke tabt til transport eller indsugning af luften.The water supply lines 1 are arranged in a common plane here, and the axes 13 for the nozzle orifices of the water supply lines intersect the outlet for the air supply line 6. The water jet is deflected by the air and moves in a circle around the mouth axis of the air supply line 6. Also in this embodiment, the water jet distribution's total kinetic energy is used. the air in fine blisters and thus is not lost to transport or suction of the air.

20 25 30 3520 25 30 35

Claims (8)

1. Fremgangsmåde til blanding af væsker med gasarter med henblik på at indføre gasarter i en væske nedenunder dens væskeoverflade, ved hvilken både gassen og væsken til-5 føres en dyse under tryk, kendetegnet ved, at væskestrålen ved hjælp af ledeindretninger indføres således, at den senest ved dysens (4) udstrømningsende i det mindste delvis omhyller gasstrålen, hvorpå findelingen af gasstrålen foretages efter udslyngningen i væsken.A process for mixing liquids with gases in order to introduce gases into a liquid below its liquid surface, to which both the gas and the liquid are supplied with a nozzle under pressure, characterized in that the liquid jet is introduced by means of guiding devices such that: the at least at the outlet end of the nozzle (4) at least partially envelops the gas jet, after which the comminution of the gas jet is effected after discharge into the liquid. 2. Fremgangsmåde ifølge krav 1, kendeteg net ved, at væskestrålen ledes således, at den udmunder udenfor luftstrålen og formes til en i tværsnit cirkelringformet stråle.A method according to claim 1, characterized in that the liquid jet is directed so that it opens outside the air jet and is formed into a cross-sectional circular beam. 3. Fremgangsmåde ifølge krav 1 eller 2, kende- 15 tegnet ved, at der anvendes krumme ledeindretninger, hvis konkave side vender mod vandstrålen.Method according to claim 1 or 2, characterized in that curved guide devices are used, the concave side of which faces the water jet. 4. Fremgangsmåde ifølge ethvert af kravene 1 til 3, kendetegnet ved, at der anvendes dyser (4), hvis dysemunding indeslutter en spids vinkel med vandtilførsels- 20 ledningen (1), idet luften eller oxygenet via radiale åbninger (6) tilføres vandtilførselsledningen (1) før dysemundingen, og det i akseretningen for vandtilførselsledningen (1) tilførte vand før udstrømningen gennem dysemundingen (4) rettes mod væggen (5) af den vinkelbøjede del af vand- 25 tilførselsledningen (1) eller dysemundingen (4) (fig. 3).Method according to any one of claims 1 to 3, characterized in that nozzles (4) are used, the nozzle mouth of which encloses a pointed angle with the water supply line (1), the air or oxygen being supplied via the radial openings (6). 1) before the nozzle orifice and the water supplied in the axis of the water supply line (1) before the outflow through the nozzle orifice (4) is directed to the wall (5) of the angularly bent portion of the water supply line (1) or the nozzle orifice (4) (Fig. 3 ). 5. Fremgangsmåde ifølge ethvert af kravene 1 til 3, kendetegnet ved, at luften eller oxygenet i det mindste i dens (dets) mod dysemundingen vendende område tilføres koaksialt med vandet, idet inderdiameteren af vand- 30 tilførselsledningen (1) er større end yderdiameteren af luft- eller oxygentilførselsledningen (6) (fig. 2 og 8).Process according to any one of claims 1 to 3, characterized in that the air or oxygen is supplied at least in its (its) face towards the nozzle orifice coaxially with the water, the inner diameter of the water supply line (1) being larger than the outer diameter of the the air or oxygen supply line (6) (Figures 2 and 8). 6. Fremgangsmåde ifølge krav 5, kendetegnet ved, at luft eller oxygen og vand udslynges i det samme radialplan.Process according to claim 5, characterized in that air or oxygen and water are discharged in the same radial plane. 7. Fremgangsmåde ifølge ethvert af kravene 1 til 5, kendetegnet ved, at der anvendes dyser (4), ved DK 163912B hvilke luft- eller oxygentilførselsledningen (6) er tilsluttet vandtilførselsledningen (1) fra siden, og at der i vandtilførselsledningen (1) før tilslutningen af luft- eller oxygentilførselsledningen (6) er tilvejebragt afbøjningsind-5 retninger som f.eks. dyser, spirallegemer eller lignende indretninger, som, før dette forlader dysen (4) retter vandet mod dysens (4) indervæg (5) (fig. 1, 3, 4).Method according to any one of claims 1 to 5, characterized in that nozzles (4) are used, by DK 163912B which the air or oxygen supply line (6) is connected to the water supply line (1) from the side and that in the water supply line (1) before the connection of the air or oxygen supply line (6), deflection devices such as e.g. nozzles, spiral bodies or similar devices which, before leaving the nozzle (4), direct the water towards the inner wall (5) of the nozzle (4) (Figs. 1, 3, 4). 8. Fremgangsmåde ifølge ethvert af kravene 1 til 7, kendetegnet ved, at gasstrålen i det væsentlige 10 udslynges vandret.Method according to any one of claims 1 to 7, characterized in that the gas jet is substantially discharged horizontally.
DK197183A 1982-05-04 1983-05-03 PROCEDURE FOR MIXING FLUIDS WITH GAS SPECIES DK163912C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT173982 1982-05-04
AT0173982A AT393675B (en) 1982-05-04 1982-05-04 METHOD FOR MIXING LIQUIDS WITH GASES

Publications (4)

Publication Number Publication Date
DK197183D0 DK197183D0 (en) 1983-05-03
DK197183A DK197183A (en) 1983-11-05
DK163912B true DK163912B (en) 1992-04-21
DK163912C DK163912C (en) 1992-09-21

Family

ID=3519954

Family Applications (1)

Application Number Title Priority Date Filing Date
DK197183A DK163912C (en) 1982-05-04 1983-05-03 PROCEDURE FOR MIXING FLUIDS WITH GAS SPECIES

Country Status (5)

Country Link
EP (1) EP0093704B1 (en)
AT (1) AT393675B (en)
DE (1) DE3370596D1 (en)
DK (1) DK163912C (en)
HU (1) HU187511B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2189237B (en) * 1986-03-20 1990-06-13 Wessex Water Authority Anaerobic digester
WO2013093795A1 (en) * 2011-12-19 2013-06-27 Ariel-University Research And Development Company, Ltd. Aeration of liquid suitable for aqueous waste treatment
CN111744382B (en) * 2019-03-29 2023-01-03 中石化广州工程有限公司 Gas-liquid two-phase flow distributor and gas-liquid two-phase flow distribution method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2361982A (en) * 1943-01-15 1944-11-07 Urquhart Radeliffe Morris Apparatus for making cellular masses
US3775314A (en) * 1971-06-07 1973-11-27 Water Treatment Corp Method and apparatus for mixing gases with water
ZA744265B (en) * 1973-07-09 1975-07-30 Envirotech Corp Supersonic small bubble generation and method apparatus
FR2326384A1 (en) * 1975-10-02 1977-04-29 Sadoulet Maurice Aerator for activated sludge plant treating waste water - delivers jet of water via aerating nozzle into recycling tank
GB1524765A (en) * 1976-02-27 1978-09-13 Unisearch Ltd Process and apparatus for the aerobic biological purification of liquid wastes containing organic pollutants
DE2634496C2 (en) * 1976-07-31 1985-10-17 Bayer Ag, 5090 Leverkusen Injector for gassing a liquid
AT352033B (en) * 1977-06-28 1979-08-27 Voest Ag DEVICE FOR INTRODUCING GASES IN LIQUIDS, IN PARTICULAR FOR AERATING WASTE WATER
US4224158A (en) * 1977-11-22 1980-09-23 Clevepak Corporation Aeration system and method with tapered nozzle
US4271099A (en) * 1979-10-01 1981-06-02 Kukla Thomas S Apparatus for thorough mixture of a liquid with a gas
DE3027035A1 (en) * 1980-07-17 1982-02-18 Hoechst Ag, 6000 Frankfurt DEVICE FOR FUMING LIQUIDS OR SUSPENSIONS
DE3028987A1 (en) * 1980-07-30 1982-02-11 Wiegand Karlsruhe Gmbh, 7505 Ettlingen Propellant fluid in pipe injects gas from adjacent pipe - through nozzles into surrounding body of liq.

Also Published As

Publication number Publication date
DK197183D0 (en) 1983-05-03
AT393675B (en) 1991-11-25
ATA173982A (en) 1991-05-15
DK197183A (en) 1983-11-05
EP0093704A2 (en) 1983-11-09
DK163912C (en) 1992-09-21
EP0093704A3 (en) 1984-06-13
DE3370596D1 (en) 1987-05-07
EP0093704B1 (en) 1987-04-01
HU187511B (en) 1986-01-28

Similar Documents

Publication Publication Date Title
US5431346A (en) Nozzle including a venturi tube creating external cavitation collapse for atomization
US4116387A (en) Mist generator
US4162971A (en) Injectors with deflectors for their use in gassing liquids
US4954147A (en) Water conditioning apparatus and method
US6644341B1 (en) Multi-barrel plant inoculation gun
DE3470380D1 (en) Nebulizer
KR930702065A (en) Aeration of liquid
CA2394814A1 (en) Feed-dispersion system for fluid catalytic cracking units and process for fluid catalytic cracking
CN1871073A (en) Device for atomizing a liquid composition
DK163912B (en) PROCEDURE FOR MIXING FLUIDS WITH GAS SPECIES
US5258057A (en) Method and apparatus for extracting dissolved, volatile substances from liquids into the vapor phase
US4789503A (en) Air removal snorkel device
JPS5941780B2 (en) Complex fluid jet method and complex nozzle unit
EP0963235B1 (en) Open contact reactor
US3601199A (en) Process and device for producing extinguishing foam
JPH09201520A (en) Method for dispersing gas-liquid mixed fluid and dispersing apparatus using the method
JPH02119963A (en) Spraying apparatus for discharging liquid by gaseous fluid
RU2737273C1 (en) Volkov's cavitation aerator
ATE325225T1 (en) DEVICE FOR DEGASING FIBER SUSPENSIONS
KR20110038026A (en) System and method for delivery of solids in a carrier gas to a gas stream
CN101330963A (en) An extraction device
GB2294646A (en) Material treatment
CN113307213B (en) Online continuous sterilization device and method before bottle filling
SU1666453A1 (en) Aerator ejector
SU767192A1 (en) Apparatus for culturing microorganisms

Legal Events

Date Code Title Description
AHB Application shelved due to non-payment
PBP Patent lapsed