DK158385B - CATALYTIC REACTOR PLANT - Google Patents

CATALYTIC REACTOR PLANT Download PDF

Info

Publication number
DK158385B
DK158385B DK514477A DK514477A DK158385B DK 158385 B DK158385 B DK 158385B DK 514477 A DK514477 A DK 514477A DK 514477 A DK514477 A DK 514477A DK 158385 B DK158385 B DK 158385B
Authority
DK
Denmark
Prior art keywords
reactor
chamber
furnace
reaction chamber
wall
Prior art date
Application number
DK514477A
Other languages
Danish (da)
Other versions
DK158385C (en
DK514477A (en
Inventor
Richard Floyd Buswell
Richard Allan Sederquist
Daniel Jerome Snopkowski
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/827,804 external-priority patent/US4098589A/en
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of DK514477A publication Critical patent/DK514477A/en
Publication of DK158385B publication Critical patent/DK158385B/en
Application granted granted Critical
Publication of DK158385C publication Critical patent/DK158385C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00097Mathematical modelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

DK 158385BDK 158385B

KATALYTISK REAKTOR-ANLÆGCATALYTIC REACTOR PLANT

Denne opfindelse vedrører et katalytisk reaktor-anlæg af den i indledningen til krav 1 angivne slags.This invention relates to a catalytic reactor plant of the kind set forth in the preamble of claim 1.

55

Katalytiske reaktor-anlæg til omdannelse af kulbrinter til industrielt anvendelige gasarter, såsom brint, er velkendte. De er almindeligvis udformet til høj gasydelse. Apparaturets størrelse har som regel været af mindre betydning, da omkost-10 ningerne ved fremstillingen af gasprodukterne kun udgør en lille del af prisen på de produkter, der fremstilles af produkt-gassen. Den mest almindelige fremgangsmåde til fremstilling af brint er dampomdannelse eller "Steam-Reforming" af kulbrinter ved at lede disse gennem opvarmede reaktionsrør, 15 som er fyldt med en opvarmet katalysator, og som er anbragt i en ovn. Typiske reaktionsrør er 6,1-12,2 m lange, og den største del (ca. 70%) af varmeoverførsien sker ved udstråling fra ovnens vægge til reaktionsrørene. Dette kræver relativt stor afstand mellem rørene og anbringelse af rørene i nærheden af 20 ovnens vægge, således at hvert rør bliver ensartet opvarmet af væggenes udstråling. Disse kommercielle brint-fremstillingsanlæg har en meget høj varmeoverførselsgrad af størrelsesordenen 54260-67825 kcal/m 2 reaktionsrøroverflade og pr. time; men da denne systemtype primært afhænger af strålevarme, er reakto-25 rens termiske virkningsgrad kun 40-60%. Skønt der kan opnås en høj brint-omdannelse, forlader en stor del af den i ovnene producerede varmeenergi ovnen i form af spildgas med høj temperatur (det vil sige varmetab). Følgelig skal der bruges store mængder brændstof for at opnå en høj opvarmningsgrad. Hvis 30 varmeenergien ikke udnyttes til en sideløbende proces, såsom dampfremstilling, går den tabt. Selv om spildevarmen udnyttes, bruges den ikke til fremstilling af brint, og dermed reduceres reaktorens termiske virkningsgrad, og omkostningerne ved brintproduktionen stiger.Catalytic reactor plants for converting hydrocarbons into industrially usable gases such as hydrogen are well known. They are usually designed for high gas performance. The size of the apparatus has usually been of minor importance since the cost of producing the gas products constitutes only a small part of the price of the products produced by the product gas. The most common process for producing hydrogen is steam conversion or "Steam-Reforming" of hydrocarbons by passing them through heated reaction tubes, which are filled with a heated catalyst and placed in an oven. Typical reaction tubes are 6.1-12.2 m long, and most (about 70%) of the heat transfer occurs by radiation from the furnace walls to the reaction tubes. This requires a relatively large distance between the pipes and the placement of the pipes near the walls of the furnace so that each pipe is uniformly heated by the radiation of the walls. These commercial hydrogen production plants have a very high heat transfer rate of the order of 54260-67825 kcal / m 2 reaction tube surface and per hour; but since this type of system depends primarily on radiant heat, the thermal efficiency of the reactor is only 40-60%. Although a high hydrogen conversion can be achieved, a large part of the heat energy produced in the furnaces leaves the furnace in the form of high temperature waste gas (ie heat loss). Consequently, large amounts of fuel must be used to achieve a high degree of heating. If the heat energy is not utilized for a concurrent process, such as steam production, it is lost. Although the waste heat is utilized, it is not used for hydrogen production, thus reducing the thermal efficiency of the reactor and increasing the cost of hydrogen production.

Sideløbende med udviklingen af brændstofcelle-kraftanlæg opstod behovet for billig brint som brændstof, såvel som behovet 35 2Along with the development of fuel cell power plants, the need for cheap hydrogen as fuel, as well as the need 35 2

DK 158385BDK 158385B

for lave anlægsomkostninger, således at brændstofcelle-kraft-anlægget økonomisk var i stand til at konkurrere med eksisterende elektriske kraftanlæg. Disse behov motiverede yderligere industrien til at nedbringe størrelsen af og omkostningerne 5 ved det brændstofbehandlings-apparatur, der anvendtes ved omdannelsen af kulbrinter til brint. US patent nr. 3 144 312 og US patent nr. 3 541 729 prøver begge at reducere reaktionsapparaturets størrelse og samtidig forøge den termiske virkningsgrad. I hvor høj grad dette er lykkedes, hvis det er lyk-10 kedes, er ikke nemt at fastslå, men i den efterfølgende beskrivelse vil ulemperne ved disse konstruktioner blive fremhævet i sammenligning med denne opfindelse.too low construction costs, so that the fuel cell power plant was economically able to compete with existing electric power plants. These needs further motivated the industry to reduce the size and cost of the fuel processing apparatus used in the conversion of hydrocarbons to hydrogen. U.S. Patent No. 3,144,312 and U.S. Patent No. 3,541,729 both attempt to reduce the size of the reaction apparatus while increasing the thermal efficiency. The extent to which this has succeeded, if successful, is not easy to ascertain, but in the following description the disadvantages of these constructions will be highlighted in comparison with this invention.

US patent nr. 3 909 299 beskriver et katalytisk reaktor-anlæg 15 af den i indledningen til krav 1 beskrevne slags, som hverken kan arbejde med høje termiske reaktorvirkningsgrader eller har en kompakt opbygning.US Patent No. 3,909,299 discloses a catalytic reactor plant 15 of the kind described in the preamble of claim 1, which cannot operate with high thermal reactor efficiencies or has a compact structure.

Opgaven for opfindelsen er at udforme et katalytisk reaktor-20 anlæg af denne art, således at det er kompakt, har en høj termisk reaktorvirkningsgrad og kan arbejde med høje varmeydel-ser.The object of the invention is to design a catalytic reactor plant of this kind so that it is compact, has a high thermal reactor efficiency and can work with high heat output.

Denne opgave er ifølge opfindelsen løst med de i krav 1 angiv-25 ne kendetegn.According to the invention, this task is solved with the features of claim 1.

Ved det katalytiske reaktor-anlæg ifølge opfindelsen frembringes varme til reaktionen af 1) varm ovngas, som strømmer i modstrøm i forhold til strømmen gennem reaktionskammeret i den 30 snævre, ringformede ovngaskanal ved reaktionskammerets ydervæg og 2) ved regenerativ varme fra de reaktionsprodukter, der forlader reaktionskammeret og strømmer i modstrøm til strømmen gennem reaktionskammeret ind i regenerationskammeret langs reaktionskammerets indervæg og i det væsentlige er isoleret fra 35 varmeindflydeisen fra de varme ovngasser. Opfindelsen er især egnet til at anbringe et stort antal reaktorer i et kompakt ovnvolumen.At the catalytic reactor plant of the invention, heat is generated for the reaction of 1) hot furnace gas flowing countercurrent to the flow through the reaction chamber of the 30 narrow annular furnace channel at the outer wall of the reaction chamber and 2) by regenerative heat from the reaction products leaving the reaction chamber and flows countercurrent to the flow through the reaction chamber into the regeneration chamber along the inner wall of the reaction chamber and is substantially isolated from the heat influence of the hot furnace gases. The invention is particularly suitable for placing a large number of reactors in a compact furnace volume.

DK 158385BDK 158385B

33

For med lave omkostninger at opnå høje opvarmningsydelser (det vil sige den hastighed, med hvilken varmen bliver overført fra de varme ovngasser i ovnen til reaktionsstrømmen pr. enhed 5 vægflade, der adskiller de to strømme) kræves en kompakt anbringelse. Høj termisk reaktorvirkningsgrad kræver en høj hastighed for omdannelse af kulbrinter til brint sammen med et minimalt brændstofforbrug i ovnen. Indviklede og dyre konstruktioner med det formål at undgå ekstreme termiske belast-10 ninger opstået ved temperaturforskelle mellem de forbundne dele, skulle ikke være påkrævede.In order to obtain high heating services at low cost (that is, the rate at which the heat is transferred from the hot furnace gases in the furnace to the reaction stream per unit 5 wall surface separating the two streams) requires a compact arrangement. High thermal reactor efficiency requires a high rate of conversion of hydrocarbons into hydrogen along with a minimum fuel consumption in the furnace. Intricate and expensive designs designed to avoid extreme thermal stresses caused by temperature differences between the connected parts should not be required.

Alt det ovenstående kan opnås med denne opfindelse, i hvilken to strømme bruges til at opvarme reaktionsstrømmen. Hovedvar-15 mekilden kommer fra den modstrømmende strøm af ovngasser gennem en snæver, ringformet del langs reaktionskammerets udvendige væg. Den anden varmekilde er regenerationsvarme fra de reaktionsprodukter, som forlader det ringformede reaktionskammer, og som strømmer i modstrøm gennem regenerationskammeret 20 langs reaktionskammerets indvendige væg. Anvendelsen af modsatte strømme og ovngas-kanalen såvel som regenerationskammeret er nødvendig for at opnå optimal opvarmningsydelse og optimal termisk reaktorvirkningsgrad. En høj overførsels-effektivitet af regenerationsvarme nedsætter den krævede ovnvarme-25 ydelse pr. enhed fødemateriale, som strømmer gennem reaktionskammeret. Derfor kan der behandles en større mængde fødemateriale med det samme brændstofforbrug i ovnen (det vil sige, at apparaturet fungerer med en samlet højere termisk virkningsgrad) .All of the above can be achieved with this invention in which two streams are used to heat the reaction stream. The main heat source comes from the countercurrent flow of furnace gases through a narrow annular portion along the outer wall of the reaction chamber. The second heat source is regeneration heat from the reaction products leaving the annular reaction chamber and flowing countercurrently through the regeneration chamber 20 along the inner wall of the reaction chamber. The use of opposite currents and the furnace gas duct as well as the regeneration chamber is necessary to obtain optimum heating performance and optimum thermal reactor efficiency. A high transfer efficiency of regeneration heat reduces the required furnace heat performance per unit feed material which flows through the reaction chamber. Therefore, a greater amount of feed material can be treated with the same fuel consumption in the furnace (that is, the apparatus works with an overall higher thermal efficiency).

3030

Fordelagtige udformninger af opfindelsen fremgår af underkravene .Advantageous embodiments of the invention appear from the subclaims.

Størrelsen af ringspalterne ifølge krav 3 og 4, det vil sige 35 afstanden mellem ovngas-kanalens og regenerationskammerets vægge, hvilken ringspalte fører de varme gasser i varmevekslerforbindelse med reaktionskammeret, er en kritisk faktor 4The size of the ring gaps according to claims 3 and 4, i.e. the distance between the walls of the furnace channel and the regeneration chamber, which ring gap carries the hot gases in heat exchanger communication with the reaction chamber, is a critical factor 4

DK 158385 BDK 158385 B

ved bestemmelsen af, hvor meget af den til rådighed værende varme i varmestrømmene der faktisk overføres til reaktionsgasstrømmen.in determining how much of the available heat in the heat streams is actually transferred to the reaction gas stream.

5 I beskrivelsen af opfindelsen er det hensigtsmæssigt at betragte den parameter, der hedder varmeoverførsels-effektivitet (G). Varmeoverførsels-effektiviteten svarer til varmestrømmens enthalpivariation divideret med den teoretisk maksimale en-thalpivariation. Med andre ord, hvis opvarmningsstrømmen har 10 enthalpien Ex ved dennes tilgangstemperatur Tx og enthalpien E2 ved afgangstemperaturen T2, og hvis den opvarmede strøm har en tilgangstemperatur T3, så er varmeoverførselses-effektivi-teten mellem de to strømme angivet ved følgende ligning: 15 E, - E2 e = ·_ Εχ - e3 hvor E3 er varmestrømmens enthalpi beregnet ved temperaturen 20 T3.In the description of the invention, it is convenient to consider the parameter called heat transfer efficiency (G). The heat transfer efficiency corresponds to the heat flow enthalpivariation divided by the theoretical maximum one-thalivariate. In other words, if the heating current has the enthalpy Ex at its inlet temperature Tx and the enthalpy E2 at the outlet temperature T2, and if the heated current has an inlet temperature T3, then the heat transfer efficiency between the two streams is given by the following equation: - E2 e = · _ Εχ - e3 where E3 is the enthalpy of heat flow calculated at temperature 20 T3.

Det er også vigtigt at definere reaktorens termiske virkningsgrad (Π): 25 (Nh2 ' (LHVH2) n = _ (Fr(LHVr) + Ff(LHVf) hvor Nh2 er den samlede mængde af produceret brint, LHVh2 er 30 brints nedre opvarmningsværdi, Fr er mængden af kulbrinter, der er tilført reaktoren, F£ er den brændstof mængde, der er tilført ovnen, og LHVr og LHVf er de nedre opvarmningsværdier for henholdsvis processen og ovnbrændstoffet. Ovenstående forudsætter, at brint er det ønskede reaktionsprodukt. Ligningen 35 kan nemt ændres til andre reaktionsprodukter.It is also important to define the thermal efficiency (Π) of the reactor: 25 (Nh2 '(LHVH2) n = _ (Fr (LHVr) + Ff (LHVf) where Nh2 is the total amount of hydrogen produced, LHVh2 is 30 hydrogen lower heating value, Fr is the amount of hydrocarbons supplied to the reactor, F £ is the amount of fuel supplied to the furnace, and LHVr and LHVf are the lower heating values for the process and the furnace fuel respectively. The above assumes that hydrogen is the desired reaction product. easily changed to other reaction products.

Det er en fordel at huske, at Π tilnærmelsesvis er ligefremIt is an advantage to remember that Π is approximately equal

DK 158385BDK 158385B

5 proportional med e, hvorfor høj virkningsgrad kræver høj var-meoverførsels-effektivitet.5 proportional to e, which is why high efficiency requires high heat transfer efficiency.

Hovedfordelen ved reaktor-anlægget konstrueret ifølge denne 5 opfindelse er, at det er i stand til at yde en høj termisk reaktorvirkningsgrad over et bredt område af opvarmningsgrader (inklusive meget høje opvarmningsgrader) samtidig med, at apparaturets størrelse er kompakt. Resultatet er et holdbart, kompakt, økonomisk og effektivt design, som er i stand til at 10 klare høje gennemstrømninger af fødemateriale.The main advantage of the reactor system constructed in accordance with this invention is that it is capable of providing a high thermal reactor efficiency over a wide range of heating degrees (including very high heating degrees) while keeping the size of the apparatus compact. The result is a durable, compact, economical and efficient design that is capable of 10 high feed-through flows.

På dette sted er det interessant at sammenligne opfindelsen med de anlæg, der kendes fra de ovennævnte US-PS 35 41 729 og 31 44 312. Ved det fra US-PS 35 41 729 kendte anlæg strømmer 15 ovngassen i samme retning som strømmen gennem det ringformede katalysatorbed langs dettes indervæg. Denne løsning er klart mindre virksom og adskiller sig fra den modstrøm, som ifølge opfindelsen går langs katalysatorbedets ydervæg. Ved det fra US-PS 35 41 729 kendte anlæg hersker de højeste ovngastempera-20 turer ved katalysatorbedets indgangsende, som er den køligste ende, og varmeoverførsien i dette område er sandsynligvis så stor, at en betragtelig mængde af varmen fra ovngasserne overføres til de øverste dele af regenerationsstrømmen. Denne varme forlader ovnen sammen med reaktionsprodukterne, hvorved den 25 samlede termiske reaktorvirkningsgrad forringes. Dette er ikke tilfældet ved nærværende opfindelse, fordi ovngassen som følge af modstrømmen er koldest ved reaktionskammertilgangen.At this point it is interesting to compare the invention with the plants known from the aforementioned US-PS 35 41 729 and 31 44 312. At the plant known from US-PS 35 41 729 the furnace gas flows in the same direction as the flow through it. annular catalyst beds along its inner wall. This solution is clearly less effective and differs from the countercurrent which according to the invention runs along the outer wall of the catalyst bed. At the plant known from US-PS 35 41 729, the highest furnace gas temperatures prevail at the catalyst bed entrance end, which is the coolest end, and the heat transfer in this region is likely to be so large that a considerable amount of the heat from the furnace gases is transferred to the upper parts of the regeneration stream. This heat leaves the furnace together with the reaction products, thereby reducing the overall thermal reactor efficiency. This is not the case with the present invention because the furnace gas, as a result of countercurrent, is the coldest at the reaction chamber approach.

Det fra US-PS 31 44 312 kendte anlæg adskiller sig fra anlæg-30 get ifølge opfindelsen derved, at ovngasserne befinder sig ved det indre ringformede katalysatorbed. Desuden strømmer ovngasserne både ved siden af den indre og ved siden af den ydre reaktionsstrøm, hvad der står i modsætning til opfindelsen, ved hvilken regenerationsstrømmen i det væsentlige er isoleret fra 35 de varme ovngasser, hvad der ifølge opfindelsen er et vigtigt krav. Desuden skal det bemærkes, at en relativt kold cylindrisk ydervæg er stift forbundet til en relativt varm cylin- 6The plant known from US-PS 31 44 312 differs from the plant according to the invention in that the furnace gases are located at the inner annular catalyst bed. In addition, the furnace gases flow both adjacent to the interior and adjacent to the external reaction stream, which is contrary to the invention, wherein the regeneration stream is substantially isolated from the hot furnace gases, which is an important requirement of the invention. In addition, it should be noted that a relatively cold cylindrical outer wall is rigidly connected to a relatively hot cylindrical 6

DK 158385 BDK 158385 B

drisk indervæg. Spændinger, som forårsages mellem disse to vægge på grund af forskellige varmeudvidelser, er sandsynligvis utilladeligt høje og kan forårsage vanskeligheder. Endvidere er ingen af de fra de to US patentskrifter kendte anlæg 5 egnede til anvendelse med flere reaktorer i en ovn.dry inner wall. Tensions caused between these two walls due to different heat expansions are likely to be prohibitively high and may cause difficulties. Furthermore, neither of the installations known from the two US patents is suitable for use with multiple reactors in an oven.

Et udførelseseksempel på opfindelsen beskrives i det følgende med henvisning til tegningerne, hvor: 10 Fig. 1 viser et delvis lodret tværsnit af et katalytisk reaktor-anlæg ifølge denne opfindelse, og fig. 2 viser et tværsnit af anlægget ifølge fig. 1, hovedsagelig set langs linien 2-2.An exemplary embodiment of the invention is described below with reference to the drawings, in which: 1 is a partial vertical cross-sectional view of a catalytic reactor system of this invention; and FIG. 2 is a cross-sectional view of the system of FIG. 1, seen mainly along line 2-2.

1515

Det katalytiske reaktor-anlæg 10 ifølge fig. 1 og 2 tjener til dampomdannelse af kulbrinter i nærværelse af en katalysator for at frembringe brint. Anlægget 10 indeholder en ovn 12 med brænderdyser 14, med en brændstoffordeler 16 og en luftforde-20 ler 18. Inden i ovnen 12 er anbragt flere rørformede reaktorer 20.The catalytic reactor system 10 of FIG. 1 and 2 serve for steam conversion of hydrocarbons in the presence of a catalyst to generate hydrogen. The plant 10 contains a furnace 12 with burner nozzles 14, with a fuel distributor 16 and an air distributor 18. Inside the furnace 12 are several tubular reactors 20.

Hver reaktor 20 består af en ydre cylindrisk væg 22 og en indre cylindrisk væg eller indre rør 24, hvorimellem dannes et* 25 ringformet reaktionskammer 26. Reaktionskammeret er fyldt med dampomdannelses-katalysatorpartikler 28, som hviler på et gitter 30, der er anbragt ved reaktionskammerets indgang 32. En hvilken som helst passende dampomdannelses-katalysator, såsom nikkel, kan anvendes til at fylde reaktionskammeret fra dets 30 indgang 32 til dets udgang 36. Cylinderen, som er dannet af den ydre væg 22, er i den øverste ende 38 lukket af et dæksel 40. Det indre rør 24' har en "øvre indgangsende 42 og en nedre udgangsende 44. Indgangsenden 42 udmunder under dækslet 40, således at det indre rør er i gasforbindelse med reaktionskam-35 merets 26 udgang 36.Each reactor 20 consists of an outer cylindrical wall 22 and an inner cylindrical wall or inner tube 24, between which is formed an * 25 annular reaction chamber 26. The reaction chamber is filled with vapor conversion catalyst particles 28 resting on a lattice 30 disposed at the reaction chamber. Inlet 32. Any suitable vapor conversion catalyst such as nickel can be used to fill the reaction chamber from its inlet 32 to its outlet 36. The cylinder formed by the outer wall 22 is closed at the upper end 38 by a cover 40. The inner tube 24 'has an "upper input end 42 and a lower output end 44. The input end 42 opens under the cover 40 such that the inner tube is in gas communication with the outlet 36 of the reaction chamber 26.

I det indre rør er anbragt en cylindrisk prop 46, hvis ydre 7Inserted in the inner tube is a cylindrical plug 46, the exterior of which 7

DK 158385 BDK 158385 B

diameter er noget mindre end det indre rørs indre diameter, hvorved der dannes et ringformet regenerationskammer 48 med en indgang 49. Proppen 46 kan være en massiv stang, men i denne udførelse er den et rør, som i den ene ende er lukket med et 5 endedæksel 50, således at de reaktionsprodukter, der forlader reaktionskammeret 26, skal strømme rundt om proppen 46 gennem regenerationskammeret 48. Afstanden mellem proppen 46 og det indre rør 24 er dannet ved hjælp af fremspringene 52 på proppens væg.diameter is somewhat smaller than the inner diameter of the inner tube, thereby forming an annular regeneration chamber 48 with an input 49. The plug 46 may be a solid rod, but in this embodiment it is a tube closed at one end with a 5 end cap 50 so that the reaction products leaving the reaction chamber 26 must flow around the plug 46 through the regeneration chamber 48. The distance between the plug 46 and the inner tube 24 is formed by the projections 52 on the wall of the plug.

1010

Det er regenerationskammerets 48 opgave at returnere varme fra de reaktionsprodukter, som forlader udgangen 36, til reaktionskammerets 26 katalysatorbed. Derfor skal regenerationskammerets 48 udgang 54 helst være anbragt i umiddelbar nærhed 15 af katalysatorbedets indgang 32 i stedet for ved det indre rørs udgangsende 44, til trods for den kendsgerning at det faktiske mellemrum, der er dannet mellem proppen 46 og det indre rør 24, strækker sig til udgangsenden 44. I den konstruktion, der er vist i fig. 1, er der en vis forvarmning af pro-20 cesbrændstoffet, før det ledes ind i katalysatorbedet, men den er ikke kritisk for denne opfindelse. Endvidere strækker proppen 46 sig i denne udførelse i reaktionskammerets 26 fulde længde, således at regenerationskammerets 48 indgang 49 er anbragt i umiddelbar nærhed af reaktionskammerets 26 udgang 36.It is the job of the regeneration chamber 48 to return heat from the reaction products leaving the outlet 36 to the catalyst bed of the reaction chamber 26. Therefore, the outlet 54 of the regeneration chamber 48 should preferably be located in the immediate vicinity 15 of the inlet 32 of the catalyst bed rather than at the outlet end 44 of the inner tube, despite the fact that the actual gap formed between the plug 46 and the inner tube 24 extends at the output end 44. In the construction shown in FIG. 1, there is some preheating of the process fuel before it is fed into the catalyst bed, but it is not critical to this invention. Furthermore, in this embodiment, the plug 46 extends in the full length of the reaction chamber 26 so that the entrance 49 of the regeneration chamber 48 is disposed in the immediate vicinity of the outlet 36 of the reaction chamber 26.

25 Skønt dette er at foretrække for at opnå maksimal regeneration, kan regenerationskammerets indgang 49 anbringes hvor som helst mellem reaktionskammerets indgang 32 og udgang 36 ved anvendelse af en kortere prop 46. 1 2 3 4 5 6Although this is preferable for maximum regeneration, the inlet 49 of the regeneration chamber can be positioned anywhere between the inlet 32 of the reaction chamber and outlet 36 using a shorter plug 46. 1 2 3 4 5 6

Bemærk at regenerationskammeret 48 i det væsentlige er isole 2 ret fra de varme ovngasser. For at opnå maksimal reaktorvirk 3 ningsgrad er det vigtigt at forhindre, at reaktionsprodukterne 4 i regenerationskammeret 48 opvarmes af ovngassens varmeenergi.Note that the regeneration chamber 48 is essentially insole 2 straight from the hot furnace gases. In order to achieve maximum reactor efficiency, it is important to prevent the reaction products 4 in the regeneration chamber 48 from being heated by the heat energy of the furnace gas.

55

Det er også vigtigt at undgå forbrænding af yderligere brænd- 6 stof eller brint i regenerationskammeret 48. Kun egenvarme, som findes i reaktionsprodukterne allerede ved udgangen 36, bliver overført til reaktionskammeret 26.It is also important to avoid the combustion of additional fuel or hydrogen in the regeneration chamber 48. Only intrinsic heat present in the reaction products at exit 36 is transferred to the reaction chamber 26.

88

DK 158385 BDK 158385 B

Hver reaktor 20 kan betragtes som bestående af en øvre del 56 og en nedre del 58. Den øvre del 56 er anbragt i, hvad der herefter kaldes brændrummet 60. Brændrummet 60 er den del af 5 ovnen 12, i hvilken den faktiske forbrænding af brændstoffet og lufttilførslen til ovnen finder sted. Denne del af ovnen er karakteriseret ved meget høje temperaturer, betydelig stråleopvarmning såvel som konvektionsopvarmning af reaktorerne 20, og aksial (det vil sige i reaktorernes 20 aksiale retning) så-10 vel som radial blanding af de indeholdte gasser.Each reactor 20 may be considered to consist of an upper portion 56 and a lower portion 58. The upper portion 56 is located in what is hereinafter called the combustion chamber 60. The combustion chamber 60 is the portion of the furnace 12 in which the actual combustion of the fuel is and the air supply to the furnace takes place. This part of the furnace is characterized by very high temperatures, considerable radiant heating as well as convection heating of the reactors 20, and axial (i.e. in the axial direction of the reactors 20) as well as radial mixing of the gases contained.

Den nedre del 58 af hver reaktor er omgivet af en cylindrisk væg 62 med afstand fra væggen 22, hvorved der dannes en ringformet ovngas-kanal 64, som har en indgang 66 og en udgang 67.The lower portion 58 of each reactor is surrounded by a cylindrical wall 62 spaced from the wall 22, thereby forming an annular furnace gas channel 64 having an inlet 66 and an outlet 67.

15 Udgangen 67 er anbragt i umiddelbar nærhed af reaktionskammme-rets 26 indgang. Kanalen 64 er fyldt med et varmeledende materiale, såsom kugler 70 af aluminium, som hviler på et gitter 68. Mellemrummet 72 mellem de tilstødende cylindriske vægge 62 er fyldt med et varmeisolerende materiale, såsom keramisk fi-20 ber-isoleringsmateriale, der er anbragt på en plade 74, som strækker sig tværs gennem ovnen, og som har huller, gennem hvilke reaktorerne 20 passerer. Pladen 74 og materialet i mellemrummet 72 forhindrer ovngasserne i at strømme rundt om y-dersiden af de cylindriske vægge 62.Output 67 is disposed in the immediate vicinity of the reaction chamber 26 entrance. The duct 64 is filled with a thermally conductive material such as balls 70 of aluminum resting on a grid 68. The space 72 between the adjacent cylindrical walls 62 is filled with a heat insulating material such as ceramic fiber insulating material disposed on a plate 74 extending transversely through the furnace and having holes through which the reactors 20 pass. The plate 74 and the material in the gap 72 prevent the furnace gases from flowing around the exterior of the cylindrical walls 62.

2525

Foruden pladen 74 strækker også pladerne 76, 78 og 80 sig på tværs gennem ovnen og danner kanaler mellem sig. Pladen 80 hviler på ovnens 12 bundvæg 82. Mellem pladerne 78 og 80 dannes en reaktionsprodukt-fordeler 84. Mellem pladerne 74 og 76 30 dannes en fordeler af fødemateriale 86; og pladerne 74 og 76 danner en ovngas-udgangsfordeler 88. Propperne 46 og de indre vægge 24 støder ned til bundpladen 80; reaktorernes ydre vægge 22 støder til pladen 78; og rørene 62 støder til pladen 74. 1In addition to plate 74, plates 76, 78 and 80 also extend transversely through the furnace, forming channels between them. The plate 80 rests on the bottom wall 82 of the furnace 12. Between the plates 78 and 80 a reaction product distributor 84 is formed. Between the plates 74 and 76 30 a distributor of feedstock 86 is formed; and the plates 74 and 76 form an oven gas exit distributor 88. The plugs 46 and the inner walls 24 abut the base plate 80; the outer walls 22 of the reactors abut the plate 78; and the tubes 62 abut the plate 74. 1

Under drift ledes en blandet strøm af damp og kulbrinter fra fordeleren 86 til reaktionskammerets 26 indgang 32 gennem hullerne 90 i ydervæggen 22, idet fordeleren 86 bliver tilførtIn operation, a mixed stream of steam and hydrocarbons is passed from the distributor 86 to the inlet 32 of the reaction chamber 26 through the holes 90 in the outer wall 22, the distributor 86 being supplied

DK 158385BDK 158385B

9 blandingen fra et rør 93. Blandingen begynder straks at blive opvarmet af de varme ovngasser, som strømmer i modsat retning gennem ovngas-kanalen 64 og begynder at reagere under indflydelse af katalysatorpartiklerne 28. Efterhånden som kulbrin-5 terne, dampen og reaktionsprodukterne bevæger sig op gennem reaktionskammeret 26, fortsætter de med at reagere og optager yderligere varme. Ved udgangen 36 når reaktionsprodukternes temperatur et maksimum. De varme reaktionsprodukter passerer gennem regenerationskammerets 48 indgang 49. Efterhånden som 10 reaktionsprodukterne bevæger sig gennem det ringformede regenerationskammers 48 længde, overføres varmen herfra tilbage til reaktionskammeret 26. Derefter ledes reaktionsprodukterne til fordeleren 84 gennem hullerne 94 i den indvendige væg 24, og ledes ud fra reaktoren 20 via røret 96 enten til videre be-15 arbejdning, oplagring eller forbrug.9 the mixture from a pipe 93. The mixture immediately begins to be heated by the hot furnace gases which flow in the opposite direction through the furnace gas duct 64 and begin to react under the influence of the catalyst particles 28. As the hydrocarbons, steam and reaction products move. up through the reaction chamber 26, they continue to react and absorb additional heat. At the output 36, the temperature of the reaction products reaches a maximum. The hot reaction products pass through the inlet 49 of the regeneration chamber 48. As the reaction products move through the length of the annular regeneration chamber 48, the heat is transferred from here to the reaction chamber 26. Then, the reaction products are passed to the distributor 84 through the holes 94 in the inner wall 24 and discharged from the reactor 20 via the tube 96 either for further processing, storage or consumption.

Brændstof til ovnen tilføres fordeleren 16 via et rør 98 og passerer derefter ind i brændrummet 60 gennem dyserne 14. Luft tilføres fordeleren 18 via et rør 100 og kommer ind i brænd-20 rummet 60 via ringformede passager 102, som omgiver hver dyse 14. Brændstof- og luftforbrændingen finder sted i brændrummet 60. De varme gasser fra brændrummet 60 passerer gennem kanalerne 64 til fordeleren 88 og sendes ud via røret 103. Inde i brændrummet er temperaturen sædvanligvis tilstrækkeligt høj 25 til, at der kan opnås høje opvarmningsgrader over reaktorernes 20 øvre dele 56 til trods for den forholdsvis lave varmeover-førsels-koefficient i dette område. Efterhånden som ovngassernes temperatur falder, mens de bevæger sig yderligere væk fra dyserne 14, vil opvarmningsgraden normalt blive uacceptabelt 30 lav, men i denne opfindelse bliver dette imødegået ved brugen af ringformede ovngas-kanaler 64 over reaktorernes 20 nedre dele 58. Disse kanaler forøger, når de har den rigtige størrelse, de lokale varmeoverførsels-koefficienter og dermed var-meoverførsels-effektivitetsværdierne. Dette resulterer i høje 35 opvarmningsgrader over såvel de øvre dele 56 som de nedre dele 58 til trods for ovngassernes lavere temperaturer over de nedre dele 58.Fuel to the furnace is supplied to the distributor 16 via a pipe 98 and then passes into the fuel space 60 through the nozzles 14. Air is supplied to the distributor 18 via a pipe 100 and enters the fuel space 60 via annular passages 102 which surround each nozzle 14. Fuel and the air combustion takes place in the combustion chamber 60. The hot gases from the combustion chamber 60 pass through the ducts 64 to the distributor 88 and are sent out through the tube 103. Inside the combustion chamber, the temperature is usually sufficiently high 25 to achieve high heating degrees above the upper reactors 20. parts 56 despite the relatively low heat transfer coefficient in this range. As the temperature of the furnace gases decreases as they move further away from the nozzles 14, the degree of heating will normally be unacceptably low, but in this invention this is counteracted by the use of annular furnace ducts 64 over the lower portions 58 of the reactors 20. when they are the right size, the local heat transfer coefficients and thus the heat transfer efficiency values. This results in high degrees of heating over both the upper portions 56 and the lower portions 58, despite the lower temperatures of the furnace gases over the lower portions 58.

1010

DK 158385 BDK 158385 B

Af primær betydning ved opnåelse af høje varmeydelser er ringspaltestørrelsen, det vil sige afstanden mellem væggene i ovn-gas-kanalen 64, reaktionskammeret 26 og regenerationskammeret 5 48. Denne spalte er ved det her beskrevne reaktor-anlæg dimen sioneret således, at der fremkommer den størst mulige varme-overførsels-effektivitetsgrad, som er forenelig med de ønskede afgangstemperaturer for ovngasserne og reaktionsprodukterne. Skønt varmeoverførsels-effektiviteten teoretisk stiger med 10 snævrere ovngas-kanaler 64 og snævrere regenerationskammerspaltestørrelse, vil for et særligt anvendelsesområde, praktiske begrænsninger såsom maksimalt tilladelige vægtemperaturer og trykfald i ring-spalten blive vigtige faktorer i fastsættelsen af tilladelige minimale spaltestørrelser. Reaktions-15 kammerets 26 ring-spaltestørrelse er valgt til sammen med størrelsen af ovngas-kanalens og regenerationskammerets spaltestørrelse at tilvejebringe tilstrækkeligt høje temperaturer over hele katalysatorbedet, uden at ovngasserne i ovngas-kana-len 64 opvarmer reaktionsprodukterne i regenerationskammeret 20 48 på den anden side af katalysatorbedet. Som tidligere omtalt skal regenerationskammeret 48 med andre ord være i det væsentlige isoleret fra ovngassernes opvarmningspåvirkning.Of primary importance in obtaining high heat output is the ring gap size, i.e. the distance between the walls of the furnace gas duct 64, the reaction chamber 26 and the regeneration chamber 5 48. This gap is dimensioned at the reactor plant described herein to produce the the highest possible heat transfer efficiency which is compatible with the desired exhaust temperatures of the furnace gases and reaction products. Although the heat transfer efficiency theoretically increases with 10 narrower furnace gas channels 64 and narrower regeneration chamber gap size, for a particular application, practical limitations such as maximum allowable wall temperatures and pressure drop in the ring gap will be important factors in determining permissible minimum gap sizes. The ring gap size of the reaction chamber 26 is selected to provide, together with the gap size of the furnace channel and regeneration chamber, sufficiently high temperatures throughout the catalyst bed, without the furnace gases in the furnace channel 64 heating the reaction products of the second side 48 of the catalyst bed. In other words, as previously mentioned, the regeneration chamber 48 must be substantially insulated from the heating effect of the furnace gases.

Det er blevet fastslået, at et relativt snævert område af 25 spaltestørrelser yder gode reaktor-termiske virkningsgrader ved såvel høj som lav gennemstrømning af fødemateriale. Det varmeledende materiale 70 anbragt inde i kanalerne 64 forøger yderligere varmeoverførsels-effektiviteten og en ensartet varmefordeling i sammenligning med et ringformet mellemrum på 30 samme størrelse men uden varmeledende materiale. Da varmeover-førsels-effektiviteten forøges med mindre ringformet spalte-størrelse, kunne det varmeledende materiale 70 i den foreliggende udførelse undværes, hvis størrelsen af den ringformede ovngas-kanal 64 blev reduceret. Denne ændring er betragtet som 35 værende inden for denne opfindelses rammer, men en større, ringformet ovngas-kanal med varmeledende materiale foretrækkes, fordi det er vanskeligere og dyrere at bevare acceptableIt has been established that a relatively narrow range of 25 slit sizes provides good reactor thermal efficiencies at both high and low feedstock flow rates. The heat conducting material 70 disposed within the ducts 64 further enhances the heat transfer efficiency and uniform heat distribution in comparison with an annular space of the same size but without heat conducting material. As the heat transfer efficiency increases with smaller annular gap size, in the present embodiment, the heat conducting material 70 could be dispensed with if the size of the annular furnace channel 64 was reduced. This change is considered to be within the scope of this invention, but a larger annular furnace gas channel with heat conducting material is preferred because it is more difficult and expensive to maintain acceptable

DK 158385 BDK 158385 B

IXIX

dimensionale tolerancer, når spaltestørrelserne bliver mindre. Acceptable områder for spaltestørrelser med og uden varmele-dende materiale angives i Tabel 1; de bedste resultater opnås, når man bruger de foretrukne områder, der angives i Tabel 2.dimensional tolerances as the gap sizes become smaller. Acceptable ranges for gap sizes with and without heat conducting material are given in Table 1; the best results are obtained when using the preferred ranges listed in Table 2.

5 De angivne områder er skønsmæssige vurderinger, som hovedsagelig er baseret på prøveresultater. Det skal bemærkes, at for reaktorer med meget stor eller meget lille diameter kan de angivne områder udvides.5 The areas indicated are estimates based mainly on test results. It should be noted that for very large or very small diameter reactors, the specified ranges can be expanded.

12 DK 158385 B12 DK 158385 B

Tabel 1Table 1

Acceptable ringspalte-størrelser 5 Reaktionskammer 7,6 - 50,8 mmAcceptable ring gap sizes 5 Reaction chamber 7.6 - 50.8 mm

Regenerationskammer 2,5 - 25,4 mmRegeneration chamber 2.5 - 25.4 mm

Ovngas-kanal 2,5 - 25,4 mm (uden varmeledende materiale) 10 Ovngas-kanal 12,7 - 76,2 mm (med varmeledende materiale) 15 Tabel 2Oven gas duct 2.5 - 25.4 mm (without heat conducting material) 10 Oven gas duct 12.7 - 76.2 mm (with heat conducting material) 15 Table 2

Foretrukne ringspalte-størrelserPreferred ring slit sizes

Reaktionskammer 12,7 - 38,1 mm 20 Regenerationskammer 3,2 - 12,7 mmReaction chamber 12.7 - 38.1 mm Regeneration chamber 3.2 - 12.7 mm

Ovngas-kanal 6,4 - 12,7 mm (uden varmeledende materiale)Oven gas duct 6.4 - 12.7 mm (without heat conducting material)

Ovngas-kanal 12,7 - 50,8 mm 25 (med varmledende materiale)Oven gas duct 12.7 - 50.8 mm 25 (with hot conductive material)

Nogle andre faktorer, som vil være bestemmende for valget af 30 spaltestørrelse, er: gassernes og katalysatorpartiklemes 28 egenskaber, tykkelse og den termiske ledeevne af de vægge, der adskiller den opvarmende og den opvarmede gas, samt de forskellige strømmes Reynold-tal. Med hensyn til væggene, der adskiller de modløbende strømme, er disse sædvanligvis lavet så 35 tynde som muligt, forenet med strukturel bestandighed og af materialer, som ikke er voldsomt dyre, men som har god termisk ledeevne. Katalysatoren bliver normalt valgt på grund af god 13Some other factors that will determine the choice of column size are: the properties of the gases and catalyst particles 28, the thickness and the thermal conductivity of the walls separating the heating and the heated gas, as well as the Reynold numbers of the different streams. In the case of the walls separating the opposing currents, these are usually made as thin as possible, united with structural resistance and of materials which are not excessively expensive, but which have good thermal conductivity. The catalyst is usually chosen due to good 13

DK 158385 BDK 158385 B

reaktionsevne og stor holdbarhed. Katalysatorpartikelstørrelsen bliver normalt valgt så lille som muligt for at give maksimalt katalysator-overfladeareal, men ikke så lille, at der opstår et uacceptabelt trykfald gennem reaktionskammeret 26.responsiveness and great durability. The catalyst particle size is usually selected as small as possible to give maximum catalyst surface area, but not so small that an unacceptable pressure drop occurs through the reaction chamber 26.

55

Selv om det ikke er vist på nogen af tegningerne, skal der tilvejebringes midler til at forhindre, at katalysatorbedet fluidiseres på grund af den opadstrømmende proces-gas.Although not shown in any of the drawings, means must be provided to prevent the catalyst bed from fluidizing due to the upstream process gas.

10 Eksempel 1.Example 1.

I et dampomdannelses-reaktor-anlæg med 19 rør, som ligner det, der vist i fig. 1 og 2, var hver reaktor 1524 mm lang målt fra indgangen 32 og havde en ydre væg med diameteren 229 mm. Halv-15 delen af reaktorens længde (762 mm) .strakte sig ind i brænd-rummet. Afstanden mellem de tilstødende reaktorers ydre vægge 22 var 76 mm; reaktorerne ved siden af ovnvæggen var anbragt mellem 102 og 127 mm fra denne. Spalten mellem den ydre væg 22 og den indre væg 24 var 27,9 mm, mellem den indre væg 24 og 20 proppen 46 6,4 mm; og mellem røret 62 og den ydre væg 22 31,8 mm. Ovngas-kanalen var fyldt med raschig-ringe af aluminiumoxyd med diameteren 12,7 mm; katalysatoren anvendtes i form af cylindriske partikler. Fødematerialet var nafta, som blev ledt ind i katalysatorbedet i form af en dampblanding med omkring 25 4,5 mm dele vanddamp pr. vægtenhed. Fødematerialets hastighed var ca. 11,3 kg/time pr. reaktor med en total hastighed af fø-demateriale på ca. 215 kg/time. Der blev opnået en omdannelsesgrad på 95%, og reaktorernes samlede termiske virkningsgrad var 90%.In a steam conversion reactor system with 19 pipes similar to that shown in FIG. 1 and 2, each reactor was 1524 mm long measured from the inlet 32 and had an outer wall of 229 mm diameter. Half the length of the reactor length (762 mm) extended into the combustion chamber. The distance between the outer walls 22 of the adjacent reactors was 76 mm; the reactors adjacent to the furnace wall were located between 102 and 127 mm from it. The gap between outer wall 22 and inner wall 24 was 27.9 mm, between inner wall 24 and 20 plug 46 6.4 mm; and between the tube 62 and the outer wall 22 31.8 mm. The furnace gas duct was filled with aluminum oxide grit rings 12.7 mm in diameter; the catalyst was used in the form of cylindrical particles. The feedstock was naphtha, which was fed into the catalyst bed in the form of a vapor mixture with about 25 4.5 mm parts water vapor per minute. unit weight. The feed rate was approx. 11.3 kg / h per reactor with a total feed rate of approx. 215 kg / hour. A conversion rate of 95% was achieved and the total thermal efficiency of the reactors was 90%.

3030

Eksempel 2.Example 2.

I et dampomdannelses-reaktor-anlæg med kun et rør ifølge denne opfindelse var reaktoren 1524 mm lang målt fra indgangen 32 og 35 havde en ydre vægdiameter på 229 mm. Halvdelen (762 mm) af reaktorens ydre væg og ovnens væg var hele vejen rundt 76 mm. Spalten mellem den ydre væg 22 og den indre væg 24 var 27,9In a steam conversion reactor system with only one pipe according to this invention, the reactor was 1524 mm long as measured from the inlet 32 and 35 had an outer wall diameter of 229 mm. Half (762 mm) of the outer wall of the reactor and the furnace wall were all around 76 mm. The gap between outer wall 22 and inner wall 24 was 27.9

DK 158385BDK 158385B

14 mm; mellem den indre væg 24 og proppen 46 6,4 mm og mellem røret 62 og den ydre væg 22 31,8 mm. Ovngas-kanalen var fyldt med aluminiumoxyd-kugler med en diameter på 12,7 mm; katalysatoren anvendtes i form af cylindriske partikler. Fødemateria-5 let var nafta, som ledtes ind i bunden som en dampblanding med ca. 4,5 dele vanddamp pr. vægtenhed. Fødematerialets hastighed var 12,7 kg/time. Der blev opnået en omdannelsesgrad på 88%, og reaktorens samlede termiske virkningsgrad var 87%.14 mm; between the inner wall 24 and the plug 46 6.4 mm and between the tube 62 and the outer wall 22 31.8 mm. The furnace gas duct was filled with alumina spheres 12.7 mm in diameter; the catalyst was used in the form of cylindrical particles. The feed material was naphtha, which led into the bottom as a vapor mixture of approx. 4.5 parts water vapor per unit weight. The feed rate was 12.7 kg / h. A conversion rate of 88% was achieved and the total thermal efficiency of the reactor was 87%.

10 Det skulle stå klart, at fordelerrørs-arrangementet og brænderkonstruktionen, som er vist på tegningen, kun er et eksempel og ikke kritisk for opfindelsen eller en del af denne, i-det opfindelsen kan anvendes ved såvel en enkelt reaktor inde i ovnen som mange reaktorer, som det fremgår af de foregående 15 eksempler. Imidlertid er denne opfindelse særligt fordelagtig, når flere reaktorer er anbragt i en enkelt ovn, eftersom den tillader tæt anbringelse af reaktorerne, fordi den sikrer både ensartet og højeffektiv opvarmning af reaktorernes nedre dele. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Tæt anbragte reaktorer betyder et ikke-lineært arrangement af 2 mindst tre reaktorer, hvor arrangementet i det væsentlige skal 3 udfylde brændrummets indre, og hvor reaktorerne i det væsent 4 lige er ensartet fordelt og anbragt med ensartede og ret små 5 mellemrum inde i nævnte brændrum. Eksempelvis kan, forudsat at 6 brændrummet er cylindrisk, et arrangement med tre tæt anbragte 7 reaktorer består af en ligesidet trekant med en reaktor an 8 bragt i hvert hjørne; et arrangement af fire tæt anbragte rør 9 kan have form af et kvadrat med en reaktor i hvert hjørne; et 10 arrangement med fem rør kan bestå af en centralt anbragt reak- 11 tor omgivet af fire reaktorer, som er anbragt i en firkant. Ni 12 reaktorer kan anbringes i et firkant-arrangement bestående af 13 tre parallelle rækker med tre reaktorer i hver. Et arrangement 14 af hexagonal type med 19 reaktorer er vist i fig. 2. I alle 15 tilfælde modtager i det mindste en del af hver reaktor en be- 16 tydeligt nedsat mængde af udstrålingen fra brændrummets væg.It should be understood that the manifold assembly and burner assembly shown in the drawing are merely an example and not critical to the invention or a portion thereof, in that the invention can be applied to a single reactor within the furnace as well as many reactors, as shown in the previous 15 examples. However, this invention is particularly advantageous when multiple reactors are housed in a single furnace, as it allows close placement of the reactors because it ensures both uniform and high efficiency heating of the lower portions of the reactors. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Tightly spaced reactors mean a non-linear arrangement of 2 at least three reactors, the arrangement of which should essentially 3 fill the interior of the combustion chamber and the reactors of substantially 4 equal is uniformly distributed and disposed at uniform and fairly small intervals within said burning space. For example, provided that the 6 combustion chamber is cylindrical, an arrangement of three closely spaced 7 reactors may consist of an equilateral triangle with a reactor of 8 placed in each corner; an arrangement of four closely spaced tubes 9 may take the form of a square with a reactor in each corner; a five-tube arrangement may consist of a centrally located reactor surrounded by four reactors located in a square. Nine 12 reactors can be placed in a square arrangement consisting of 13 three parallel rows with three reactors in each. An hexagonal type arrangement 14 with 19 reactors is shown in FIG. 2. In all 15 cases, at least part of each reactor receives a significantly reduced amount of radiation from the wall of the combustion chamber.

For eksempel modtager reaktorer nærmest væggen betydeligt nedsat stråling på den side, der vender bort fra væggen; endvide- 15For example, reactors closest to the wall receive significantly reduced radiation on the side facing away from the wall; finally 15

DK 158385 BDK 158385 B

re vil en del af reaktorerne modtage betydeligt nedsat stråling som et resultat af, at andre reaktorer i arrangementet spærrer for udstrålingen.re, some of the reactors will receive significantly reduced radiation as a result of other reactors in the arrangement blocking the radiation.

5 Opfindelsen er ikke begrænset til dampomdannelse af kulbrinter til fremstilling af brint. Varmeoverførselsprincipperne, som denne opfindelse er baseret på, kunne lige så godt anvendes til andre endotermiske, katalytiske reaktioner.The invention is not limited to steam conversion of hydrocarbons for the production of hydrogen. The heat transfer principles on which this invention is based could equally well be applied to other endothermic catalytic reactions.

Claims (8)

1. Katalytisk reaktor-anlæg med et brændrum (60) til forbrænding af brændstof til frembringelse af varme ovngasser og med 5 mindst en rørformet reaktor (20), der med sin første del (56) strækker sig ind i brændrummet (60) og har en ydervæg (22) og i en afstand fra denne en indervæg (24), som begrænser et ringformet reaktionskammer (26), der optager en reaktionskatalysator (28), reaktionskammerets (26) afgang (36) er anbragt i 10 den første del (56) af reaktoren (20), hvorved reaktoren (20) har en anden del (58), som befinder sig udenfor det egentlige brændrum (60) i en anden ovndel, der slutter sig til brændrummet (60), og ligeledes er fyldt med ovngas, kendetegnet ved en omkring den anden del (58) af hver reaktor med 15 afstand koaksialt anbragt væg (62), som sammen med reaktorens (20) ydervæg (22) afgrænser en smal, ringformet ovngas-kanal (64), hvis tilgang (66) er i forbindelse med brændrummet (60), og hvis afgang (67) er indrettet ved siden af reaktionskammerets (26) tilgang (32), og ved en indsats (46), der med en af-20 stand indadtil er anbragt koaksialt med reaktorens (20) indervæg (24) og sammen med denne afgrænser et smalt, ringformet ved siden af reaktionskammeret (26) indrettet regenerationskammer (48), hvis tilgang (49) står i forbindelse med reaktionskammerets (26) afgang (36). 25A catalytic reactor system having a combustion chamber (60) for combustion of fuel to generate hot furnace gases and having at least one tubular reactor (20) extending with its first part (56) into the combustion chamber (60) and having an outer wall (22) and at a distance therefrom an inner wall (24) which limits an annular reaction chamber (26) accommodating a reaction catalyst (28), the outlet (36) of the reaction chamber (26) is arranged in the first part ( 56) of the reactor (20), wherein the reactor (20) has a second portion (58) which is outside the actual burner compartment (60) in another furnace portion joining the burner compartment (60) and is also filled with furnace gas, characterized by a wall (62) about a second portion (58) of each reactor spaced coaxially, which defines, together with the outer wall (22) of the reactor (20), a narrow annular furnace gas channel (64) whose approach (66) is in communication with the combustion chamber (60) and the outlet (67) is arranged adjacent to the reaction chamber. (26) approach (32), and at an insert (46) disposed coaxially with a spacer inwardly with the inner wall (24) of the reactor (20) and delimiting a narrow annular side of the reaction chamber ( 26) provided regeneration chamber (48), the approach (49) of which communicates with the outlet (36) of the reaction chamber (26). 25 2. Reaktor-anlæg ifølge krav 1, kendetegnet ved, at indsatsen (46) er en cylindrisk prop.Reactor system according to claim 1, characterized in that the insert (46) is a cylindrical plug. 3. Reaktor-anlæg ifølge krav 1 eller 2, kendetegnet 30 ved, at afstanden mellem regenerationskammerets (48) vægge ligger mellem 2,5 mm og 25,4 mm, at afstanden mellem ovngas-kanalens (64) vægge ligger mellem 2,5 mm og 76,2 mm, og at afstanden mellem reaktionskammerets (26) vægge (22, 24) ligger mellem 7,6 mm og 50,8 mm. 35Reactor system according to claim 1 or 2, characterized in that the distance between the walls of the regeneration chamber (48) is between 2.5 mm and 25.4 mm, the distance between the walls of the furnace gas channel (64) is between 2.5 and 76.2 mm, and that the distance between the walls (22, 24) of the reaction chamber (26) is between 7.6 mm and 50.8 mm. 35 4. Reaktor-anlæg ifølge et af kravene 1-3, kendetegnet ved, at afstanden mellem regenerationskammerets (48) DK 158385B vægge ligger mellem 3,2 mm og 12,7 mm, at afstanden mellem ovngas-kanalens (64) vægge ligger mellem 12,7 mm og 50,8 mm, og at afstanden mellem reaktionskammerets (26) vægge (22, 24) ligger mellem 12,7 mm og 38,1 mm. 5Reactor system according to one of claims 1-3, characterized in that the distance between the walls of the regeneration chamber (48) is between 3.2 mm and 12.7 mm, that the distance between the walls of the furnace duct (64) is between 12.7 mm and 50.8 mm and the distance between the walls (22, 24) of the reaction chamber (26) is between 12.7 mm and 38.1 mm. 5 5. Reaktor-anlæg ifølge et af kravene 1-4, kendetegnet ved, at ovngas-kanalen (64) er fyldt med et varmele-dende pakmateriale (70).Reactor system according to one of claims 1-4, characterized in that the furnace gas duct (64) is filled with a heat-conducting packing material (70). 6. Reaktor-anlæg ifølge et af kravene 1-5, ved hvilket reakto ren (20) er anbragt lodret, kendetegnet ved, at reaktionskammerets (26) afgang (36) befinder sig ved dets ø-verste ende.Reactor system according to one of claims 1-5, wherein the reactor (20) is arranged vertically, characterized in that the outlet (36) of the reaction chamber (26) is at its upper end. 7. Reaktor-anlæg ifølge et af kravene 1-6, kendeteg net ved, at regenerationskammeret (48) strækker sig over reaktionskammerets (26) fulde længde.Reactor system according to one of claims 1-6, characterized in that the regeneration chamber (48) extends over the full length of the reaction chamber (26). 8. Reaktor-anlæg ifølge et af kravene 1-7, ved hvilket der 20 findes flere reaktorer (20), kendetegnet ved, at mellemrummene (72) mellem hinanden tilstødende vægge på ovn-gas-kanalerne (64) er lukket i forhold til brændrummet (60).Reactor system according to any one of claims 1-7, wherein 20 are several reactors (20), characterized in that the spaces (72) between each other adjacent walls of the furnace gas ducts (64) are closed relative to the combustion chamber (60).
DK514477A 1976-12-22 1977-11-21 CATALYTIC REACTOR PLANT DK158385C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US75334876A 1976-12-22 1976-12-22
US75334876 1976-12-22
US82780477 1977-08-25
US05/827,804 US4098589A (en) 1976-12-22 1977-08-25 Catalytic reaction apparatus

Publications (3)

Publication Number Publication Date
DK514477A DK514477A (en) 1978-06-23
DK158385B true DK158385B (en) 1990-05-14
DK158385C DK158385C (en) 1990-10-15

Family

ID=27115731

Family Applications (1)

Application Number Title Priority Date Filing Date
DK514477A DK158385C (en) 1976-12-22 1977-11-21 CATALYTIC REACTOR PLANT

Country Status (13)

Country Link
JP (1) JPS5378983A (en)
AU (1) AU511188B2 (en)
BR (1) BR7707894A (en)
CH (1) CH631637A5 (en)
DE (1) DE2751251C2 (en)
DK (1) DK158385C (en)
ES (1) ES464565A1 (en)
FR (1) FR2374946A1 (en)
GB (1) GB1545669A (en)
IL (1) IL53400A (en)
IT (1) IT1143715B (en)
NL (1) NL184770C (en)
SE (1) SE423896B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086305U (en) * 1983-11-21 1985-06-14 篠原 鼎 Seki electrode for skin polarization resistance meter
JPS63162503A (en) * 1986-12-25 1988-07-06 Toyo Eng Corp Gas producer
JPH03232703A (en) * 1989-12-26 1991-10-16 Tokyo Electric Power Co Inc:The Reformer of hydrocarbon
DE19721630C1 (en) * 1997-05-23 1999-02-11 Fraunhofer Ges Forschung Device for reforming hydrocarbons containing starting materials
US6258330B1 (en) * 1998-11-10 2001-07-10 International Fuel Cells, Llc Inhibition of carbon deposition on fuel gas steam reformer walls
JP6678327B2 (en) * 2015-08-28 2020-04-08 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system
EP3414000B1 (en) 2016-02-08 2024-04-10 KT - Kinetics Technology S.p.A. Enhanced efficiency endothermic reactor for syngas production with flexible heat recovery to meet low export steam generation.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1580740A (en) * 1923-02-20 1926-04-13 Commercial Solvents Corp Catalyzing apparatus
US3144312A (en) * 1961-06-06 1964-08-11 Mertens Carl Catalytic conversion plant for the continuous generation of gases of any kind out of ydrocarbons
US3645701A (en) * 1967-06-19 1972-02-29 Lummus Co Reformer furnace
US3541729A (en) * 1968-05-09 1970-11-24 Gen Electric Compact reactor-boiler combination
US3909299A (en) * 1973-10-01 1975-09-30 United Technologies Corp Fuel cell system including reform reactor
DE2521710A1 (en) * 1975-05-15 1976-11-18 Siemens Ag REACTOR FOR THE CATALYTIC REVISION OF HYDROCARBONS WITH AN OXYGEN-CONTAINING GAS

Also Published As

Publication number Publication date
ES464565A1 (en) 1979-01-01
NL184770C (en) 1989-11-01
CH631637A5 (en) 1982-08-31
NL7712716A (en) 1978-06-26
AU511188B2 (en) 1980-07-31
FR2374946B1 (en) 1983-07-22
NL184770B (en) 1989-06-01
BR7707894A (en) 1978-08-01
SE7713226L (en) 1978-06-23
SE423896B (en) 1982-06-14
IL53400A (en) 1981-03-31
DK158385C (en) 1990-10-15
JPS5378983A (en) 1978-07-12
FR2374946A1 (en) 1978-07-21
GB1545669A (en) 1979-05-10
DK514477A (en) 1978-06-23
DE2751251A1 (en) 1978-06-29
DE2751251C2 (en) 1986-11-20
JPS577538B2 (en) 1982-02-10
AU3072477A (en) 1979-05-24
IT1143715B (en) 1986-10-22
IL53400A0 (en) 1978-01-31

Similar Documents

Publication Publication Date Title
US4098589A (en) Catalytic reaction apparatus
US4098588A (en) Multi-tube catalytic reaction apparatus
US4098587A (en) Compact multi-tube catalytic reaction apparatus
US4071330A (en) Steam reforming process and apparatus therefor
EP0241166B1 (en) Catalytic reaction apparatus
US4909809A (en) Apparatus for the production of gas
JP5298118B2 (en) Compact exchanger-reactor with multiple porous burners
JPS62210047A (en) Apparatus for reaction
US4494485A (en) Fired heater
US3635682A (en) Fuel cell reactor-burner assembly
EP0197880B1 (en) Radiating sleeve for catalytic reaction apparatus
US4029054A (en) Waste heat boiler
DK158385B (en) CATALYTIC REACTOR PLANT
GB1564993A (en) Multi-tube catalytic reaction apparatus
CA1146029A (en) Method of controlling contact-kinetic flameless combustion boiler to carry out such combustion
KR970704252A (en) Fuel cell power plant furnace
GB2068525A (en) Heat exchanger
GB1564995A (en) Compact multi-tube catalytic reaction apparatus
US3777717A (en) Method of and apparatus for heating of liquids
JP3842352B2 (en) Fuel reformer
US3246956A (en) Reactor furnaces
EP4389274A1 (en) Process for producing synthesis gas product comprising hydrogen
JPH01168332A (en) Apparatus for reforming fuel
SU992079A1 (en) Endothermic atmosphere generator
JPH0124534B2 (en)