DK150760B - PROCEDURE AND APPARATUS FOR CALCULATING THE LEVEL OF A LIQUID SURFACE - Google Patents

PROCEDURE AND APPARATUS FOR CALCULATING THE LEVEL OF A LIQUID SURFACE Download PDF

Info

Publication number
DK150760B
DK150760B DK600074AA DK600074A DK150760B DK 150760 B DK150760 B DK 150760B DK 600074A A DK600074A A DK 600074AA DK 600074 A DK600074 A DK 600074A DK 150760 B DK150760 B DK 150760B
Authority
DK
Denmark
Prior art keywords
frequency
signal
distance
differential
amplitude
Prior art date
Application number
DK600074AA
Other languages
Danish (da)
Other versions
DK150760C (en
DK600074A (en
Inventor
Kurt Olav Edvardsson
Original Assignee
Saab Scania Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saab Scania Ab filed Critical Saab Scania Ab
Publication of DK600074A publication Critical patent/DK600074A/da
Publication of DK150760B publication Critical patent/DK150760B/en
Application granted granted Critical
Publication of DK150760C publication Critical patent/DK150760C/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

150760 i150760 i

Den foreliggende opfindelse angår en fremgangsmåde til beregning af en væskeoverflades niveau under anvendelse af et mikrobølgesignal, som angivet i krav l's indledning, samt et apparat til udøvelse af fremgangsmåden og af den i krav 8's indledning angivne art.The present invention relates to a method for calculating the level of a liquid surface using a microwave signal as set forth in the preamble of claim 1, as well as an apparatus for practicing the method and of the preamble of claim 8.

Mikrobølger er på grund af en meget konstant udbredelseshastighed hensigtsmæssige at anvende ved nøjagtig måling af væskeniveauer, jf. eksempelvis beskrivelsen til britisk patent nr. 1.100.119. En måleudrustning, som arbejder med mikrobølger, er desuden forholdsvis ufølsom for snavs, og målingen er berøringsfri, hvilket er fordelagtigt ved mange anvendelser, især ved niveaumåling på væsker, som afgiver letantændelige dampe.Microwaves, due to a very constant propagation rate, are suitable for accurate measurement of liquid levels, cf., for example, the specification for British Patent No. 1,100,119. In addition, microwaving measuring equipment is relatively insensitive to dirt and the measurement is non-contact, which is advantageous in many applications, especially in level measurement of liquids emitting flammable vapors.

Ved niveaumåling med mikrobølger er der imidlertid mange faktorer, som indvirker væsentligt på målenøjagtigheden. Det er således vanskeligt at bestemme den frembragte differensfrekvens nøjagtigt, at udskille forstyrrende reflekser fra eksempelvis støttebjælker eller bund i en tank samt ulinearitet eller anden ufuldstændighed ved mikrobølgekilden.However, in microwave level measurement, there are many factors that have a significant impact on measurement accuracy. Thus, it is difficult to accurately determine the produced differential frequency, to separate interfering reflexes from, for example, support beams or bottoms in a tank, as well as non-linearity or other incompleteness at the microwave source.

Til forøgelse af målenøjagtigheden er det foreslået, eksempelvis i tysk fremlæggelsesskrift nr. 1.935.012, at benytte en referenceforsinkelse, til hvilken niveaumålingen relateres.In order to increase the measurement accuracy, it has been proposed, for example in German submission no. 1.935.012, to use a reference delay to which the level measurement is related.

Formålet med opfindelsen er at anvise en fremgangsmåde af den omhandlede art, som giver god målenøjagtighed, uden at der stilles store krav til mikrobølgekildens linearitet, og som samtidig inden for vide grænser er ufølsom for forstyrrende reflekser.The object of the invention is to provide a method of the kind which provides good measurement accuracy without imposing high requirements on the linearity of the microwave source, and which, while wide, is insensitive to interfering reflexes.

Dette opnås ifølge opfindelsen ved den i krav 1 anviste fremgangsmåde.This is achieved according to the invention by the method of claim 1.

Differensfrekvensen kan udtrykkes ved fm = «(ti . 2r dt c hvor f (t) er mikrobølgefrekvensen, r afstanden til overfladen og c lyshastigheden.The difference frequency can be expressed at fm = «(ti. 2r dt c where f (t) is the microwave frequency, the distance to the surface and c the speed of light.

2 1507602 150760

Hvis ^ var konstant i hele frekvensvariationsperioden, ville differensfrekvensen fm være proportional med afstanden r. Dette er imidlertid ikke tilfældet, da kvotienten bl.a.If ^ was constant throughout the frequency variation period, the difference frequency fm would be proportional to the distance r. However, this is not the case, since the quotient i.a.

varierer med temperatur og ældning i udstyret. Det er med komplicerede foranstaltninger muligt af nedbringe variationen cif (t) i til størrelsesordenen + 1%. Ved den anviste fremgangs måde kan opnås målenøjagtigheder, der er bedre end + 0,1%, uden at der stilles ekstremt store krav til nøjagtigheden af ^varies with temperature and aging in the equipment. With complicated measures it is possible to reduce the variation cif (t) to the order of + 1%. By the method described, measurement accuracies better than + 0.1% can be obtained without making extremely high demands on the accuracy of ^

Ved den samtidige måling på referenceledningen,og ved at signalerne fra denne anvendes som tidsmarkering, bliver man principielt uafhængig af såvel størrelse som variation af ^ Fremgangsmåden indebærer, at frekvensen for overfladesignal og referenceledningssignal sammenlignes stykke for stykke under frekvensvariationsperioden, og variationshastigheden kan variere en hel del, uden at beregningerne forstyrres. Ved en målenøjagtighed på 0,05% er det tilstrækkeligt med + nogle procent nøjagtighed hos Man bliver altså ikke uafhængig, men væsentlig mindre afhængig af lineariteten.The simultaneous measurement of the reference line and its signals being used as a time marking will in principle be independent of both size and variation of the method. The method involves comparing the frequency of the surface signal and the reference line signal piece by piece during the frequency variation period and the variation rate can vary a whole part, without disturbing the calculations. At a measurement accuracy of 0.05%, + some percent accuracy in Man is thus not independent, but considerably less dependent on linearity.

Forsinkelsesledningens længde bør af hensyn til målenøj-agtigheden og støjfølsomheden være så stor som muligt. Ved den i krav 4 anviste fremgangsmåde opnås en tilsyneladende forøgelse af den kendte længde.The length of the delay line should be as large as possible for the sake of measurement accuracy and noise sensitivity. By the method of claim 4, an apparent increase in the known length is obtained.

Det er sædvanligt at undertrykke ikke ønskede signalkomponenter ved hjælp af et snævert båndpasfilter. På grund af ufuldkommenheder i mikrobølgekilden, som påvirker referencefrekvensen, kan man ikke filtrere så snævert som ønskeligt. Ved den i krav 5 anviste fremgangsmåde opnår man, at båndpasfilteret så at sige følger disse ufuldkommenheder, således at gennemgangsområdet kan være meget lille, uden at brugbar information går tabt.It is customary to suppress unwanted signal components by a narrow bandpass filter. Due to imperfections in the microwave source which affect the reference frequency, it is not possible to filter as narrowly as desired. By the method described in claim 5, it is achieved that the bandpass filter, so to speak, follows these imperfections, so that the throughput area can be very small, without usable information being lost.

Opfindelsen angår som nævnt også et apparat til udøvelse af fremgangsmåden og af den i krav 8's indledning angivne art.The invention also relates, as mentioned, to an apparatus for carrying out the method and of the nature specified in the preamble of claim 8.

Et sådant apparat kan ifølge opfindelsen udformes som anvist i krav 8's kendetegnende del.Such an apparatus can according to the invention be designed as described in the characterizing part of claim 8.

Opfindelsen skal i det følgende forklares nærmere i forbindelse med tegningen, hvor fig. 1 viser et blokdiagram for et apparat ifølge opfindelsen, 3 150760 fig. 2 et blokdiagram for et i apparatet indgående beregningsorgan, fig. 3 grafiske repræsentationer af signaler forskellige steder i apparatet, fig. 4 i perspektiv og skematisk et antal niveaumålere monteret i et tankskib, og fig. 5 mere detaljeret og delvis gennemskåret en af de i fig. 4 viste niveaumålere.BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be explained in more detail in connection with the drawing, in which 1 is a block diagram of an apparatus according to the invention; FIG. 2 is a block diagram of a calculator included in the apparatus; FIG. 3 are graphical representations of signals at various points in the apparatus; FIG. 4 is a perspective and schematic view of a number of level gauges mounted in a tanker; and FIG. 5 is a more detailed and partially cut-away view of one of FIG. 4 level meters.

I fig. 1 er vist en detektor 1, som er tilsluttet en signalbehandlingsenhed 2 via tre terminaler 3,4 og 5.In FIG. 1, a detector 1 is shown connected to a signal processing unit 2 via three terminals 3,4 and 5.

Detektoren 1 består af en mikrobølgegenerator 6, eksempelvis en varaktorafstemt Gunn-diode, hvis udgang 7 via et blandingstrin 8 er forbundet til en mod den overflade 9, hvis niveau skal måles, rettet antenne 10. Blandingstrinnet 8 er desuden via en forstærker 11 forbundet med signalbehandlingsenhedens terminal 4. Mikrobølgegeneratoren 6 er forbundet til signalbehandlingsenhedens terminal 5 og fødes derved med start-impulser, der hver udløser en variation af frekvensen a, som varierer i hovedsagen lineært med tiden som vist i fig. 3. Blandingstrinnet 8 har en kontrolleret lækage, så at en del af mikrobølgesignalet fra generatoren 6 via antennen 10 sendes ud mod overfladen 9. En del af den mod overfladen 9 indfaldende mikrobølgestråling reflekteres mod antennen 10, opfanges af denne og når atter blandingstrinnet 8. Også forløbet af det således reflekterede mikrobølgesignal b er vist i fig. 3. Det fremgår af fig. 3, at de to signaler a og b har samme frekvensværdi til forskellige tidspunkter. Tidsforskellen svarer til gangtiden for mikrobølgen fra blandingstrinnet 8 til overfladen 9 og tilbage igen.The detector 1 consists of a microwave generator 6, for example a varactor tuned Gunn diode, whose output 7 is connected via an mixing stage 8 to an antenna 10 directed to the surface 9 whose level is to be measured. The mixing stage 8 is connected via an amplifier 11 to the signal processing unit terminal 4. The microwave generator 6 is connected to the signal processing unit terminal 5 and is thereby fed with start pulses, each triggering a variation of the frequency a, which varies substantially linearly with time as shown in FIG. 3. The mixing stage 8 has a controlled leakage so that a portion of the microwave signal from the generator 6 is transmitted via the antenna 10 to the surface 9. A portion of the microwave radiation incident to the surface 9 is reflected on the antenna 10, intercepted by it, and again the mixing stage 8. Also, the course of the thus reflected microwave signal b is shown in FIG. 3. As shown in FIG. 3, that the two signals a and b have the same frequency value at different times. The time difference corresponds to the microwave operating time from the mixing step 8 to the surface 9 and back again.

Sagt på anden måde hersker i et givet øjeblik en differensfrekvens mellem signalerne a og b i overensstemmelse med den nævnte strækning. Blandingstrinnet 8 har til opgave ved blanding af signalerne a og b at danne en sådan differensfrekvens c, der ligeledes er vist i fig. 3. De uregelmæssigheder ved signalet c, der kan iagttages, har deres oprindelse i forstyrrende ekkoer fra genstande over eller under væskeoverfladen 9 og fra ulineariteter hos mikrobølgegeneratoren 6. Fig. 4 150760 4 viser sådanne genstande, her afstivende bjælker 12, der giver anledning til ekkoer, der kan forveksles med væskeoverfladen 9.In other words, at a given moment, a difference frequency between the signals a and b prevails in accordance with said distance. The mixing step 8 has the task of mixing such signals a and b to form such a differential frequency c, which is also shown in FIG. 3. The irregularities of the observable signal c have their origin in interfering echoes from objects above or below the liquid surface 9 and from nonlinearities of the microwave generator 6. FIG. 4 shows such articles, here stiffening beams 12 which give rise to echoes which may be confused with the liquid surface 9.

Til på i og for sig kendt måde at eliminere virkningen af sådanne fejlkilder er der til generatorens 6 udgang 7 sluttet et blandingstrin 13, som, på analog måde som det tidligere nævnte blandingstrin 8, er forbundet til dels en forsinkelsesledning 14, dels via en forstærker 15 med signalbehandlingsenhedens 2 terminal 3. Også fra blandingstrinnet 13 opnås en differensfrekvens d med konstant af forsinkelsesledningen 14 bestemt frekvens. Også dette signal d er vist i fig. 3.To eliminate, in a known manner, the effect of such sources of error, there is connected to the output 7 of the generator 6 a mixing step 13 which, in analogous manner to the previously mentioned mixing step 8, is connected partly to a delay line 14 and partly via an amplifier. 15 with the signal processing unit 2 terminal 3. Also from the mixing stage 13 a difference frequency d is obtained with constant frequency determined by the delay line 14. Also this signal d is shown in FIG. Third

Signalet d benyttes som referencesignal.The signal d is used as a reference signal.

Detektorens 1 udgangssignaler c og d indeholder altså i hovedsagen to frekvenser, og forholdet mellem dem giver det søgte væskeniveau. Signalet d er et forholdsvis rent sinussignal med næsten konstant frekvens. Signalet c indeholder derimod som nævnt flere frekvenser, af hvilke kun én hidrører fra refleksioner fra den væskeoverflade, hvis niveau skal måles. Det er signalbehandlingsenhedens 2 opgave at relatere differensfrekvenssignalet c til referencefrekvenssignalet d, så at beregningen af væskeoverfladens 9 niveau baseres på forsinkelsesledningens 14 længde.Thus, the output signals c and d of the detector 1 contain essentially two frequencies, and the ratio between them gives the liquid level sought. The signal d is a relatively pure sine wave with almost constant frequency. The signal c, on the other hand, contains several frequencies, of which only one is derived from reflections from the liquid surface whose level is to be measured. It is the task of the signal processing unit 2 to relate the difference frequency signal c to the reference frequency signal d so that the calculation of the level of the liquid surface 9 is based on the length of the delay line 14.

Terminalen 3, hvorpå signalet d indkommer til signalbehandlingsenheden 2, er via en frekvensmultiplikator 16 og en impulsformer 17 forbundet til et beregningsorgan 18. På tilsvarende måde er terminalen 4, hvorpå signalet c indkommer, forbundet til beregningsorganet 18 via et styrbart filter 19 og en impulsformer 20. Beregningsorganet 18 er forbundet med et indikeringsorgan 22 via et lager 21, og med en styreenhed 23. Indikeringsorganet 22 og styreenheden 23 er forbundet med et organ 24 for manuel styring af måleforløbet og for ind-førsiS© af konstanter i beregningen. Styreenheden 23 og udgangen af lageret 21 er koblede til filteret 19, som på indgangen og udgangen er forbundet til et ampiitudesammenlignende kredsløb 25, hvis udgang er forbundet til styreenheden 23. Styreenheden er desuden forbundet via terminalen 5 med mikrobølgegeneratoren 6.The terminal 3, where the signal d enters the signal processing unit 2, is connected to a calculation means via a frequency multiplier 16 and a pulse generator 17. Similarly, the terminal 4 on which the signal c arrives is connected to the calculation means 18 via a controllable filter 19 and a pulse generator. 20. The calculating means 18 is connected to an indicating means 22 via a bearing 21, and to a control unit 23. The indicating means 22 and the control unit 23 are connected to a means 24 for manual control of the measuring process and for the introduction of constants in the calculation. The control unit 23 and the output of the storage 21 are coupled to the filter 19, which is connected to the input and output of an amputee-equivalent circuit 25, the output of which is connected to the control unit 23. The control unit is further connected via the terminal 5 to the microwave generator 6.

5 1507605 150760

Frekvensmultiplikatoren 16 har til opgave af signalet d at danne et signal e (fig. 2) med konstant amplitude og med en frekvens, som er et multiplum af signalets d frekvens. Dette er ækvivalent med en forøgelse af forsinkelsesledningens 14 længde. Skulle denne ledningslængde øges reelt, ville man få øget dæmpning med påfølgende måleproblem, samtidig med at ledningen 14 vil blive mere pladskrævende og dyr. Impulsformeren 17 er indrettet til at frembringe et impulstog f med en impuls pr. halvperiode hos signalet e.The frequency multiplier 16 has for the task of the signal d to generate a signal e (Fig. 2) of constant amplitude and at a frequency which is a multiple of the frequency d of the signal. This is equivalent to an increase in the length of the delay line 14. Should this length of conduit be increased in reality, attenuation with subsequent measurement problem would be increased, while conduit 14 would become more bulky and expensive. The pulse former 17 is arranged to produce a pulse train f with one pulse per second. half-period of the signal e.

Signalet c filtreres efter at have passeret forstærkeren 11 i filteret 19, som er et smalt, styrbart båndpasfilter. Filteret er således indrettet, at dets centerfrekvens af signalet e bringes til at være proportionalt med reference-frekvenssignalets d momentane frekvens og med en via styreenheden 23 fra styreorganet 24 kommende værdi. Herved kan mikrobølgegeneratorens 6 variationshastighed tillades at variere noget, eftersom jo filterets centerfrekvens bringes til at følge ændringer i variationshastigheden. Filterets 19 udgangssignal g er et rent sinussignal, hvis frekvens er et mål for det søgte væskeniveau. Fra impulsformeren 20 opnås af signalet et impulssignal h, som indeholder en impuls for hver halvperiode hos signalet g.The signal c is filtered after passing the amplifier 11 in the filter 19, which is a narrow controllable bandpass filter. The filter is arranged so that its center frequency of the signal e is caused to be proportional to the instantaneous frequency of the reference frequency signal d and to a value coming through the control unit 23 from the control means 24. Hereby the variation rate of the microwave generator 6 can be allowed to vary somewhat, since the center frequency of the filter is caused to follow changes in the rate of variation. The output signal g of the filter 19 is a pure sine wave whose frequency is a measure of the liquid level sought. From the pulse former 20, a signal h is obtained from the signal h which contains a pulse for each half period of the signal g.

Den fortsatte signalbehandling går ud på at danne forholdet mellem de to impulssignaler f og h, hvorved ikke impulsernes tidsplacering, men deres indbyrdes størrelsesforhold er af betydning. Ved kvotientdannelsen anvendes en vægtfaktor i, hvis forløb under en frekvensvariation er vist i fig. 3. Denne vægtfaktor kan have formen n (N-n), hvor N er antallet af indbyrdes i hovedsagen lige store delintervaller under frekvensvariationen, og n er delintervallets ordensnummer, som er 1 for første og N for sidste delinterval. Denne vægtfaktor kan vises at indebære, at forholdet mellem frekvenserne i signalerne f og h bestemmes i mindste kvadratmetode og giver en nøjagtig beregning allerede efter én frekvensvariation. En vægtfaktor lig med en konstant ville medføre konventionel impulstælling, som for stor nøjagtighed kræver impulstælling over et stort antal frekvensvariationer, men som alligevel er forholdsvis følsom for 150760 6 støjekkoer.Continuous signal processing involves forming the relationship between the two pulse signals f and h, whereby not the timing of the pulses, but their relative size ratios, are significant. In the quotient formation a weight factor i is used, the course of which during a frequency variation is shown in fig. 3. This weight factor may take the form n (N-n), where N is the number of substantially equal sub-intervals during the frequency variation and n is the order number of the sub-interval, which is 1 for the first and N for the last sub-interval. This weighting factor can be shown to imply that the ratio of the frequencies in the signals f and h is determined in the least squares method and gives an accurate calculation already after one frequency variation. A weight factor equal to a constant would result in conventional pulse counts which require too high accuracy pulse counts over a large number of frequency variations, but which are nevertheless relatively sensitive to noise echoes.

Beregningen af vægtfaktoren og kvotientdannelsen sker i beregningsorganet 18, hvis opbygning kan være som vist i fig. 2. I denne figur er 26 et til impulsformeren 20 forbundet organ til beregning af vægtfaktoren i af signalet h.The calculation of the weight factor and quotient formation takes place in the calculator 18, the structure of which can be as shown in FIG. 2. In this figure, 26 is a means connected to the pulse former 20 for calculating the weight factor i of the signal h.

Den beregnede vægtfaktor i lagres i et register 27, som styrer indføringen af signalerne f og h til to multiplikatorer 28,29, som hver for sig via adderende registre 30,31 er forbundet til en kvotientdanner 32. Indføringen af vægtfaktoren sker på følgende måde: Længden af ovennævnte interval vælges lig med afstanden mellem impulserne i signalet h. For hver impuls i signalet h tælles et til vægtfaktorens aktuelle værdi svarende antal impulser ind i registeret 30. For hver impuls i signalet f tælles i løbet af samme interval samme antal impulser ind i registeret 31. Efter den N-te reference-signalimpuls beregnes kvotienten k mellem værdierne 1 og m i de to registre 30 og 31. Denne kvotient h er et mål for det søgte væskeniveau. Da niveauet måles mellem blandingstrinnet 8 og overfladen 9, er det hensigtsmæssigt, at der ved hjælp af styreorganet 24 indføres en konstant, ved hjælp af hvilken væskeniveaumålingen henføres til et passende ydre punkt.The calculated weight factor i is stored in a register 27 which controls the input of signals f and h to two multipliers 28,29, which are separately connected via adding registers 30,31 to a quotient generator 32. The input of the weight factor is as follows: The length of the above interval is chosen equal to the distance between the pulses in the signal h. For each pulse in the signal h a number of pulses corresponding to the current value of the weight factor is counted into the register 30. For each pulse in the signal f the same number of pulses is counted during the same interval. in register 31. After the N-th reference signal pulse, the quotient k is calculated between the values 1 and m of the two registers 30 and 31. This quotient h is a measure of the liquid level sought. As the level is measured between the mixing stage 8 and the surface 9, it is convenient that a constant means is introduced by means of the control means 24 by which the liquid level measurement is assigned to a suitable outer point.

Resultatet af målingen lagres i lagreret 21 og udlæses ved hjælp af indikeringsorganet 22. Det lagrede måleresultat kan også registreres ved hjælp af en skriver.The result of the measurement is stored in the stored 21 and read out by the indicating means 22. The stored measurement result can also be recorded by means of a printer.

Som det fremgår af det foranstående, har differensfre-kvenssignalets c amplitude ringe indvirkning på den fortsatte signalbehandling, men bliver amplituden på grund af ydre forhold så lille, at den kan forveksles med signalamplituder hidrørende fra forstyrrende ekkoer, er der risiko for forveksling. Det kan derfor ved visse anvendelser, eksempelvis ved niveaumåling på tankskibe. være nødvendigt med en amplitudekontrol, fordi amplituden påvirkes af bølger på væskeoverfladen. Det amplitudesammenlignende kredsløb 25 har til opgave at foretage en sådan kontrol ved at sammenligne signalet g - som indeholder den til væskeoverfladen 9 svarende differensfrekvens - med et tilsvarende frekvenssignal fra et fast ekko i eller uden for antennen, hvilket fil 7 150760 treres ud af signalet c. Det sammenlignende kredsløb 25 er indrettet til at danne et logisk signal, som angiver, om det signal, der svarer til det niveau, som skal beregnes, har større eller mindre amplitude end signalet svarende til det faste ekko. Denne sammenligning gør også niveaumålingen uafhængig af variationer i mikrobølgegeneratorens 6 udgangseffekt. Er signalets c amplitude utilstrækkelig, stoppes målingen via styreenheden 23, der påtrykkes det sammenlignende kredsløbs 25 udgangssignal.As can be seen from the foregoing, the amplitude signal c amplitude has little effect on the continued signal processing, but if the amplitude due to external conditions is so small that it can be mistaken for signal amplitudes originating from interfering echoes, there is a risk of confusion. It can therefore be used for certain applications, for example by level measurement on tankers. an amplitude check is needed because the amplitude is affected by waves on the liquid surface. The amplitude comparing circuit 25 has the task of conducting such a check by comparing the signal g - which contains the differential frequency corresponding to the liquid surface 9 - with a corresponding frequency signal from a fixed echo inside or outside the antenna, which file 7 is extracted from signal c The comparative circuit 25 is arranged to generate a logic signal indicating whether the signal corresponding to the level to be calculated has greater or lesser amplitude than the signal corresponding to the fixed echo. This comparison also makes the level measurement independent of variations in the output power of the microwave generator 6. If the amplitude of the signal c is insufficient, the measurement is stopped via the control unit 23 applied to the output signal of the comparative circuit 25.

Fig. 5 viser en udførelsesform for en detektor 1, der i fig. 4 er vist i forbindelse med et tankskibs lagertanke.FIG. 5 shows an embodiment of a detector 1 which in FIG. 4 is shown in connection with a tanker storage tank.

I et rørformet hus 33 er antennen 10 placeret således, at den er rettet mod væskeoverfladen 9. Huset 33 indeholder også et mikrobølgehorn 34, der via en bølgeleder 35 er forbundet med blandingstrinnet og mikrobølgegeneratoren, der sammen med detektorenhedens øvrige, tidligere omtalte komponenter 36 er anbragt i et på huset 33 anbragt og i forhold til dette mindre, rørformet hus 37. Antennen 10, hornet 34, bølgelederen 35 og komponenterne 36 er let tilgængelige for inspektion og eventuel reparation og udskiftning via låger 38,39 på husene 33,37.In a tubular housing 33, the antenna 10 is positioned to face the liquid surface 9. The housing 33 also contains a microwave horn 34 which is connected via a waveguide 35 to the mixing step and the microwave generator, which together with the other previously mentioned components 36 of the detector unit are located in a housing 33 disposed in relation to this smaller tubular housing 37. The antenna 10, the horn 34, the waveguide 35 and the components 36 are readily available for inspection and possible repair and replacement via gates 38,39 on the housings 33,37.

Claims (8)

150760150760 1. Fremgangsmåde til beregning af en væskeoverflades niveau under anvendelse af et mikrobølgesignal, hvis frekvens varierer med tiden, hvilket signal rettes mod overfladen, hvorfra en del reflekteres, og efter en tid svarende til afstanden mellem et referencepunkt og overfladen, modtages og blandes med det signal, der da udsendes, således at der opnås en til afstanden svarende differensfrekvens, og hvilket signal endvidere sendes gennem en forsinkelsesledning, fra hvis endepunkt det reflekteres, således at det kan modtages med en til en kendt strækning svarende forsinkelse, som på analog måde omsættes til en til strækningen svarende referencefrekvens, og at differensfrekvensen relateres til referencefrekvensen, så at beregningen af afstanden baseres på den kendte strækning, kendetegnet ved, at differensfrekvensen (c) og referencefrekvensen (d) multipliceres med en i delintervaller af frekvensvariationstiden konstant, men under frekvensvariationstiden foranderlig faktor (i), at produkterne af faktoren (i) og de to frekvenser (c,d) summeres hver for sig, og at der ved frekvensvariationsperiodens ophør dannes kvotienten (k) mellem de således frembragte summer (l,m), hvilken kvotient er et mål for den søgte afstand.A method for calculating the level of a liquid surface using a microwave signal, the frequency of which varies with time, which signal is directed to the surface from which a portion is reflected, and after a time corresponding to the distance between a reference point and the surface, is received and mixed with it. signal which is then transmitted so as to obtain a differential frequency corresponding to the distance, and which signal is further transmitted through a delay line, from whose endpoint it is reflected, so that it can be received with a delay corresponding to a known distance, which is reacted analogously to a reference frequency corresponding to the distance, and that the differential frequency is related to the reference frequency, so that the calculation of the distance is based on the known distance, characterized in that the difference frequency (c) and the reference frequency (d) are multiplied by one in sub-intervals of the frequency variation time constant, but during the frequency variation. changeable factor (i) that products the factors (i) and the two frequencies (c, d) are summed separately and that at the end of the frequency variation period the quotient (k) is formed between the sums thus generated (l, m), which quotient is a measure of the sought distance. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at faktoren (i) for det N-te delinterval af i alt N i hovedsagen lige store delintervaller er n(N-n).A method according to claim 1, characterized in that the factor (i) for the N-th subinterval of a total of N in substantially equal sub-intervals is n (N-n). 3. Fremgangsmåde ifølge krav 2, kendetegnet ved, at hvert delinterval er lig med en halvperiode af differensfrekvensen (c).Method according to claim 2, characterized in that each subinterval is equal to half a period of the differential frequency (c). 4. Fremgangsmåde ifølge krav 1-3, kendetegnet ved, at referencefrekvensen (d) multipliceres med en således valgt konstant, at den frekvens (e), som herved opnås, er større end differensfrekvensen (c).Method according to claims 1-3, characterized in that the reference frequency (d) is multiplied by a constant so selected that the frequency (e) thus obtained is greater than the difference frequency (c). 5. Fremgangsmåde ifølge krav 1, kendetegnet ved, at differensfrekvensen (c) filtreres ved hjælp af et båndpasfilter (19), hvis centerfrekvens styres således, at den er proportional med referencefrekvensen (d). 150760Method according to claim 1, characterized in that the differential frequency (c) is filtered by a bandpass filter (19), whose center frequency is controlled so that it is proportional to the reference frequency (d). 150760 6. Fremgangsmåde ifølge krav 1, kendetegnet ved, at det reflekterede mikrobølgesignals (b) amplitude sammenlignes med amplituden hos et kendt ekkosignal, og at sådanne signaler sorteres bort, hvis amplitude er beliggende uden for et forudbestemt interval om det kendte ekkosignals amplitude.Method according to claim 1, characterized in that the amplitude of the reflected microwave signal (b) is compared with the amplitude of a known echo signal and that such signals are sorted out if the amplitude is outside a predetermined interval of the amplitude of the known echo signal. 7. Fremgangsmåde ifølge krav 1, kendetegnet ved, at det differensfrekvente signal (c) omsættes til et impulstog (f) med en impuls for hver halvperiode i differensfrekvensen, at impulserne for en frekvensvariationsperiode tilføres et skifteregister med en af referencefrekvensen styret hastighed, og at de således lagrede impulser udlæses med jævn hastighed svarende til en linearisering af frekvensvariationen.Method according to claim 1, characterized in that the differential frequency signal (c) is converted to a pulse train (f) with a pulse for each half period in the differential frequency, the pulses for a frequency variation period are fed to a shift register at a speed controlled by the reference frequency. the pulses thus stored are read out at a uniform rate corresponding to a linearization of the frequency variation. 8. Apparat til udøvelse af fremgangsmåden ifølge krav 1 og omfattende en mikrobølgegenerator (6) til dannelse af et mikrobølgesignal (a), hvis frekvens varieres, en til generatoren forbundet, mod væskeoverfladen (9) rettet antenne (10) til udsendelse af mikrobølgesignalet (a) og til modtagelse af det fra overfladen reflekterede signal (b), et til generatoren (6) og antennen (10) forbundet første blandingstrin (8), som er indrettet til ved blanding af det reflekterede signal og det udsendte at frembringe den til afstanden svarende differensfrekvens (c), en til generatoren (6) forbundet forsinkelsesledning (14) med til den kendte strækning svarende forsinkelse, et til generatoren (6) og ledningen (14) forbundet andet blandingstrin (13), som er indrettet til ved blanding af det forsinkede signal og det udsendte at frembringe den til strækningen svarende referencefrekvens (d), samt et beregningsorgan (18), som er indrettet til med differensfrekvensen (c) relateret til referencefrekvensen (d) at beregne den søgte afstand, kendetegnet ved, at beregningsorganet (18) omfatter multiplicerende organer (28,29), som er indrettet til at multiplicere differens-og referencefrekvenserne med en under hver halvperiode hos differensfrekvensen konstant, men under frekvensvariationsperioden foranderlige faktor (i), to med de multiplicerende organer (28,29) forbundne adderende registre (30,31), somAn apparatus for carrying out the method according to claim 1, comprising a microwave generator (6) for generating a microwave signal (a) whose frequency is varied, an antenna (10) directed to the liquid surface (9) for transmitting the microwave signal ( a) and for receiving the surface-reflected signal (b), a first mixing step (8) connected to the generator (6) and the antenna (10), adapted to mix the reflected signal and transmit it to the the distance corresponding to differential frequency (c), a delay line (14) associated with the generator (6) with a delay corresponding to the known distance, a second mixing step (13) connected to the generator (6) and adapted for mixing of the delayed signal and transmitted to produce the reference frequency (d) corresponding to the line, and a calculating means (18) arranged with the differential frequency (c) related to the reference frequency ( d) calculating the distance sought, characterized in that the calculating means (18) comprises multiplying means (28,29) arranged to multiply the differential and reference frequencies by a variable constant during each half period of the difference frequency, but during the frequency variation period ( (i) two additive registers (30, 31) associated with the multiplying bodies (28,29), which
DK600074A 1973-11-20 1974-11-19 PROCEDURE AND APPARATUS FOR CALCULATING THE LEVEL OF A LIQUID SURFACE DK150760C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE7315649 1973-11-20
SE7315649A SE381745B (en) 1973-11-20 1973-11-20 KITS AND DEVICE FOR DISTANCE SETTING WITH FREQUENCY MODULATED CONTINUOUS MICROVAGORS

Publications (3)

Publication Number Publication Date
DK600074A DK600074A (en) 1975-07-14
DK150760B true DK150760B (en) 1987-06-15
DK150760C DK150760C (en) 1988-04-05

Family

ID=20319140

Family Applications (1)

Application Number Title Priority Date Filing Date
DK600074A DK150760C (en) 1973-11-20 1974-11-19 PROCEDURE AND APPARATUS FOR CALCULATING THE LEVEL OF A LIQUID SURFACE

Country Status (9)

Country Link
JP (1) JPS5427270B2 (en)
DK (1) DK150760C (en)
FI (1) FI61246C (en)
FR (1) FR2251812B1 (en)
GB (1) GB1476749A (en)
NL (1) NL184132C (en)
NO (1) NO140518C (en)
SE (1) SE381745B (en)
YU (1) YU307974A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH607002A5 (en) * 1976-06-09 1978-11-30 Endress G H & Co
GB2077545B (en) * 1980-05-29 1984-03-07 Hawker Siddeley Dynamics Eng Level gauging systems using microwave radiation
NO152108C (en) * 1983-04-05 1985-08-14 Autronica As NIVAAMAALER
US4566321A (en) * 1985-01-18 1986-01-28 Transamerica Delaval Inc. Microwave tank-contents level measuring assembly with lens-obturated wall-opening
WO1992014124A1 (en) * 1991-02-12 1992-08-20 Krohne Messtechnik Gmbh & Co. Kg Electric circuit for a device for measuring the level in industrial tanks and the like
FR2817957B1 (en) * 2000-12-12 2003-04-11 Thomson Csf DEVICE FOR MONITORING THE CARGO OF A SHIP

Also Published As

Publication number Publication date
SE381745B (en) 1975-12-15
DK150760C (en) 1988-04-05
FR2251812A1 (en) 1975-06-13
JPS5427270B2 (en) 1979-09-08
NO140518B (en) 1979-06-05
FI330674A (en) 1975-05-21
YU307974A (en) 1982-02-28
DE2452555B2 (en) 1976-02-12
FR2251812B1 (en) 1978-11-24
DE2452555A1 (en) 1975-05-28
NL184132C (en) 1989-04-17
GB1476749A (en) 1977-06-16
NO744159L (en) 1975-06-16
DK600074A (en) 1975-07-14
NO140518C (en) 1979-09-12
FI61246C (en) 1982-06-10
SE7315649L (en) 1975-05-21
NL7415134A (en) 1975-05-22
JPS50114259A (en) 1975-09-08
FI61246B (en) 1982-02-26

Similar Documents

Publication Publication Date Title
US4044355A (en) Measurement of contents of tanks etc. with microwave radiations
US4665403A (en) Method and apparatus for level measurement with microwaves
EP0138940B1 (en) Method and apparatus for measuring the distance to an object
US2480646A (en) Speed measuring device
US2896162A (en) Heterodyne autocorrelator
US3641817A (en) Ultrasonic flowmeter
US4847623A (en) Radar tank gauge
US2418538A (en) Measurement of distance by frequency-modulated carrier wave
US2595675A (en) Impedance measuring apparatus
US2483802A (en) Ultra high frequency measuring device
DK150760B (en) PROCEDURE AND APPARATUS FOR CALCULATING THE LEVEL OF A LIQUID SURFACE
US3188862A (en) Flowmeters
US3209591A (en) Acoustic flow meter
US4337667A (en) Ultrasonic flowmeter
US3008332A (en) Supersonic pressure gauge
US4078427A (en) Ultrasonic flow or current meter
EP0601884A2 (en) Distance measuring arrangement
US5172058A (en) Non-destructive eddy current testing device with signal compensation for signal propagation delay
US3839909A (en) Process and apparatus for determining the weight per unit volume of liquids of variable density
US2562977A (en) Coarse and fine radar distance measuring system
US2628266A (en) Analysis of signal transfer devices
RU2661488C1 (en) Method of the distance measurement
US2966676A (en) Electronic apparatus and method for measuring distance
SU1188640A1 (en) Arrangement for measuring coefficient of acoustic oscillation damping
JPH0666620A (en) Ultrasonic level indicator

Legal Events

Date Code Title Description
PBP Patent lapsed