DK150161B - PROCEDURE FOR MANUFACTURING FORMED PRODUCTS FROM CELLULOSE-BASED FIBERS - Google Patents

PROCEDURE FOR MANUFACTURING FORMED PRODUCTS FROM CELLULOSE-BASED FIBERS Download PDF

Info

Publication number
DK150161B
DK150161B DK198779AA DK198779A DK150161B DK 150161 B DK150161 B DK 150161B DK 198779A A DK198779A A DK 198779AA DK 198779 A DK198779 A DK 198779A DK 150161 B DK150161 B DK 150161B
Authority
DK
Denmark
Prior art keywords
water
fiber
colloid
molding
fibers
Prior art date
Application number
DK198779AA
Other languages
Danish (da)
Other versions
DK198779A (en
DK150161C (en
Inventor
Stein Gaasland
Original Assignee
Stein Gaasland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stein Gaasland filed Critical Stein Gaasland
Publication of DK198779A publication Critical patent/DK198779A/en
Publication of DK150161B publication Critical patent/DK150161B/en
Application granted granted Critical
Publication of DK150161C publication Critical patent/DK150161C/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J3/00Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • B29C70/508Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands and first forming a mat composed of short fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • C10L5/10Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders
    • C10L5/14Methods of shaping, e.g. pelletizing or briquetting with the aid of binders, e.g. pretreated binders with organic binders
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • D21C9/005Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/24Addition to the formed paper during paper manufacture
    • D21H23/26Addition to the formed paper during paper manufacture by selecting point of addition or moisture content of the paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/28Moulding or pressing characterised by using extrusion presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • C08L3/10Oxidised starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/14Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/005Casein

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

150161150161

Opfindelsen angår en fremgangsmåde til fremstilling af formede produkter og af den i krav l's indledning angivne art. Sådanne fremgangsmåder er kendt fra svensk pat.The invention relates to a process for the manufacture of molded products and of the kind specified in the preamble of claim 1. Such methods are known from Swedish Pat.

210.080 for bygningsplader og brit. pat. 1.139.048 for papmache. Den i de kendte fremgangsmåder anvendte formning kaldes på grund af dens specielle karakter for "plastisk formning".210,080 for building boards and brit. Pat. 1,139,048 for cardboard mache. The molding used in the known methods is called "plastic molding" because of its special nature.

Litteraturen viser ingen forsøg på brug af plastisk formning for industriel produktion af pap eller papir. I stedet har man i 180 år produceret papir og pap med en metode soa her benevne» "drsneringsformning”, da formningen altid foregår samtidigt med,at vandet suges ud fra fibermåtten og ned gennem en vandgennemtrængelig dug af metal-.eller plasttråde*The literature shows no attempt to use plastic molding for industrial production of cardboard or paper. Instead, for 180 years, paper and cardboard have been produced using a method so-called "drainage molding", since molding always takes place at the same time as the water is sucked out from the fiber mat and down through a water-permeable cloth of metal or plastic threads *

Nedenfor er anført tre mulige grunde til,at plastisk formning tidligere ikke har været anvendt til produktion af pap eller papir.Below are three possible reasons why plastic molding has not previously been used for the production of cardboard or paper.

- Hydroko11oider var tidligere dyrere set i relation til cellulose.Hydrocarbon oxides were previously more expensive in relation to cellulose.

150161 - 2 - - Direkte anvendelse af plastisk forming uden forudgående dispergering af fibrene er mislykket, dels på grand af at man ikke har fiet den javne fiberfordeling, aom karakteriaerer pap og papir, og aom blandt andet ger det muligt at påføre grafiak tryk, og dela på grand af at fiberbondter har tilstoppet plastbearbejdende apparaturers mundstykker.150161 - 2 - - Direct use of plastic forming without prior dispersion of the fibers is unsuccessful, partly due to failure to smooth the uniform fiber distribution, which characterizes cardboard and paper, and which, among other things, allows the application of graphic printing, and due to the fact that fiber bundles have clogged the mouthpieces of plastic processing equipment.

- Gransebetingelserne for fuldstandig vandbindning var ikke klarlagt.- The boundary conditions for complete water binding were not clarified.

Formålet med opfindelsen er forbedring af plastisk formning af fibre, såledea at metoden kan anvendes for produktion af pap og papir og give nedennævnte tre fordele sammenlignet med traditionel draneringsformning: - Meget højere koncentration ved formningen.The object of the invention is to improve the plastic forming of fibers, so that the method can be used for the production of cardboard and paper and give the following three advantages compared to traditional drainage forming: - Much higher concentration in the forming.

- Højere styrke i de fardige produkter - specielt stivhed.- Higher strength in the finished products - especially stiffness.

- Mulighed for en trediaensionel form i en proces.- Possibility of a three-dimensional form in a process.

Dette opnås med en fremgangsmåde, hvis ejendommelighed angives i den kendetegnende del af krav 1, og som tydeliggøres ved opdeling i følgende procestrin:This is achieved by a method whose peculiarity is specified in the characterizing part of claim 1, and which is clarified by division into the following process steps:

Trin 1 * forbehandling af de cellulosebaserede fibre.Step 1 * Pre-treatment of the cellulose-based fibers.

Fibrene frigøres fra hinanden og blødgøres ved dispergering i vand. Til dette fordres stor vandmangde, og det er fordelagtigt efter dispergeringen at dranere til den koncentration, som passer for de følgende trin.The fibers are released from each other and softened by dispersion in water. For this, large amounts of water are required and it is advantageous after the dispersion to drain to the concentration appropriate for the following steps.

Trin 2 * indblanding af hydrokolloid.Step 2 * hydrocolloid mixing.

Hydrokolloid binder det vand, som ikke er trangt ind i fibrene, og forhindrer derved frit vand i at presses ud ved plastiske formningsmetoder. Desuden stabiliserer hydro-kolloiden fibrene mod at flokke sammen i fiberbundter.Hydrocolloid binds the water that is not penetrated into the fibers, thereby preventing free water from being squeezed out by plastic molding methods. In addition, the hydrocolloid stabilizes the fibers from flocculating into fiber bundles.

Der dannes en homogen pasta.A homogeneous paste is formed.

150161 - 3 -150161 - 3 -

Trin 3 “ plastisk formning.Step 3 ”plastic molding.

Pastaen formes ved ekstrudering, sprøjtestøbning, bestrygning, valsning, presning eller trckning.The paste is formed by extrusion, injection molding, coating, rolling, pressing or pressing.

Trin 4 * hcrdning.Step 4 * cure.

Vandet afdampes, og under denne tørring bliver slutprodukterne også stærkere på grund aft at der dannes hydrogenbroer mellem tørstofferne i pastaen.The water is evaporated and during this drying the final products also become stronger due to the formation of hydrogen bridges between the dry substances in the paste.

De fibre, som med fordel kan anvendes til opfindelsen, er fibre af cellulose, halvkemisk masse, tremasse eller returpapir.The fibers which may advantageously be used for the invention are fibers of cellulose, semi-chemical pulp, wood pulp or recycled paper.

Til binding af vandet før formningen kan man bruge sådanne hydrokolloider som stivelse, stivelsesderivat, dextrin, polyvinylalkohol, cellulosederivater som carboxymetylcellulose eller hydroxyetylcellulose, animalsk protein som kasein, vegetabilsk protein fra f.eks. soya, plantelim som guar gum eller johannesbrødmel, alginat, syntetiske hydrokolloider som f.eks. polyacrylamid eller mel fra kornsorter som hvede, havre, rug, byg etc. eller fra knolde som f.eks. kartofler eller tapioca.For bonding the water prior to forming, such hydrocolloids as starch, starch derivative, dextrin, polyvinyl alcohol, cellulose derivatives such as carboxymethyl cellulose or hydroxyethyl cellulose, animal protein such as casein, vegetable protein from e.g. soy, plant glue such as guar gum or locust bean flour, alginate, synthetic hydrocolloids such as polyacrylamide or flour from cereals such as wheat, oats, rye, barley etc. or from tubers such as potatoes or tapioca.

Hydrokolloiden kan tilsættes tørt, opløst i vand eller dispergeret i vand eller anden væske. Ved brug af varmtvands-opløselige kolloider kan de gelatineres in situ,d.v.s. ved opvarmning efter, at kolloiden er tilsat fibersuspeneionen.The hydrocolloid can be added dry, dissolved in water or dispersed in water or other liquid. Using hot-water-soluble colloids, they can be gelatinized in situ, i.e. by heating after the colloid is added to the fiber suspension.

Opfindelsen er specielt fordelagtig for de koncentrationer af fibre og kolloider, som fremkommer af kurverne på Fig. 6 - 15, der skal forklares nærmere nedenfor.The invention is particularly advantageous for the concentrations of fibers and colloids obtained from the curves of FIG. 6 - 15, which will be explained in more detail below.

Ifølge opfindelsen kan formningen udføres ved forskellige temperaturer og også under højt tryk. Uan kan under formningen også gennemføre en ekspandering ved udvikling af gas eller vanddamp.According to the invention, molding can be carried out at various temperatures and also under high pressure. During molding, Uan can also perform an expansion by developing gas or water vapor.

-4- 150161-4- 150161

Ifølge opfindelsen kan man med fordel udføre formningen ved ekøtrudering eller sprøjtestøbning med lignende maskiner, som der anvendes i plastindustrien, ved bestrygning med maskiner af den sings, som bruges i plastindustrien, eller i papir- og kartonindustrien samt i industrien for fremstilling af byggeplader som f.eks. gipsplader eller ved valsning, presning og trækning med maskiner af den type, man bar i metalindustrien.According to the invention, it is advantageous to carry out the molding by extrusion or injection molding with similar machines used in the plastics industry, by coating with machines of the sings used in the plastics industry, or in the paper and cardboard industry and in the building board manufacturing industry such as .g. plasterboard or by rolling, pressing and drawing with machines of the type used in the metal industry.

Når hydrokolloidé’n er tilsat og opløst i den forbehandlede fibersuspension, overgår suspensionen til en homogen plastisk kohesiv pasta af fiber, vand og kolloid.When the hydrocolloid is added and dissolved in the pretreated fiber suspension, the suspension turns into a homogeneous plastic cohesive fiber of fiber, water and colloid.

Kolloiden er både - proceshjælpemiddel ved formningen, ved at den binder vandet og finfordeler fibrene og - funktionelt hjælpemiddel for slutprodukterne, ved at den fungerer som bindemiddel og derved giver produkterne mekanisk styrke.The colloid is both - process aid in forming, in that it binds the water and distributes the fibers and - functional aid for the end products, in that it acts as a binder and thereby gives the products mechanical strength.

Det vil fremgå af nedennævnte forsøg, at en passende kolioidmængdø er omtrent l/3 af fibermængden, og at man med kraftig maskineri kan reducere vandmængden ved formningen til to gange tørstofmængden.It will be seen from the experiments below that a suitable colioid amount of dye is approximately 1/3 of the amount of fiber and that with heavy machinery the amount of water in the molding can be reduced to twice the amount of dry matter.

Den praktiske udførelse af opfindelsen skal nu beskrives mere i detaljer med henvisning til vedlagte Fig. 1-5.The practical embodiment of the invention will now be described in more detail with reference to the accompanying Figs. 1-5.

Fig. 1 viser, hvorledes fiber 1 kan suspenderes i vand i en pulper 2 udrustet med et kraftigt røreværk 3. I pulperen separeres de enkelte fibre fra hinanden, som ved normal suspendering af træmasse for papirproduktion. Suspenderingen kan kompletteres med andre kendte processer som deinking, defibrering og maling, guspensionen overføres til filter 4 for koncentrering også på i og for sig kendt måde.FIG. 1 shows how fiber 1 can be suspended in water in a pulper 2 equipped with a powerful stirrer 3. In the pulper, the individual fibers are separated from each other, as in normal suspension of wood pulp for paper production. The suspension may be supplemented by other known processes such as deinking, defibrating and painting, the suspension being transferred to filter 4 for concentration also in a manner known per se.

Vandtilførsel 5 til processen kan med fordel anvendes for at rense fibrae på filteret, inden fibrene eventuelt yderligere koncentreres ved presning 6. Det vand, som - 5 - 15016 1 udskilles ved filtreringen, ksn tilbageføres til pulperen, eventuelt efter rensning. Forureninger, son kommer aed sammen med fiberen, kan tages bort med forskellige i og for sig kendte separeringsprocesser i selve pulperen eller pi vejen fra pulperen til filteret. £fter afvandingen til ønsket koncentration tilsattes hydrokolloiden 8, som indblandes ved æltning 8, hvorved man får en pasta ferdig til formning. Formningen udføres i separat udtyr eller eventuelt som ekstrudering direkte ud fra eltningsapparatet. Pi Fig. 1 er vist formning med ekstruder 10 med kappe for indstilling af ønsket temperatur.Water supply 5 to the process can advantageously be used to purify the fibers on the filter before the fibers are further concentrated by pressing 6. The water which is excreted during the filtration can be returned to the pulper, possibly after purification. Pollutants that come along with the fiber can be removed by various separation processes known per se in the pulper itself or on the path from the pulper to the filter. Subsequent to the dewatering to the desired concentration, the hydrocolloid 8 was added, which was mixed by kneading 8 to obtain a paste ready for molding. The molding is carried out in separate equipment or possibly as extrusion directly from the kneading apparatus. Pi FIG. 1 is shown molding with extruder 10 with sheath for setting the desired temperature.

Fig. 2 viser formning med ekstruder 10. Høj ekstraderings-temperatur giver, som det senere skal vises, mulighed for høje koncentrationer. Først kan man udføre en tørring ved stråling eller konvektion 11 for at reducere profilens klæbrighed, hvorefter profilen lsgges på formkasser, som er dampopvarmet, Hætte over de roterende formkasser for at genvinde varmen i den opstigende damp er ikae taget med på tegningen. Når formkasserne føres fra hinanden 12,opdeles banen i ønskede dele, og når tørringen er ferdig, frigøres det fremstillede produkt f.eks. med trykluft 13. Inden ny pasta lægges på formkasserne, kan disse eventuelt gøres rene eller præpareres på anden måde. På Fig. 2 er vist ekstrudering af profil, men man kan selvfølgelig også bruge et bredt, fladt ekstrudermundstykke for at producere flade ark, som derefter tørres og bearbejdes på samme måde som karton.FIG. 2 shows extrusion molding 10. High extrusion temperature, as will be shown later, allows for high concentrations. First, one can perform a drying by radiation or convection 11 to reduce the profile's adhesiveness, after which the profile is laid on mold boxes which are steam heated, Hood over the rotating mold boxes to recover the heat in the rising steam is not included in the drawing. When the mold boxes are disassembled 12, the web is divided into desired parts and when the drying is complete, the product produced is released e.g. with compressed air 13. Before new paste is added to the mold boxes, these may be cleaned or otherwise prepared. In FIG. 2, extrusion of profile is shown, but of course one can also use a wide, flat extruder nozzle to produce flat sheets which are then dried and processed in the same way as cardboard.

Fig. 3 viser intermittent ekstrudering ind i et formevsrktøj, eller som man kalder det i plastindustrien "sprøjtestøbning".FIG. 3 shows intermittent extrusion into a molding tool, or as it is called in the plastics industry "injection molding".

1 den på tegningen tænkte udrustning er øverste del af forme-værktøjet fast monteret til ekstrudermundstykket 10, og den nederste del 14 bruges også for at overføre de formede emner til tørreanlegget 15. Hætte over tørreanlægget for at genvinde varmen i den opstigende damp er ikke taget med på .β- 150161 tegningen. Emnerne løsgøres Ira tørreanlægget Ted 13, f.eks. med trykluft. Under tørringen er emnerne krympet, hvorfor de efterpresaea 16 til rigtig dimenaion.In the equipment contemplated in the drawing, the upper part of the molding tool is firmly mounted to the extruder nozzle 10, and the lower part 14 is also used to transfer the molded items to the drying plant 15. Hood over the drying plant to recover heat in the rising steam is not taken included in the .β-150161 drawing. The items are detached from the Ira drying system Ted 13, e.g. with compressed air. During drying, the items are shrunk, which is why they post-16 to proper dimenaion.

Ved at blande sådanne tilsætningsmidler aom frigør gas -oftest hydrogen, kuldiozyd eller nitrogen - ind i pastaen eller ved at ekstrudere ved temperaturer over 100 °C aod almindeligt atmosfæretryk, således at der frigøres vanddamp hurtigere end ved almindelig tørring, kan man fremstille porøse produkter. Ekspanderingen kan også opnås ved skumning. Emballage med hård yderside og blød stødabsorbereade inderside kan produceres ved,at formværktøjets to sider holdes ved forskellige temperaturer. Sandwichkonstruktioner med ekspanderet kerne og kompakte overflader kan fremstilles ved, at begge overflader nedkøles ved formningen, mens kernen beholder sin høje temperatur. Principperne fra produktion af skumplast kan direkte overføres.By mixing such additives to release gas - most often hydrogen, carbon dioxide or nitrogen - into the paste or by extruding at temperatures above 100 ° C to normal atmospheric pressure to release water vapor more quickly than ordinary drying, porous products can be prepared. The expansion can also be achieved by foaming. Packaging with hard outer and soft shock-absorbent inside can be produced by keeping the two sides of the molding tool at different temperatures. Sandwich structures with expanded core and compact surfaces can be made by both surfaces being cooled during molding while the core retains its high temperature. The principles of foam production can be directly transferred.

Fig. 4 viser eksempel på bestrygning med pasta 17, som er fremstillet ifølge opfindelsen. Man kan på denne måde kombinere fiberproduktet f.eks. med en plastfilm 18.FIG. 4 shows examples of coating with paste 17 made according to the invention. In this way, the fiber product can be combined e.g. with a plastic film 18.

Efter påføringen udjævnes pastaen 10 og tørres 20.After application, paste 10 is smoothed and dried 20.

En bane, som er formet efter opfindelsen, kan,mens den endnu er fugtig og formbar, pålægges forme for produktion af f.eks. engangstallerkener.A web formed after the invention may, while still moist and malleable, be molded for production of e.g. disposable plates.

Artikler, som er fremstillet ifølge opfindelsen, kan også kombineres med andre materialer efter formningen, f.eks. ved at pålægge en dekorativ film eller dekorativ trykning, og ovenpå dette kan så lægges en klar lak f.eks. af akryl PVC eller polyuretan. En æske fremstillet efter opfindelsen kan overtrækkes med dekorativt papir eller fores med vandtæt materiale.Articles made according to the invention can also be combined with other materials after molding, e.g. by applying a decorative film or decorative print, and on top of this can be put a clear varnish for example. of acrylic PVC or polyurethane. A box made according to the invention can be coated with decorative paper or lined with waterproof material.

-7- 150161-7- 150161

For at få fuldstcndig vandbinding behove· større kolloid-tilastning, end hvad der er muligt at anvende som styrke· forbedrende middel ved produktion af papir og karton med dræneringeformning. Denne store mængde bindemiddel kan umiddelbart opfattes som en ulempe ved opfindelsen , da man i almindelighed rssonnerer således, at alle "midler" og tilsætninger er omkostningsfordyrende. Dette er imidlertid ikke tilfældet, hvilket nemmest kan forklares ved, at den almindeligste koiloid stivelse koster omtrent det samme som cellulose. Hvis man derfor erstatter cellulose med en blanding af stivelse og noget billigere nemlig svagere fibre, si bliver råvareudgiften for blandingen lavere, og stivelsen kompenserer for den lavere styrke.In order to obtain complete water bonding, · colloid loading greater than what can be used as strength · enhancing agent in producing paper and cardboard with drainage molding. This large amount of binder can immediately be seen as a disadvantage of the invention, as it is generally reasoned that all "agents" and additives are costly. However, this is not the case, which is most easily explained by the fact that the most common coiloid starch costs about the same as cellulose. Therefore, if you replace cellulose with a mixture of starch and something cheaper, namely weaker fibers, then the cost of raw materials for the mixture becomes lower and the starch compensates for the lower strength.

Den eneste type af papir eller karton, som i stivhed og hårhed kan sammenlignes med produkter fremstillet ifølge opfindelsen, er såkaldt k&cheret karton, hvor man først i en proces producerer papir og siden i en efterfølgende proces limer papiret sammen i flere lag. Der er blevet fremstillet plane forsøgeark efter opfindelsen med overfladevægt mellem 400 og 1200 gram pr. m2, og disse blev sammenlignet ved stivheds-m&linger med kommerciel kacheret karton. Det viste seg da, at kun de allerdyresie kvaliteter af kacheret karton kunne vise samme stivhed - ved samme overfladevægt - som produktet fremstillet ifølge opfindelsen gav med gamle aviser som fiberråvare og stivelse som koiloid. Så stiv kacheret karton produceres kommercielt af kraftmasseholdige papirtyper, som koster omtrent kr. 1800 pr. ton, mens man ifølge opfindelsen kan fremstille ligeså stiv karton f.eks. ved ekstrudering af en pasta bestående af 23 jé gamle aviser til kr. 200 pr. ton og 8 /6 stivelse (Se Fig. 10) til kr. 2200 pr. ton eller altså til en gennemsnitsråvareudgift på kun kr. 700 pr. ton. kan har altså med opfindelsen nedbragt råvareudgiften til omtrent l/3 af det normale med traditionelle metoder -og bibeholdt stivheden.The only type of paper or cardboard that can be compared in stiffness and hardness to products made according to the invention is so-called baked cardboard, where paper is first produced in one process and then in a subsequent process the paper is glued together in several layers. Flat test sheets have been prepared according to the invention with a surface weight of between 400 and 1200 grams per square meter. and were compared by stiffness measurements with commercial cached cardboard. It was then found that only the very expensive grades of cached cardboard could show the same stiffness - at the same surface weight - as the product made according to the invention gave with old newspapers as fiber raw material and starch as coiloid. So stiff cached cardboard is produced commercially by kraft pulp containing paper, which costs about DKK 1800 per piece. tonnes, while according to the invention can be made as stiff cardboard e.g. by extrusion of a paste consisting of 23 years old newspapers for DKK 200 per tonnes and 8/6 starch (See Fig. 10) to DKK 2200 per tonne. per tonne or so at an average raw material cost of only DKK 700 per tonne. ton. Thus, the invention may have reduced the raw material expenditure to about 1/3 of the normal with traditional methods and retained the rigidity.

.8- 150161 Bølgepap er en meget fordelagtig emballageform, ae f.eke..8-150161 Corrugated cardboard is a very advantageous packaging form, ae f.eke.

US patent 122023. Bølgepappets stivhed i forhold til den bragte mængde materiale er forbedret red at kernen er hul og overfladerne er kompakte. Den vigtigste kvalitetsegenskab er stor stablingshøjde af de med forskellige varer fyldte bølgepapæsker, og dette opnås ved at lade korrageringerne i bølgepapæskernes vag gå vertikalt, og ogaå ved i dette korrageringslag at anvende stift papir - såkaldt fluting.US Patent 122023. The rigidity of the corrugated board relative to the amount of material carried is improved when the core is hollow and the surfaces are compact. The most important quality feature is the high stacking height of the corrugated parchment filled with various goods, and this is achieved by letting the corrugations in the corrugations of the corrugated parcels go vertically, and also by using rigid paper - so-called fluting.

Ved produktion af basispapirerne - den indre fluting og de ydre linere - har det dog ikke været muligt at fuldføre denne orientering af stivheden. Ved papirproduktion er det muligt at orientere fibrene i maskinernes længderetning, men desværre ikke på tværs. På bølgepapfabrikkerne behandles basispapirerne i lange baner, og korrugeringerne kommer derfor uheldigvis på tværs af den højeste egenstivhed i både flutingen og linerne. Denne ulempe forværres yderligere ved at bølgepapfabrikkerne under korrugeringen ødelægger en del af den stivhed, som papirfabrikken bestræbte sig på at tilføre flutingen.However, in the production of the base papers - the inner fluting and the outer liners - it has not been possible to complete this orientation of the stiffness. In paper production, it is possible to orient the fibers in the longitudinal direction of the machines, but unfortunately not crosswise. At corrugated cardboard mills, the base papers are processed in long courses, and therefore the corrugations accidentally come across the highest stiffness in both the fluttering and the liners. This disadvantage is further exacerbated by the corrugated cardboard mills during the corrugation destroying a portion of the stiffness that the paper mill strives to add to the fluttering.

Disse ulemper kan elimineres, hvis nærliggende opfindelse anvendes på bølgepapproduktion, f.eks. som skitseret på Fig. 5: - Fibrene i linerne 21 er orienteret i samme retning som korrugeringerne.These drawbacks can be eliminated if the present invention is applied to corrugated board production, e.g. as outlined in FIG. 5: - The fibers in the lines 21 are oriented in the same direction as the corrugations.

- Flutingen presses i form af pasta fremstillet ifølge opfindelsen ud af et bredt ekstrudermundstykke 10 med bølgeformet profil, nvorved fibrene til dels orienteres langs korrugeringerne.The fluting is pressed in the form of paste made according to the invention out of a wide corrugated profile extruder nozzle 10, whereby the fibers are partly oriented along the corrugations.

- Den stivhedsgivende fluting bøjes ikke efter at den er formet.- The stiffness-giving fluting does not bend after it is shaped.

Før begge linerne 21 er pålagt«kan der udføres en fortørring ved hjælp af stråling 22. Hovedtørringen udføres i en lang tørreovn 23 på lignende måde som ved traditionel bølgepapproduktion. Ved traditionel produktion går korrugeringerne på tværs, mens de ved nærliggende opfindelse kan lægges på langs som vist ved tværsnittet 24. Hvis tørreovnen placeres skråt, kan den fra tørringen frigjorte damp bortledes ved naturlig konvektion 25.Before both lines 21 are applied, a pre-drying can be carried out by radiation 22. The main drying is carried out in a long drying oven 23 in a similar manner to traditional corrugated board production. In traditional production, the corrugations are transverse, while in the present invention they can be laid longitudinally as shown in cross-section 24. If the drying furnace is inclined, the steam released from the drying can be discharged by natural convection 25.

150161 - 9 -150161 - 9 -

Under tørringen aigrerer kolloiden i det korrugerede aellealag ud mod linerne og bevirker limning af disse, således at limning i traditionel forstand kan sløjfes. En anden vigtig forbedring ligger i mulighden for højere vådstivhed ved tilestning af harpiks, ved at stivelsesmcngden i mellemlaget er højere end traditionelt. Til slut må heller ikke økonomien glemmes. Som nævnt ovenfor er råvareudgiften for fiberprodukter efter nerliggende opfindelse ca. kr. 700 pr. ton.During drying, the colloid in the corrugated eel layer migrates towards the liners and causes them to be glued, so that gluing in the traditional sense can be loosened. Another important improvement lies in the possibility of higher wet stiffness in the application of resin, in that the amount of starch in the intermediate layer is higher than traditional. Finally, the economy must not be forgotten. As mentioned above, the raw material cost of fiber products according to the present invention is approx. 700 kr. ton.

Til sammenligning kan anføres, at bølgepapfabrikker idag køber deres papirråvarer til ca. kr. 2000 pr. ton.By comparison, corrugated cardboard factories today buy their paper raw materials for approx. 2000 kr. ton.

Formningen af bølgepap kan selvfølgelig foretages på mange andre måder end den, som er vist på Fig. 5. Kan kan f.eks. også lade linerne fremstille ved fremgangsmåden ifølge opfindelsen ved, at forme disse fra brede flade ekstruder-mundstykker.The molding of corrugated board can, of course, be carried out in many other ways than that shown in FIG. 5. Can can e.g. also allow the lines to be manufactured by the method of the invention by molding these from wide flat extruder nozzles.

På grund af den høje mængde af bindemiddel er nærværende opfindelse specielt interessant ved produktion af produkter, hvor en hård og træagtig karakter højner slutprodukternes markedsværdi, hvilket er tilfældet f.eks. for emballage i form af æsker og kartoner. Opfindelsen er også specielt interessant, hvor man ønsker at producere hule artikler, da dette er kompliceret med de traditionelle metoder, hvor man er nødt til at udgå fra plane ark. På råvaresiden er opfindelsen specielt interessant for genvinding af gamle aviser. Denne returfiber er på grund af sin lave styrke og lave dræneringshastighed mindre attraktiv for andre genvindingsmetoder og derfor billig. Som det senere skal vises, behøves der også for avispapir mindre kolloid for vandbindingen end for længere fibre.Because of the high amount of binder, the present invention is particularly interesting in the production of products in which a hard and woody character increases the market value of the end products, which is the case e.g. for packaging in the form of boxes and cartons. The invention is also particularly interesting where one wants to produce hollow articles, as this is complicated with the traditional methods where one has to start from flat sheets. On the commodity side, the invention is particularly interesting for recycling old newspapers. This recycled fiber, due to its low strength and low drainage rate, is less attractive to other recycling methods and therefore cheap. As will be shown later, newsprint also needs less colloid for water bonding than for longer fibers.

I de tilfælde, hvor man ikke ønsker et stift og hårdt slutprodukt, men i stedet et blødere og sejere produkt kan hydrokolloiden kombineres med et syntetisk bindemiddel som f.eks. latex af styren-butadien, aeryl eller vinylacetat.In those cases where one does not want a rigid and hard end product, but instead a softer and tougher product, the hydrocolloid can be combined with a synthetic binder such as e.g. latex of styrene-butadiene, aeryl or vinyl acetate.

- ίο - 15 0161- or - 15 0161

For at forhindre indtrængning af vand kan tilsættes naturlige og syntetiske harpikser. For at forbedre v&dstyrken kan tilsættes midler som f.eks. ureaformaldehydharpiks, melamin-formaldehydharpika, etc.. Andre tilsætningsmidler kan være fyldstoffer som f.eks. kaolin og kridt, pigment som f.eks. titandiozyd samt farvestoffer og brandhindrende midler.To prevent water ingress, natural and synthetic resins can be added. In order to improve the moisture strength, agents such as urea formaldehyde resin, melamine formaldehyde resin, etc. Other additives may be fillers such as e.g. kaolin and chalk, pigments such as titanium dioxide as well as dyes and fire retardants.

Terringen kan gøres lettere ved at tilsætte fyldstoffer, som gør pastaen porøs, eller ved at tilsætte midler som opsuger vandet f.eks. brændt gips eller cement.The drying can be facilitated by adding fillers which make the paste porous, or by adding agents which absorb the water e.g. burnt plaster or cement.

Der er udført sprøjtestøbningsforeøg med en maskine af typen Demag Stubbe S 55 d, som normalt er beregnet for plastic.Injection molding increments have been carried out with a machine of the type Demag Stubbe S 55 d, which is usually intended for plastic.

Maskinen havde ekstrudemundstykke med diameter 3 mm. Der var overhovedet ingen vanskeligheder ved at ekstrudere en streng af pasta ud gennem dette mundstykke og ind i et værktøj ned en flydevej på 250 mm og en godstykkelse på 2 mm. Ved at åbne værktøjet en smule, således at der blev en afstand mellem dets to dele på 0,3 mm, kunne der ekstruderes en film, som efter tørring viste en tykkelse på kun 0,2 mm.The machine had an extruder nozzle with a diameter of 3 mm. There was no difficulty at all in extruding a string of paste through this nozzle and into a tool down a float path of 250 mm and a thickness of 2 mm. By slightly opening the tool so that there was a distance between its two parts of 0.3 mm, a film could be extruded which, after drying, showed a thickness of only 0.2 mm.

Forudsætningerne for problemfri sprøjtestøbning og film-ekstrudering var: - Fuldstændig binding af vandet i pastaen. Ved utilstrækkelig tilsætning af hydrokolloid mistede pastaen sit vand i mundstykket, således at dette tilstoppedes af fibre.The prerequisites for seamless injection molding and film extrusion were: - Full bonding of the water in the paste. By insufficient addition of hydrocolloid, the paste lost its water in the mouthpiece so that it was clogged by fibers.

- Tilstrækkelig flydbarhed. Ved for høje koncentrationer kunne der konstateres grænseflader inde i de formede artikler.- Adequate flowability. At too high concentrations, interfaces could be found inside the shaped articles.

Æsker lignende cigaræsker blev fremstillet, og efter tørring lignede disse mere æsker af træ end af karton.Boxes similar to cigar boxes were made, and after drying these resembled more boxes of wood than of cardboard.

En hel serie forsøg blev udført med forskellige kolloider og suspenderet materiale for at kunne fastslå, hvilke koncentrationer der er mulige. For forskellige fiberkoncentrationer 150161 - n - opmålte« på laboratoriet en minimal og en mak·imal mcngde kolloid indenfor hvilke opfindelsen er anvendelig. Til dette arbejde blev valgt to kriterier:A whole series of experiments were performed with different colloids and suspended materials to determine what concentrations are possible. For various fiber concentrations 150161 - n - measured in the laboratory, a minimal and maximum amount of colloid within which the invention is applicable. Two criteria were chosen for this work:

Kriterium for maksimal mcngde hydrokolloid.Criterion for maximum amount of hydrocolloid.

Man brugte et såkaldt Haake konsistometer. Dette er et termostatreguleret gennemstrømningsviskosimeter med stempel, gennem hvilket der er boret et 2 mm hul. Dette konsistometer er brugt indenfor plastindustrien for måling af termoplasters viskositet efter smeltning. Viskositeten udregnes efter formlen 6 * tA so-called Haake consistometer was used. This is a thermostatically controlled flow viscometer with a piston through which a 2 mm hole is drilled. This consistometer is used in the plastics industry for measuring the viscosity of thermoplastics after melting. The viscosity is calculated according to the formula 6 * t

7 - s · K7 - s · K

hvor γ - viskositeten i Pascalsekunder G belastningen i kp t - tiden i sekunder s * målestrekningen i mm K » apparatkonstant for borehullet ** 2,5where the γ - viscosity in Pascal seconds G the load in kp t - the time in seconds s * the measurement distance in mm K »device constant for the borehole ** 2.5

Som kriterium blev valgt 10 000 Pascalsekunder, da dette inden for plastindustrien anses for at være relativt højt, men dog problemfrit.As a criterion, 10,000 Pascal seconds were chosen, as this is considered to be relatively high in the plastics industry, but problem-free.

Kriterium for minimal mængde hydrokolloid.Criterion for minimum amount of hydrocolloid.

Man anvendte samme Haake konsistometer for at fastslå, hvor meget hydrokolloid der behøves for at få homogen tråd ud af dysen, uden at tråden viste tendens til at miste sit vand.The same Haake consistometer was used to determine how much hydrocolloid is needed to get homogeneous thread out of the nozzle without the thread showing a tendency to lose its water.

Den synarese, som viser sig, når vandbindingen er ufuldstcndig, kan ses som frit (glinsende) vand i trådens overflade.The synaresis that appears when the water bond is incomplete can be seen as free (glistening) water in the surface of the wire.

Fiberkoncentrationen står på absisse-aksen og kolloid-koncentrationen på ordinat-aksen. Begge i vægtprocent af hele pastaen. Differencen op til 100 # er vand. Minimalkriteriet giver det venstre ben i vinkelkurvene og maksimalkriteriet det højre, og mellem disse ben er opfindelsen altså praktisk anvendelig.The fiber concentration is on the abscissa axis and the colloid concentration on the ordinate axis. Both in weight percent of the whole paste. The difference up to 100 # is water. The minimum criterion gives the left leg in the angular curves and the maximum criterion the right, and between these legs the invention is thus practically applicable.

-12- 150161 På Fig. 6 - 8 er fiberråvarerne returfibre af gamle aviser og ekstruderingstemperaturen 20°C. Kolloideme er koM *= koldtvandsopløselig oxideret majsstivelse "Amijel® li 5" P * n&tiv kartoffelstivelse G ** guar guiOj "SuperCol® U Powder" oM = oxideret majsstivelse, "Amisol® 05594" U * nativ majsstivelse CMC * carboxymetylcellulose, "Majol® PS 6" PVA * polyvinylalkohol, "Covol® 9930" A «» alginat, "Protanal® H" PAA = polyacrylamid,"Gfi 999"fra W. B. Grace.In FIG. 6 - 8, the fiber raw materials are recycled fibers from old newspapers and the extrusion temperature is 20 ° C. The colloids are colM * = cold water soluble oxidized corn starch "Amijel® li 5" P * n & tive potato starch G ** guar guiOj "SuperCol® U Powder" oM = oxidized corn starch, "Amisol® 05594" U * native corn starch CMC * carboxymethyl cell PS 6 "PVA * polyvinyl alcohol," Covol® 9930 "A" »alginate," Protanal® H "PAA = polyacrylamide," Gfi 999 "from WB Grace.

Af Fig. 7 ses f.eks. at ved en fiberkoncentration på 16 behøves minimum 7 $ majsstivelse som kolloid for at binde vandet. Ved forhøjelse af kolloidmængden bliver pastaen tykkere, for ved 10 $ at være så tyk, at muligheden for ekstrudering uden at bruge specielt kraftige ekstruderings-maski'ner kan betvivles.In FIG. 7 can be seen e.g. that at a fiber concentration of 16, a minimum of $ 7 corn starch as a colloid is needed to bind the water. By increasing the amount of colloid, the paste becomes thicker, for at $ 10 it is so thick that the possibility of extrusion without the use of particularly powerful extrusion machines can be doubted.

Nativ majsstivelse og koldtvandsopløselig majsstivelse gav samme kurve M. For kartoffelstivelse viste det sig,at den koldtvandsopløselige type gav kriterierne ved lavere tilsætninger end med nativ stivelse, og kurvespidsen for maksimal koncentration blev flyttet til venstre. Efter kraftig æltning gik imidlertid viskositeten og vandbindingen tilbage til samme niveau som for nativ kartoffelstivelse. Kun kurven for nativ kartoffelstivelse P er indtegnet.Native corn starch and cold water soluble starch yielded the same curve M. For potato starch, the cold water soluble type showed the criteria at lower additions than with native starch, and the peak of the maximum concentration curve was shifted to the left. After vigorous kneading, however, viscosity and water bonding returned to the same level as for native potato starch. Only the native potato starch P curve is plotted.

På Fig. 9 - 11 er fiberråvaren fortsat gamle aviser, men ekstruderingstemperaturen er forhøjet til 85 °C. Kolloiderne er .13. 150161 P * nativ kartoffelstivelse CMC * carboxymetylcelluloee, "Majol® PS 8" G * guar gun, "SuperCol® U Powder" M nativ majsstivelse A alginat, "Prbtanal® H" oM oxideret majsstivelse, "Amisol® 05594” PVA » polyvinylalkohol, "Covol® 9930" PAA - polyacrylamid, "GB 999" fra W. B. Grace.In FIG. 9-11 the fiber raw material is still old newspapers, but the extrusion temperature is raised to 85 ° C. The colloids are .13. 150161 P * native potato starch CMC * carboxymethyl cellulose, "Majol® PS 8" G * guar gun, "SuperCol® U Powder" M native corn starch A alginate, "Prbtanal® H" and oxidized corn starch, "Amisol® 05594" PVA »polyvinyl alcohol, "Covol® 9930" PAA - polyacrylamide, "GB 999" from WB Grace.

Spidsen af vinkelkurverne angiver, hvor høj fiberkoncentration man kan arbejde med ud fra de to valgte kriterier. Ved at sammenligne majsstivelseskurvsrne pi Fig. 7 og Fig. lOses, at cndringen af ekstruderingstemperatur fra 20 til 85 °C medfører en forøgelse i maksimal mulig fiberkoncentration fra 20 til 28 jo. Kolloidkoncentrationen ved 85 °C og maksimal fiberkoncentration er 6 jo% så at vandmængden bliver 68 jo eller altsi omtrent 2 gange tørstofmsngden.The tip of the angular curves indicates how high the fiber concentration can be used based on the two selected criteria. By comparing the cornstarch baskets of FIG. 7 and FIG. It should be noted that changing the extrusion temperature from 20 to 85 ° C results in an increase in maximum possible fiber concentration from 20 to 28 jo. The colloid concentration at 85 ° C and maximum fiber concentration is 6 jo%, so that the amount of water becomes 68 jo, or at least twice the amount of dry matter.

Der blev ogs& udført ekstruderinger ved højere temperaturer end de 85 °C, som er højeste temperatur på diagrammerne. Men på grund af fordampning var det med den tilgængelige måleudrustning ikke muligt at måle kriteriepunkterne for minimalog maksimal kolloidmængde. En ekstrudering blev udført ved 140 °C af en pasta bestående af 41 f> avismasse som fiber og 6 jo nativ kartoffelstivelse som kolloid, således at forholdet vand : tørstof var under 1-g. Energibehovet for tørring kan altså med fremgangsmåden ifølge opfindelsen gøres lavere end for traditionel produktion af papir og karton. Kartoffelstivelsen blev tilsat fibermassen uopløst og blev altså gelatineret af varme umiddelbart før ekstruderingen. Ekstruderingen gennem et mundstykke på 2 mm diameter gik uden problemer. Efter passering af dyseåbningen ekspanderede pastaen under afgivning af damp til et trådagtigt netværk, som efter tørring viste en specif i vægt på 0,2 kg/dm® mod 0,8 kg/dm® for normal ekstrudering ved temperaturer under 100 oc.Extrusions were also performed at temperatures higher than the 85 ° C, which is the highest temperature in the diagrams. However, due to evaporation, with the available measuring equipment, it was not possible to measure the criterion points for minimum and maximum colloid quantity. An extrusion was carried out at 140 ° C of a paste consisting of 41 µm of pulp as fiber and 6 of native potato starch as colloid such that the ratio of water to dry matter was below 1 g. The energy requirement for drying can thus be reduced by the method according to the invention than for traditional production of paper and cardboard. The potato starch was added to the fiber mass undissolved and thus was gelatinized by heat immediately prior to extrusion. The extrusion through a 2 mm diameter nozzle went smoothly. After passing the nozzle opening, the paste expanded during steam release to a wire-like network which, after drying, showed a specific weight of 0.2 kg / dm® versus 0.8 kg / dm® for normal extrusion at temperatures below 100 ° C.

-14- 150161 På Fig. 12 er fiberr&varen fortsat returpapir i form af aviser, men i stedet for at bruge ren hydrokolloid blev der anvendt almindelig hvedemel med udmalingsgrad 78 y£.In FIG. 12, the fiber & commodity continued to be recycled paper in the form of newspapers, but instead of using pure hydrocolloid, ordinary wheat flour with a grinding grade of 78 y £ was used.

Ekstruderingerae udførtes som sædvanlig ved 20 og 85 °C.Extrusion extrusion was performed as usual at 20 and 85 ° C.

Kurverne viser bl.a., at maksimal fiberkoncentration er lavere.for hvedemel end for stivelserne.The curves show, among other things, that the maximum fiber concentration is lower for wheat flour than for the starches.

Få Fig. 13 er fiberen også returaviser og kolloiden nativ kartoffelstivelse, men inden måling af kriteriepunkterne blev indblandet 4 af en 50 styren-but adi en latex, "Do*Fig. 13, the fiber is also return papers and colloidal native potato starch, but prior to measuring the criterion points 4 were mixed by a 50 styrene-but adi a latex, "Do *

Latex 678". Denne figur adskiller elg lidt fra de øvrige, idet vandmængden fås ved at substrahere mængderne af fiber og kolloid fra 98 mod fra 100 ^ for alle andre diagrammer. Temperaturen var 20 °C. Ved at sammenligne med kurven for kartoffelstivelse på Fig. 6 ses, at latexen bidrager til vandretention og gør også pastaen smidigere, hvorfor nederste kriteriekurve trækkes nedad og maksimal fiberkoncentration til højre.Latex 678 ". This figure differentiates moose slightly from the others in that the amount of water is obtained by subtracting the amounts of fiber and colloid from 98 against from 100 ° for all other charts. The temperature was 20 ° C. By comparing with the potato starch curve of Figs. 6 it is seen that the latex contributes to water retention and also makes the paste smoother, which is why the lower criterion curve is pulled down and maximum fiber concentration to the right.

Få Fig. 14 er fiberråvaren gamle ublegede kraftpapirsække og kolloiden er nativ majsstivelse. Ekstruderingerae blev udført som sædvanlig ved 20 °C og 85 °C. Forsøgene viste, at denne fiber- sulfatmasse - på grund af bedre dræneringa-evne og også større tendens til flokning fordrede mere kolloid end avismasse for at opfylde minimal-kriteriet, hvorfor"ifcnstre vinkelben" løftes højere op. Dette fremkommer ved at sammenligne med kurverne M på Fig 7 og 10.Fig. 14, the fiber raw material is old unbleached kraft paper bags and the colloid is native corn starch. Extrusion extracts were performed as usual at 20 ° C and 85 ° C. The experiments showed that this fiber sulphate pulp - due to better drainage ability and also greater tendency to flock, required more colloidal than newspaper pulp to meet the minimum criterion, which is why "lower angular legs" are raised higher. This is obtained by comparing with the curves M of Figures 7 and 10.

Fig. 15 viser de samme kriterier ved ekstrudering af blandinger af fibre fra gamle aviser og kolloid i form af kasein.FIG. 15 shows the same criteria for extrusion of mixtures of fibers from old newspapers and casein in the form of casein.

Kaseinet,som blev anvendt,var polsk 30 mesh mælkesyrekasein, og for at hjælpe opløsningen af kaseinet tilsattes det i form af en tørblanding bestående af 53 $ kasein, 10^ ^ natriumkarbonat (Νη200β) og 36-g- fugtighed. Ved tegning af Fig. 15 er natriumkarbonaten medregnet som kolloid.The casein used was polish 30 mesh lactic acid casein and to aid in the dissolution of the casein it was added in the form of a dry mixture consisting of 53 $ casein, 10 µl sodium carbonate (Νη200β) and 36 g moisture. In drawing FIG. 15, the sodium carbonate is included as a colloid.

ls 150161ls 150161

Eketruderingerne gennem Haake-konsistometeret og anden formning gik nemmest midt mellem de to kurreben og ikke alt for nar spidsen for maksimalt tørstof. 1 nærheden af minimal-kriteriet og nar spidsen fik pastaen og slutproduktet en kornet struktur - mindre for tramasae end for kraftmasse.The extrusions through the Haake consistometer and other molding were most easily centered between the two scrub legs and not too close to the peak of maximum solids. In the proximity of the minimum criterion and near the tip, the paste and the final product obtained a grainy structure - less for tramasae than for kraft pulp.

Ved tegning af kriteriekurrerne er fibermcngden og kolloid-mængden regnet som tørt. Fugtighed, som er indført med fibre eller kolloid, er medregnet i vandmængden.When drawing the criterion curves, the amount of fiber and the colloid amount are considered dry. Moisture introduced with fibers or colloid is included in the amount of water.

På de følgende sider skal gives en del eksperimentelle data.The following pages provide some experimental data.

Fiberråvaren blev suspenderet i varmt vand ved 2 ^ koncentration og kraftig blanding. Den derved dannede suspension draneredes først på metaltråddug med 3/4 mm maskevidde og pressedes derefter mellem hænderne til tørstofmængder mellom 10 og 35The fiber raw material was suspended in hot water at 2 ^ concentration and vigorous mixing. The suspension thus formed was first drained on metal wire cloth with 3/4 mm mesh width and then pressed between the hands to dry matter amounts between 10 and 35

For at få reproducerbare kurver viste det sig meget vigtigt altid at bruge samme temperatur-tids-forløb ved tilberedning og lagring af pasta, inden kriteriepunkterne blev målt.To obtain reproducible curves, it was very important to always use the same temperature-time course when cooking and storing pasta before measuring the criterion points.

Der blev brugt forskellig metode for varmtvandsopløselige og koldtvandsopløselige hydrokolloider;Different method was used for hot water soluble and cold water soluble hydrocolloids;

Metode for varmtvandsopløselige kolloider.Method for hot water-soluble colloids.

Ca. 200 g fibersuspension og tørindblandet kolloid i så stor mængde, at man forsøger at "træffe" det søgte kriterie, blev stillet i et lukket glas i varmeskab ved 110 °C i 10 min.Ca. 200 g of fiber suspension and dry admixed colloid in sufficient quantity to attempt to "meet" the sought criterion were placed in a sealed glass in heat cabinet at 110 ° C for 10 min.

Varmeskabets temperatur blev så reduceret til 95 °C, og prøven blev stående ved denne temperatur i 30 min., hvorefter glasset åbnedes, og efter hurtig omblanding af indholdet måltes viskositet samt vandbinding ved 85 °C. Resten af prøven lader man stå yderligere 60 min. i det lukkede glas -nu ved værelsestemperatur hvorefter man måler de samme to kriterier ved 20 °C. Hvis prøven står længere end 60 min. ved værelseatemperatur, fås dårligere vandbinding og højere viskositet.The temperature of the heating cabinet was then reduced to 95 ° C and the sample was left at this temperature for 30 minutes, after which the glass was opened and after rapid mixing of the contents viscosity and water bonding were measured at 85 ° C. The rest of the sample is allowed to stand for another 60 min. in the closed glass - at room temperature, after which the same two criteria are measured at 20 ° C. If the sample is longer than 60 min. at room temperature, poorer water bonding and higher viscosity are obtained.

- 16 - 150161- 16 - 150161

Kurverne for majsstivelee, oxideret majsstivelse, kartoffelstivelse· hvedemel» polyvinylalkohol, alginat, CMC og guar er tegnet efter måling på denne måde, selvom sidstnævnte 3 kolloider egentlig er koldtvandsopløselige, således at nedennævnte metode også skulle være anvendelig.The curves for corn starch, oxidized corn starch, potato starch · wheat flour »polyvinyl alcohol, alginate, CMC and guar are drawn after measurement in this way, although the latter 3 colloids are actually cold water soluble, so that the method below should also be applicable.

Metode for koldtvandsopløselige kolloider.Method for cold water soluble colloids.

Koldtvandsopløselige kolloider leder let til dannelse af klumper ved tilsætningen til fibersuspensionen, og for at undgå tilstoppelse af hullet i konsistometeret er det nødvendigt,at pulveret strøs meget jævnt, forsigtigt og i små portioner ud over fibersuspensionens overflade samtidig med, at suspensionen holdes under kraftig æltning. Også ved denne metode blev brugt ca. 200 g suspension for hver prøve. Måling af viskositet og vandbinding ved 20 °C blev foretaget umiddelbart efter tilsætning af kolloiden, og resten af prøven fik lov at stå i 90 min. i varmeskab ved 95 °C, inden de to kriterier blev målt også ved 85 °C.Cold water soluble colloids readily lead to the formation of lumps upon addition to the fiber suspension, and to avoid clogging of the hole in the consistometer, the powder must be sprinkled very evenly, gently and in small portions over the surface of the fiber suspension while maintaining the suspension under vigorous kneading. . This method also used approx. 200 g of suspension for each sample. Viscosity and water binding measurements at 20 ° C were made immediately after the colloid was added and the rest of the sample was allowed to stand for 90 min. in heating cabinet at 95 ° C before the two criteria were also measured at 85 ° C.

Denne metode blev anvendt for koldtvandsopløselig majsstivelse, koldtvandsopløselig, oxideret majsstivelse, koldtvandsopløselig kartoffelstivelse, kasein og polyacrylamid. Hvis metoden bruges for CMC og guar behøves ca. 1 $ mere kolloid end med den til diagrammerne brugte"varmtvandsopløselige metode", antagelig på grund af at kolloiden uden opvarmning kun opløses ufuldstændigt.This method was used for cold water soluble corn starch, cold water soluble, oxidized corn starch, cold water soluble potato starch, casein and polyacrylamide. If the method is used for CMC and guar, approx. 1 $ more colloid than with the "hot water soluble method" used for the diagrams, presumably because the colloid without heating dissolves only incompletely.

Der blev også udført et sammenlignende forsøg med de koncentrationer, som var brugt i svensk pat. 210.080, eksempel III.A comparative experiment was also performed with the concentrations used in Swedish Patent 210,080, Example III.

Træmasse blev dispergeret kraftigt i vand ved 11 f> koncentration, og derefter blev indblandet en 5¾ $ kogt varm opløsning af almindelig majsstivelse i så stor mængde,at den færdige blanding kom til at bestå af 8,3 ^ træmasse og 1,3 $ stivelse. Som man skulle forvente af ovennævnte, så viser enkel undersøgelse af blandingen, at den ikke kan bruges til produktion af pap eller papir: -17- 150161 • Blandingen er grynet. Koncentrationen på 11 JÉ er alt for høj til at få fibrene ordentlig fra hinanden og blødgjorte.Wood pulp was dispersed vigorously in water at 11 ° C concentration, and then a 5¾ $ boiled hot solution of common corn starch was mixed in such a quantity that the final blend consisted of 8.3 ^ wood pulp and 1.3 $ starch. . As one would expect from the above, simple examination of the mixture shows that it cannot be used for the production of cardboard or paper: -17- 150161 • The mixture is gritty. The concentration of 11 JÉ is too high to get the fibers properly apart and softened.

Den efterfølgende kolloidtilaetning kan hindre flokking af allerede dispergerede fibre, men iormår ikke at dispergerø forhåndenværende fiberbundter.The subsequent colloid addition can prevent flocculation of already dispersed fibers, but does not allow dispersing existing fiber bundles.

- Når blandingen trykkes mellem fingrene afdrypper vand, således at eketrudering vil være nytteløst. 1,3 stivelse falder under minimum-kriteriet for kolloidmengde ifølge Fig. 6, 7, 9 og 10.- When the mixture is pressed between the fingers, water drips so that extrusion will be useless. 1.3 starch falls below the minimum criterion for colloidal amount of FIG. 6, 7, 9 and 10.

Til slut skal anføres en del erfaringer høstet fra tørringen af pastaprøverne.Finally, some experiences gained from the drying of the pasta samples must be mentioned.

Hvis tørringen udføres i varmeskab ved 105 °C, således at 1 mm tykke "pastakager" tørredes på ubehandlet jemflade, kunne der opstå vanskeligheder ved den efterfølgende løsgøring fra jernfladen. Erfaringerne tyder på, at løsningen sker nemmest, når der var brugt stor mængde kolloid, og når man brugte de kolloider, der var de mest effektive vandbindere, eller med andre ord, når man arbejder i området nær maximum- kriteriet i Fig. 6 - 15.If the drying is carried out in a heat cabinet at 105 ° C so that 1 mm thick "pasta cakes" are dried on untreated surface, difficulties may arise in the subsequent release from the iron surface. Experience has shown that the solution is most convenient when large quantities of colloid have been used and when colloids that have been the most effective water binders have been used, or in other words when working in the area near the maximum criterion in Figs. 6 - 15.

Hvis "pastakagerne" i stedet blev opvarmet på varmeflade var problemet med løsgøringen betydelig mindre, og ved gennemskæring af de tørrede prøveark kunne man konstatere en koncentrering af hydrokolloid i overfladen mod den varmeafgivende plade. Dette bekræfter den netop fremsatte påstand om, at stor mængde kolloid gør løsgøringen nemmere. Den store mængde kolloid i den overflade af prøvearket, hvorigennem varmen tilføres, kan forklares ved, at kolloiden vandrer med vandet mod den varmeafgivende jernplade, hvor vandet fordampes, og hydrokolloiden bliver så liggende tilbage, da den ikke kan vandre tilbage med dampen.If the "pasta cakes" were instead heated on a hot surface, the problem of loosening was considerably less, and by cutting the dried sample sheets a concentration of hydrocolloid in the surface towards the heat emitting plate was found. This confirms the just-made claim that large amount of colloid makes detachment easier. The large amount of colloid in the surface of the sample sheet through which the heat is applied can be explained by the fact that the colloid migrates with the water towards the heat emitting iron plate where the water evaporates and the hydrocolloid then remains as it cannot travel back with the steam.

Hvis tørringen blev udført på teflonbelagt metalform, opstod overhovedet intet problem med at fjerne de færdigtørrede fiberprodukter·If the drying was done in Teflon-coated metal form, there was no problem at all in removing the finished dried fiber products ·

DK198779A 1978-05-25 1979-05-15 PROCEDURE FOR MANUFACTURING FORMED PRODUCTS FROM CELLULOSE-BASED FIBERS DK150161C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE7805693A SE421541B (en) 1978-05-25 1978-05-25 PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS
SE7805693 1978-05-25

Publications (3)

Publication Number Publication Date
DK198779A DK198779A (en) 1979-11-19
DK150161B true DK150161B (en) 1986-12-22
DK150161C DK150161C (en) 1988-08-08

Family

ID=20334941

Family Applications (1)

Application Number Title Priority Date Filing Date
DK198779A DK150161C (en) 1978-05-25 1979-05-15 PROCEDURE FOR MANUFACTURING FORMED PRODUCTS FROM CELLULOSE-BASED FIBERS

Country Status (6)

Country Link
DE (1) DE2920988C2 (en)
DK (1) DK150161C (en)
FI (1) FI69333C (en)
FR (1) FR2469271A1 (en)
GB (1) GB2050459B (en)
SE (1) SE421541B (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE421541B (en) * 1978-05-25 1982-01-04 Stein Gasland PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS
US4333863A (en) * 1981-02-12 1982-06-08 Merck & Co., Inc. Water resistant texturized wall coverings
JPS5982499A (en) * 1982-09-30 1984-05-12 ア−ムストロング・ワ−ルド・インダストリ−ス・インコ−ポレ−テツド Moldable composition based on cellulose
US4443262A (en) * 1982-09-30 1984-04-17 Armstrong World Industries, Inc. Low density fibrous sheet material
GB2131046A (en) * 1982-11-24 1984-06-13 Stirling Fibre Fuels Limited Process for manufacturing a fuel briquette
BG46154A3 (en) * 1983-02-18 1989-10-16 Warner Lambert Co Method for preparing of capsules
DE3334118A1 (en) * 1983-09-21 1985-05-15 Thomas Katrineholm Öbrink Filling material, process for the production thereof and use of such filling material
NL8400921A (en) * 1984-03-23 1985-10-16 Dsm Resins Bv PROCESS FOR MANUFACTURING MOLDING MOLDINGS FROM THERMO-CURING MATERIAL WITH AN IMPROVED FINISH.
JPH0686548B2 (en) * 1989-04-21 1994-11-02 工業技術院長 Novel water absorbent composite material and method for producing the same
FR2684966A1 (en) * 1991-12-12 1993-06-18 Gomez Daniel EXPANSE, RECYCLABLE VEGETABLE MATERIAL, ITS MANUFACTURING METHOD AND USE IN THE FIELDS OF SETTING, PROTECTION, PACKAGING, COATINGS AND SHEET MATERIALS.
US5582670A (en) 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5580624A (en) 1992-08-11 1996-12-03 E. Khashoggi Industries Food and beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders, and the methods of manufacturing such containers
US5660903A (en) 1992-08-11 1997-08-26 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5453310A (en) 1992-08-11 1995-09-26 E. Khashoggi Industries Cementitious materials for use in packaging containers and their methods of manufacture
US5810961A (en) 1993-11-19 1998-09-22 E. Khashoggi Industries, Llc Methods for manufacturing molded sheets having a high starch content
US5709827A (en) 1992-08-11 1998-01-20 E. Khashoggi Industries Methods for manufacturing articles having a starch-bound cellular matrix
US5508072A (en) 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5506046A (en) 1992-08-11 1996-04-09 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5928741A (en) 1992-08-11 1999-07-27 E. Khashoggi Industries, Llc Laminated articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5545450A (en) 1992-08-11 1996-08-13 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5830548A (en) 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets
US5618341A (en) 1992-08-11 1997-04-08 E. Khashoggi Industries Methods for uniformly dispersing fibers within starch-based compositions
US5830305A (en) 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Methods of molding articles having an inorganically filled organic polymer matrix
US5658603A (en) 1992-08-11 1997-08-19 E. Khashoggi Industries Systems for molding articles having an inorganically filled organic polymer matrix
US5641584A (en) 1992-08-11 1997-06-24 E. Khashoggi Industries Highly insulative cementitious matrices and methods for their manufacture
US5683772A (en) 1992-08-11 1997-11-04 E. Khashoggi Industries Articles having a starch-bound cellular matrix reinforced with uniformly dispersed fibers
US5662731A (en) 1992-08-11 1997-09-02 E. Khashoggi Industries Compositions for manufacturing fiber-reinforced, starch-bound articles having a foamed cellular matrix
US5851634A (en) 1992-08-11 1998-12-22 E. Khashoggi Industries Hinges for highly inorganically filled composite materials
US5800647A (en) 1992-08-11 1998-09-01 E. Khashoggi Industries, Llc Methods for manufacturing articles from sheets having a highly inorganically filled organic polymer matrix
US5660900A (en) 1992-08-11 1997-08-26 E. Khashoggi Industries Inorganically filled, starch-bound compositions for manufacturing containers and other articles having a thermodynamically controlled cellular matrix
US5631097A (en) 1992-08-11 1997-05-20 E. Khashoggi Industries Laminate insulation barriers having a cementitious structural matrix and methods for their manufacture
US5716675A (en) 1992-11-25 1998-02-10 E. Khashoggi Industries Methods for treating the surface of starch-based articles with glycerin
DK169728B1 (en) 1993-02-02 1995-01-23 Stein Gaasland Process for releasing cellulose-based fibers from each other in water and molding for plastic molding of cellulosic fiber products
GB2290741A (en) * 1994-06-28 1996-01-10 Frank Huang Disposable receptacle and method of forming the same
US5738921A (en) 1993-08-10 1998-04-14 E. Khashoggi Industries, Llc Compositions and methods for manufacturing sealable, liquid-tight containers comprising an inorganically filled matrix
US5736209A (en) 1993-11-19 1998-04-07 E. Kashoggi, Industries, Llc Compositions having a high ungelatinized starch content and sheets molded therefrom
US6083586A (en) 1993-11-19 2000-07-04 E. Khashoggi Industries, Llc Sheets having a starch-based binding matrix
US5843544A (en) 1994-02-07 1998-12-01 E. Khashoggi Industries Articles which include a hinged starch-bound cellular matrix
US5705203A (en) 1994-02-07 1998-01-06 E. Khashoggi Industries Systems for molding articles which include a hinged starch-bound cellular matrix
US5776388A (en) 1994-02-07 1998-07-07 E. Khashoggi Industries, Llc Methods for molding articles which include a hinged starch-bound cellular matrix
DE4403975A1 (en) * 1994-02-08 1995-08-10 Nadja Kuske Prodn. of biodegradable articles
JPH11504950A (en) * 1994-10-21 1999-05-11 イー カショーギ インダストリーズ エルエルシー Foamed starch compositions, products and methods
US6479164B1 (en) 1996-02-05 2002-11-12 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Method for preparing composite materials from renewable raw materials
US6168857B1 (en) 1996-04-09 2001-01-02 E. Khashoggi Industries, Llc Compositions and methods for manufacturing starch-based compositions
AU727867B2 (en) * 1996-09-27 2001-01-04 Vertis B.V. Method and apparatus for manufacturing fiber-reinforced, foamed paperlike products
NL1004138C2 (en) * 1996-09-27 1998-03-31 Vertis Bv Manufacture of foamed packaging materials
CN1108913C (en) * 1996-09-27 2003-05-21 韦尔蒂斯股份有限公司 Method and apparatus for manufacturing fiber-reinforced foamed paperlike products
US6231970B1 (en) 2000-01-11 2001-05-15 E. Khashoggi Industries, Llc Thermoplastic starch compositions incorporating a particulate filler component
US6379446B1 (en) 2000-04-03 2002-04-30 E. Khashoggi Industries, Llc. Methods for dispersing fibers within aqueous compositions
FR2822160B1 (en) * 2001-07-17 2003-06-13 Celta LUBRICANT MIXTURE IN THE FORM OF GRANULES, METHOD OF MANUFACTURE AND USE
JP2005131790A (en) * 2002-03-05 2005-05-26 Mikazuki Napurasu Kigyo Kumiai Manufacturing method of biodegradable fibrous molded product
DE10224355A1 (en) * 2002-05-29 2003-12-11 Buehler Ag Production of dry, starch-based substance for use as binder in paper production involves mixing a starch-based component, e.g. rye flour, with water in an extruder at elevated temperature and then drying and milling the extrudate
US8613834B2 (en) 2008-04-03 2013-12-24 Basf Se Paper coating or binding formulations and methods of making and using same
WO2009123637A1 (en) * 2008-04-03 2009-10-08 Basf Se Paper coating or binding formulations and methods of making and using same
JP2018513285A (en) * 2015-04-21 2018-05-24 ケミラ ユルキネン オサケイティエKemira Oyj Use of strength composition to enhance wet dimensional stability of pulp molding

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE485672C (en) * 1926-10-08 1929-11-02 Carl Leyst Kuechenmeister Process for the production of synthetic wood from plant fibers or the like and binders
FR860330A (en) * 1938-09-22 1941-01-11 Turner & Newall Ltd Improvements in heat-insulating materials
US2517799A (en) * 1947-03-01 1950-08-08 Ohio Rubber Co Process of extruding nonplastic materials
NL74868C (en) * 1948-09-30 1954-01-15 Nl Fabriek Van Cella Producten
FR1076255A (en) * 1952-02-29 1954-10-25 Process for the manufacture of synthetic wood masses
FR1224900A (en) * 1959-02-03 1960-06-28 construction element such as panel, method and installation for its manufacture
US3090699A (en) * 1960-05-12 1963-05-21 Armstrong Cork Co Sag-resistant fiberboard and method of making same
FR90379E (en) * 1965-03-11 1968-02-14
AT319742B (en) * 1972-01-13 1975-01-10 Isovolta Process for producing fluting
DE2333750C3 (en) * 1973-07-03 1978-04-13 Basf Farben + Fasern Ag, 2000 Hamburg Process for the production of coated or lacquered moldings
SE421541B (en) * 1978-05-25 1982-01-04 Stein Gasland PROCEDURE FOR MANUFACTURE OF FORMED PRODUCTS

Also Published As

Publication number Publication date
FI791560A (en) 1979-11-26
DK198779A (en) 1979-11-19
GB2050459B (en) 1983-06-15
FR2469271B1 (en) 1985-01-04
DK150161C (en) 1988-08-08
DE2920988C2 (en) 1991-08-14
SE7805693L (en) 1979-11-19
SE421541B (en) 1982-01-04
GB2050459A (en) 1981-01-07
FI69333B (en) 1985-09-30
FR2469271A1 (en) 1981-05-22
FI69333C (en) 1986-01-10
DE2920988A1 (en) 1979-11-29

Similar Documents

Publication Publication Date Title
DK150161B (en) PROCEDURE FOR MANUFACTURING FORMED PRODUCTS FROM CELLULOSE-BASED FIBERS
US4377440A (en) Process for manufacturing of formed products
US4508595A (en) Process for manufacturing of formed products
FI74714B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN FLAMHAERDIG STAERKELSEPDROT.
CN106283824B (en) A kind of high weight high-strength fluting medium process for cleanly preparing
CN102471653A (en) Sizing-adhesive composition
US3958056A (en) Fiberboard carton product
US3235443A (en) Process for forming transparentized paper containing cotton linter fibers and paper thereof
CN105696395A (en) Production technology of kraft vermicelli case board paper
CN112482093A (en) Preparation method of preimpregnated facing base paper and preparation method of preimpregnated facing paper
CN106758491A (en) A kind of light basis weight protection against the tide coated manila and preparation method thereof
US4140566A (en) Reinforced sheet-type wallcovering
US5906713A (en) Method of preparing biodegradable, water-resistant, and molded paper board
CN106436477B (en) A kind of moisture-proof coated manila of low basis weight and preparation method thereof
CN113584930B (en) Ash paper board production equipment and production method thereof
US3413190A (en) Process for manufacturing paperboard with high grease resistance by applying a plurality of starch coatings to a wet board
FI115781B (en) Process for making corrugated cardboard
CN111907248A (en) Base paper for thermal transfer paper and thermal transfer paper
US3886017A (en) Fiberboard carton product and method of manufacture
US3644167A (en) Preparation of corrugating linerboard
Mentzer Starch in the paper industry
CN100549293C (en) Comprise the paper that contains the quaternary nitrogen cellulose ether
US3802984A (en) Method of manufacture fiberboard carton product
JP6729509B2 (en) Starch-based adhesive for water-resistant corrugated board and corrugated cardboard sheet using the same
CN211897601U (en) Production system of special dampproofing boxboard of cold chain transportation

Legal Events

Date Code Title Description
PBP Patent lapsed