DK149328B - PROCEDURE FOR REDUCING THE TOTAL SULFUR CONTENT IN THE GAS FROM A CLAUS PLANT - Google Patents

PROCEDURE FOR REDUCING THE TOTAL SULFUR CONTENT IN THE GAS FROM A CLAUS PLANT Download PDF

Info

Publication number
DK149328B
DK149328B DK349871AA DK349871A DK149328B DK 149328 B DK149328 B DK 149328B DK 349871A A DK349871A A DK 349871AA DK 349871 A DK349871 A DK 349871A DK 149328 B DK149328 B DK 149328B
Authority
DK
Denmark
Prior art keywords
gas
hydrogen
claus
hydrogen sulfide
exhaust gases
Prior art date
Application number
DK349871AA
Other languages
Danish (da)
Other versions
DK149328C (en
Inventor
Arie Cor Piet
Cornelis Ouwerkerk
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of DK149328B publication Critical patent/DK149328B/en
Application granted granted Critical
Publication of DK149328C publication Critical patent/DK149328C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0456Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process the hydrogen sulfide-containing gas being a Claus process tail gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/12Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors
    • C10K1/14Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic
    • C10K1/143Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids alkaline-reacting including the revival of the used wash liquors organic containing amino groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

149328149328

Den foreliggende opfindelse angår en fremgangsmåde til nedsættelse af det samlede svovlindhold i afgangsgasser fra et Claus-anlæg.The present invention relates to a process for reducing the total sulfur content of exhaust gases from a Claus plant.

Fremgangsmåden til fremstillingen af elementært svovl ud fra hydrogensulfid ved partiel oxydation deraf ved hjælp af oxygen eller en oxygenholdig gas såsom luft, efterfulgt af reaktion af det af hydrogensulfidet dannede svovldioxyd med den tilbageværende del af hydrogensulfidet i nærværelse af en katalysator, kendes som Claus-processen. Denne proces, som hyppigt bruges både i raffinaderier og til oparbejdning af hydrogensulfid udvundet fra naturgas, udføres i et Claus-anlæg som indeholder et forbrændingskammer, efterfulgt af et eller flere katalysatorlejer, idet der er anbragt en eller flere kondensere ind imellem, hvor reaktionsprodukterne af- 149328 2 køles og det fraskilte flydende svovl udvindes. De forskellige reaktionstrin kan gengives ved følgende reaktionsligninger 2H2S + 302 -4 2H20 + 2S02 (1) 4H2S + 2S02 4H20 + 6/xSx (2) mens hele reaktionen kan gengives ved ligning . (3): 6H2S + 302 -...... ^ 6H20 + 6/xSx (3)The process of producing elemental sulfur from hydrogen sulfide by partial oxidation thereof by oxygen or an oxygen-containing gas such as air, followed by reaction of the sulfur dioxide formed by the hydrogen sulfide with the remaining portion of the hydrogen sulfide in the presence of a catalyst, is known as the Claus process. . This process, which is frequently used both in refineries and in the processing of hydrogen sulfide extracted from natural gas, is carried out in a Claus plant containing an combustion chamber, followed by one or more catalyst beds, with one or more condensers interposed where the reaction products of - 149328 2 is cooled and the separated liquid sulfur is recovered. The different reaction steps can be represented by the following reaction equations 2H2S + 302 -4 2H20 + 2S02 (1) 4H2S + 2S02 4H20 + 6 / xSx (2) while the whole reaction can be represented by equation. (3): 6H2S + 302 -... 6H20 + 6 / xSx (3)

For temperaturer under 500°C har symbolet x i ovennævnte ligninger værdien 8.For temperatures below 500 ° C, the symbol x in the above equations has the value 8.

Da udbyttet af udvundet elementært svovl i forhold til mængden af indført hydrogensulfid ikke er fuldstændig kvantitativt, fjernes der er vis mængde uomsat hydrogensulfid og svovldioxyd fra Claus-processen via afgangsgasserne derfra. Disse gasser brændes normalt i en ovn, og som følge heraf omdannes alt hydrogensulfidet til svovldioxyd, og dette afgives derefter til atmosfæren via en høj skorsten. Den udvundne mængde svovl afhasnger i nogen grad af det samlede antal katalysatorlejer, der bruges i Claus-processen.As the yield of recovered elemental sulfur relative to the amount of hydrogen sulfide introduced is not completely quantitative, some amount of unreacted hydrogen sulfide and sulfur dioxide are removed from the Claus process via the exhaust gases therefrom. These gases are usually burned in an oven and as a result all the hydrogen sulphide is converted to sulfur dioxide, which is then released to the atmosphere via a high chimney. The amount of sulfur recovered depends to some extent on the total number of catalyst beds used in the Claus process.

I princippet kan man udvinde 98% af svovlet når der bruges tre lejer.In principle, 98% of the sulfur can be extracted when three bearings are used.

I betragtning af de i stigende grad strenge krav til bekæmpelse af luftforurening er oparbejdning af Claus-afgangsgasser på denne måde ikke særlig ønskelig. Desuden indebærer metoden et vist tab i svovludbyttet.In view of the increasingly stringent requirements for combating air pollution, reprocessing of Claus exhaust gases in this way is not very desirable. In addition, the method involves some loss in the sulfur yield.

Ved den foreliggende opfindelse er der tilvejebragt en fremgangsmåde ved hjælp af hvilken det er muligt drastisk at nedsætte det samlede svovlindhold i afgangsgasser fra processer i Claus-anlæg, og som resultat heraf forbedres udbyttet af udvundet svovl betydeligt. Specielt tager den foreliggende opfindelse sigte på en fremgangsmåde til behandling af Claus-afgangsgasser som foruden hydrogensulfid har et forholdsvis højt indhold af kuldioxyd.The present invention provides a method by which it is possible to drastically reduce the total sulfur content of exhaust gases from processes in Claus plants, and as a result the yield of recovered sulfur is significantly improved. In particular, the present invention is directed to a process for treating Claus waste gases which, in addition to hydrogen sulfide, has a relatively high carbon dioxide content.

Fremgangsmåden ifølge opfindelsen er ejendommelig ved det .i krav 1's kendetegnende del anførte.The process according to the invention is characterized by the characterizing part of claim 1.

I nærværende beskrivelse forstå« ved Claus-afgangsgasser de tilbageværende gasser som vundet efter det sidste katalysatorleje i et Claus-anlæg. Det er sædvanligt at bruge Claus-processen med to katalysatorlejer, men det sker også hyppigt at der bruges et tredje 3 149328 katalysatorleje. Foruden hydrogensulfid og svovldioxyd i et mængdeforhold på omkring 2:1 indeholder afgangsgasser af denne type også svovl, oxygen, nitrogen og små mængder inertgasser hvis Claus-anlæg-get betjenes med luft, vand som vanddamp, kuldioxyd og små mængder kulmonoxyd, karbonylsulfid og kulstofdisulfid. Afgangsgasserne kan komme fra en Claus-proces som gennemføres med utilstrækkelig mængde oxygen i forhold til den støkiometrisk udkrævede mængde.For the purposes of this specification, "Claus exhaust gases" means the remaining gases obtained after the last catalyst bed in a Claus plant. It is usual to use the Claus process with two catalyst beds, but it is also frequent that a third catalyst bed is used. In addition to hydrogen sulfide and sulfur dioxide in a ratio of about 2: 1, exhaust gases of this type also contain sulfur, oxygen, nitrogen and small amounts of inert gases if the Claus plant is operated with air, water such as water vapor, carbon dioxide and small amounts of carbon monoxide, carbonyl sulfide and carbon disulfide. . The exhaust gases may come from a Claus process which is carried out with insufficient oxygen relative to the stoichiometric amount required.

Efter at have passeret sidste leje og vedkommende kondenser til udvinding af elementært svovl, har Claus-afgangsgasserne normalt en temperatur på 130-170°C. Til reduktionstrinnet over metalkatalysatoren af gruppe VI og/eller gruppe VIII må afgangsgasserne imidlertid have højere temperatur, og derfor opvarmes disse afgangsgasser først til en temperatur i området 180-350°C, ifølge opfindelsen hensigtsmæssigt til en temperatur i området 200-300°C, idet reaktionen forløber med passende hast i dette område til at tillade anvendelse af høje rumhastigheder og dermed ret små reaktorer uden at temperaturen er så høj at processen bliver uøkonomisk på grund af brændstofforbrug.After passing the final bed and the condensate for the extraction of elemental sulfur, the Claus exhaust gases usually have a temperature of 130-170 ° C. However, for the reduction stage over the metal catalyst of Group VI and / or Group VIII, the exhaust gases must have a higher temperature, and therefore these exhaust gases are first heated to a temperature in the range 180-350 ° C, according to the invention suitably to a temperature in the range 200-300 ° C. the reaction proceeding at an appropriate speed in this range to allow the use of high room rates and thus quite small reactors without the temperature being so high that the process becomes uneconomical due to fuel consumption.

Temperaturstigningen til 180-350°C er også betydningsfuld på grund af tilstedeværelse af små mængder elementært svovl i form af en tåge i afgangsgasserne. Denne skadelige svovltåge forsvinder ved at temperaturen hæves til over svovlets dugpunkt. Det har også vist sig at som følge af hævningen af temperaturen til over 180°C har tilstedeværelse af elementært svovl i gasfasen ingen ugunstig virkning på den katalytiske aktivitet af den reduktionskatalysator som skal bruges.The temperature rise to 180-350 ° C is also significant due to the presence of small amounts of elemental sulfur in the form of a mist in the exhaust gases. This harmful sulfur fog disappears by raising the temperature above the dew point of the sulfur. It has also been found that as a result of raising the temperature to above 180 ° C, the presence of elemental sulfur in the gas phase has no adverse effect on the catalytic activity of the reduction catalyst to be used.

Efter opvarmning til en temperatur på 180-350°C føres Claus-afgangsgasserne sammen med hydrogen eller en hydrogenholdig gas over en sulfideret metalkatalysator af gruppe VI og/eller gruppe VIII for at reducere svovldioxyd til hydrogensulfid. Samtidig omdannes elementært svovl til hydrogensulfid. De anvendte reduktionskatalysatorer kan være katalysatorer som indeholder molybdæn, wolfram og/eller krom som metal af gruppe VI, eller fortrinsvis et metal af jerngruppen som kobolt, nikkel og/eller jern som metal af gruppe VIII. Den uorganiske oxydiske bærer kan være aluminiumoxyd, kiselsyreanhydrid, magniumoxyd, boroxyd, toriumoxyd, zir-koniumoxyd ell'er en blanding af to eller flere af disse forbindelser.After heating to a temperature of 180-350 ° C, the Claus exhaust gases are passed with hydrogen or a hydrogen-containing gas over a sulfated metal catalyst of Group VI and / or Group VIII to reduce sulfur dioxide to hydrogen sulfide. At the same time, elemental sulfur is converted to hydrogen sulfide. The reduction catalysts used may be catalysts containing molybdenum, tungsten and / or chromium as Group VI metal, or preferably an iron group metal as cobalt, nickel and / or iron as Group VIII metal. The inorganic oxide carrier may be alumina, silica, magnesium oxide, boron oxide, thorium oxide, zirconia or a mixture of two or more of these compounds.

4 14932 84 14932 8

Hensigtsmæssige reduktionskatalysatorer til formålet ifølge opfindelsen er Ni/Mo/Al203 eller Co/Mo/Al203·Suitable reduction catalysts for the purpose of the invention are Ni / Mo / Al2 O3 or Co / Mo / Al2 O3.

Katalysatoren af et metal af gruppe VI og/eller gruppe VIII bruges i sulfideret form. Sulfideringen kan udføres i forvejen ved hjælp af et passende sulfideringsmiddel, fx en blanding af hydrogen og hydrogensulfid indeholdende 10-15 rumfangs% af sulfidet. Det er også muligt at sulfidere katalysatoren in situ ved hjælp af Claus-afgangsgasserne selv. Særlig velegnet er imidlertid en sul-fideringsblanding indeholdende hydrogen, hydrogensulfid og vand i et forhold 1:1:1, idet sulfideringstemperaturen så er mellem 300 og 400°C. Den til sulfidering værende katalysator kan indeholde metallerne af gruppe VI og/eller gruppe VIII i form af oxyd eller i elementær form.The catalyst of a Group VI metal and / or Group VIII metal is used in sulfided form. The sulfidation may be carried out in advance by a suitable sulfidating agent, for example a mixture of hydrogen and hydrogen sulfide containing 10-15% by volume of the sulfide. It is also possible to sulfide the catalyst in situ using the Claus exhaust gases themselves. Particularly suitable, however, is a sulphidation mixture containing hydrogen, hydrogen sulphide and water in a ratio of 1: 1: 1, the sulphidation temperature being then between 300 and 400 ° C. The sulphidation catalyst may contain the Group VI and / or Group VIII metals in the form of oxide or in elemental form.

Behandlingen af afgangsgasserne med en hydrogen- og/eller kulmonoxydholdig gas udføres ved en temperatur i området 180-350°C, som nævnt særlig hensigtsmæssigt ved en temperatur mellem 200 og 300°C. Selv om det anvendte tryk i hovedsagen er atmosfærisk, kan der også om ønsket bruges svagt forhøjet tryk. Den anvendte rumhastighed under reduktionen er 500-10000 NI af Clausafgangsgassen pr. liter katalysator pr. time.The treatment of the exhaust gases with a hydrogen and / or carbon monoxide-containing gas is carried out at a temperature in the range of 180-350 ° C, as mentioned particularly conveniently at a temperature between 200 and 300 ° C. Although the pressure used is generally atmospheric, slightly elevated pressure can also be used if desired. The space velocity used during the reduction is 500-10000 NI of the Claus exhaust gas per day. per liter of catalyst per hour.

Den anvendte hydrogen- og/eller kulmonoxydholdige gas kan med fordel være en gas som indeholder begge forbindelser, fx bygas, vandgas, syntesegas eller en lignende gas. Man kan også bruge rent hydrogen eller rent kulmonoxyd. Velegnede hydrogenrige gasser eller gasblandinger er afgangsgasser fra en katalytisk reformingenhed, den gas der dannes i et hydrogenanlæg eller den gas der vindes fra en behandlingsenhed for mættede rågasser fra jordolie.The hydrogen and / or carbon monoxide-containing gas used may advantageously be a gas containing both compounds, for example city gas, water gas, synthesis gas or a similar gas. You can also use pure hydrogen or pure carbon monoxide. Suitable hydrogen-rich gases or gas mixtures are exhaust gases from a catalytic reforming unit, the gas formed in a hydrogen plant, or the gas extracted from a saturated crude gas processing unit.

Den hydrogenholdige gas indeholder ifølge opfindelsen fortrinsvis mindst 20 rumfangs% H2 og/eller kulmonoxyd, da der ellers skal bruges en for stor mængde deraf, hvilket vil føre til en for stor reaktor. Hydrogenet eller den hydrogenholdige gas bruges i en sådan mængde at forholdet mellem hydrogen og svovldioxyd er mellem 3:1 og 15:1. Nævnte forhold er fortrinsvis af en størrelse på mellem 3,5:1 og 8:1.The hydrogen-containing gas according to the invention preferably contains at least 20% by volume of H2 and / or carbon monoxide, as otherwise an excessive amount of it must be used, which will lead to an over-reactor. The hydrogen or hydrogen-containing gas is used in such an amount that the ratio of hydrogen to sulfur dioxide is between 3: 1 and 15: 1. Preferably, said ratio is between 3.5: 1 and 8: 1.

Disse grænser for mængdeforholdene er uændrede når der bruges en.reducerende gasblanding som indeholder både hydrogen og kulmonoxyd og når der kun bruges kulmonoxyd, da kulmonoxyd i den henseende er ækvivalent med hydrogen. Hvis der også er elementært svovl til stede i Claus-afgangsgasserne kan den udkrævede mængde 5 149328 hydrogen og/eller kulmonoxyd også beregnes på elementært svovl som en procentdel af S02·These limits on the quantity ratios are unchanged when a reducing gas mixture containing both hydrogen and carbon monoxide is used and when carbon monoxide is used only, since carbon monoxide is equivalent to hydrogen. If elemental sulfur is also present in the Claus exhaust gases, the required amount of hydrogen and / or carbon monoxide can also be calculated on elemental sulfur as a percentage of SO 2 ·

Ved at anvende CO som reduktionsmiddel dannes der også noget karbonylsulfid. Hvis tilstedeværelse af COS i den behandlede gas er uønsket, kan dette karbonylsulfid som bekendt nedbrydes ved at gassen ved forhøjet temperatur føres over et leje af aluminiumoxyd.By using CO as a reducing agent, some carbonyl sulfide is also formed. If the presence of COS in the treated gas is undesirable, this carbonyl sulfide can, as is known, be degraded by passing the gas at an elevated temperature over a bed of alumina.

Den anvendte flydende og regenererbare hydrogensulfidab-sorbent er fortrinsvis en vandig opløsning af en amin eller en substitueret amin. Absorbenter af denne type er velkendte, som fx alkalimetalsalte af dialkylsubstituerede aminosyrer, fx dimetylamin-kaliumacetat og alkanolaminer. Fortrinsvis bruges der en polyalkanol-amin såsom en di- eller triætanolamin eller dipropanolamin.The liquid and regenerable hydrogen sulfide absorbent used is preferably an aqueous solution of an amine or a substituted amine. Absorbents of this type are well known, such as, for example, alkali metal salts of dialkyl-substituted amino acids, e.g., dimethylamine-potassium acetate and alkanolamines. Preferably, a polyalkanol amine such as a di- or triethanolamine or dipropanolamine is used.

Alkanolaminerne bruges fortrinsvis i vandige opløsninger i en molær koncentration på 0,5 til 5 og fortrinsvis 1 til 3, for så vidt angår de nævnte alkanolaminer.The alkanolamines are preferably used in aqueous solutions at a molar concentration of 0.5 to 5 and preferably 1 to 3, with respect to said alkanolamines.

Efter absorptionen regenereres den hydrogensulfidberigede absorbent ved opvarmning og/eller stripping, hvorved der frembringes en hydrogensulfidberiget gasblanding og en regenereret absorbent som kan genanvendes. Da regeneration imidlertid aldrig er fuldstændig og der kan opbygges kuldioxyd i absorbenten efter lasngere tids anvendelse, navnlig hvis Claus-afgangsgasserne har højt indhold af C02, sker behandlingen af gasserne med absorbenten for at forøge selektiviteten af hydrogensulfidabsorbenten og dermed for at nedsætte cirkulationshastigheden af opløsningsmidlet ved lav temperatur under anvendelse af høje gashastigheder, idet kontakten finder sted i en absorptionskolonne med højst 20 kontaktbunde. Særlig foretrækkes det ifølge opfindelsen at absorptionskolonnen har 4-15 kontaktbunde, da et lavt antal kontaktbunde nedsætter den samtidige absorption af C02· Den anvendte gashastighed skal være mindst 1 m/sek. og ifølge opfindelsen hensigtsmæssigt mindst 1,5 m/sek., fortrinsvis regnet på den "aktive" eller luftede bundoverflade. Høje gashastigheder fremmer nemlig absorptionens selektivitet med hensyn til , men over 4 m/sek. kan der blive fare for skumning. En lav absorbenttem-peratur forøger selektiviteten af hydrogensulfid/kuldioxyd-adskil-lelsen. Temperaturen er fortrinsvis under 40°C og de mest tilfredsstillende resultater opnås ved temperaturer i området 5-30°C. Claus-af gangsgasserne bringes i kontakt med absorbenten, specielt den vandige alkanolaminopløsning ved atmosfæretryk eller i det væsentlige 149328 6 atmosfæretryk. Kontakten udføres fortrinsvis under udnyttelse af modstrømsprincippet.After absorption, the hydrogen sulfide-enriched absorbent is regenerated by heating and / or stripping, thereby producing a hydrogen sulfide-enriched gas mixture and a recyclable absorbent which can be reused. However, since regeneration is never complete and carbon dioxide can build up in the absorbent after longer use, especially if the Claus exhaust gases have a high CO 2 content, the gases are treated with the absorbent to increase the selectivity of the hydrogen sulfide absorbent and thus to reduce the circulation rate of the solvent. low temperature using high gas velocities, the contact taking place in an absorption column with a maximum of 20 contact bottoms. It is particularly preferred according to the invention that the absorption column has 4-15 contact bottoms, since a low number of contact bottoms decreases the simultaneous absorption of CO2 · The gas velocity used must be at least 1 m / sec. and according to the invention suitably at least 1.5 m / sec, preferably on the "active" or aerated bottom surface. Namely, high gas velocities promote the selectivity of absorption with respect to, but above 4 m / sec. there may be a risk of foaming. A low absorbent temperature increases the selectivity of the hydrogen sulfide / carbon dioxide separation. The temperature is preferably below 40 ° C and the most satisfactory results are obtained at temperatures in the range of 5-30 ° C. The clauses of the aisle gases are brought into contact with the absorbent, especially the aqueous alkanolamine solution at atmospheric pressure or substantially atmospheric pressure. The contact is preferably made using the countercurrent principle.

I nogle tilfælde kan cirkulationshastigheden af opløsningsmidlet nedsættes yderligere ved at man udfører hydrogensulfid-fjernelsen for største partens vedkommende i kolonnen med kontaktbunde og ved at fjerne resten i venturiskrubbere med en forholdsvis ringe mængde opløsningsmiddel, som kan have anderledes temperatur, natur og sammensætning.In some cases, the rate of circulation of the solvent can be further reduced by performing the hydrogen sulfide removal for the most part in the contact bottoms column and by removing the residue in venturi scrubbers with a relatively small amount of solvent which may have different temperature, nature and composition.

Særdeles gode resultater opnås når der anvendes diiso-propanolamin som absorbent.Very good results are obtained when diisopropanolamine is used as absorbent.

Når absorbenten er blevet ført igennnem, afgives den uab-sorberede del af afgangsgasserne, der nu i hovedsagen består af nitrogen og kuldioxyd sammen med meget små mængder hydrogen og spor af hydrogensulfid, til atmosfæren. Eventuelt kan denne uabsorberede del også brændes på sædvanlig måde før den føres til skorstenen.Once the absorbent has been passed through, the unabsorbed portion of the exhaust gases, which now consist mainly of nitrogen and carbon dioxide, together with very small amounts of hydrogen and traces of hydrogen sulfide, is released into the atmosphere. Optionally, this unabsorbed portion may also be burned in the usual manner before being fed to the chimney.

Den hydrogensulfidgas som er frigjort ved regenerationen af absorbenten, og som også indeholder kuldioxyd og vand, afkøles først for at kondensere det deri tilstedeværende vand. Normalt recirkuleres i det mindste en del af dette vand til regenerationstrinnet for at holde vandindholdet i den vandige absorbent på det ønskede niveau. Efter afkølingen føres den sulfidrige gas til et Claus-anlæg til udvinding af elementært svovl fra gassen. Hvis fremgangsmåden udføres på en virksomhed med to eller flere svovlgenvindingsenheder, føres ifølge opfindelsen den i regenerationen frigjorte hydrogensulfidrige gas til det Claus-anlæg, hvorfra afgangsgasserne udgår, hvorved man kan arbejde i sluttet kredsløb.The hydrogen sulfide gas released by the regeneration of the absorbent, which also contains carbon dioxide and water, is first cooled to condense the water present therein. Usually, at least a portion of this water is recycled to the regeneration step to keep the water content of the aqueous absorbent at the desired level. After cooling, the sulfide-rich gas is fed to a Claus plant for the extraction of elemental sulfur from the gas. If the process is carried out on a business with two or more sulfur recovery units, according to the invention, the hydrogen sulphide-rich gas released in the regeneration is fed to the Claus plant from which the exhaust gases emit, whereby one can operate in a closed circuit.

Fremgangsmåden ifølge opfindelsen skal i det følgende forklares nærmere under henvisning til tegningen, på hvilken figur 1 er et principskema for reduktionen af Claus-af-gangsgasserne og den påfølgende absorption af hydrogensulfid, idet regenerationssektionen til regenerering af absorbenten udgør en del af hele skemaet, og figur 2 er et modificeret diagram hvor regenerationssektionen udgør en del af en absorptionsregenerationssektion som er anbragt foran det egentlige Claus-anlæg og hvori absorption af hydrogensulfid efter reduktion af Claus-afgangsgasserne finder sted ved hjælp af en slipstrøm fra denne sektion.The process according to the invention will be explained in more detail below with reference to the drawing, in which figure 1 is a principle diagram for the reduction of the Claus exhaust gases and the subsequent absorption of hydrogen sulfide, the regeneration section for regenerating the absorbent forming part of the whole diagram, and Figure 2 is a modified diagram where the regeneration section forms part of an absorption regeneration section located in front of the actual Claus plant and in which hydrogen sulphide absorption after reduction of the Claus exhaust gases takes place by a slip stream from this section.

I figur 1 betegner henvisningstallet 1 en ledning hvorigennem afgangsgasserne fra et Claus-anlæg tilføres. Disse afgangsgasser, som har en temperatur på 150°C, opvarmes ved hjælp af en 7 149328 varmeveksler 2 og føres over en reduktionskatalysator ved 225°C og anbragt i en reaktor 3. Det hydrogen der behøves til reduktionen kan leveres til katalysatorlejet særskilt eller sættes direkte til Claus-afgangsgasserne i ledningen 1. De behandlede gasser forlader reaktoren 3 gennem en ledning 4 og afkøles i en varmeveksler 5. Afgangsgasserne går ind i en absorptionskolonne 6 ved en temperatur på 30°C, og denne kolonne indeholder en flydende og regenererbar absorbent for hydrogensulfid. Om ønsket kan der være indsat en kondenser mellem varmeveksleren 5 og absorptionskolonnen 6 for at fjerne vand der måtte være til stede i de pågældende gasser. De uabsorbe-rede komponenter af afgangsgasserne, der i hovedsagen består af C02 og nitrogen, afgives gennem en ledning 7. For at omdanne alle spor af kulbrinter og hydrogensulfid, opvarmes den tilbageværende gas i en varmeveksler 8 og brændes ved 400°C i en forbrændingsovn 9 før den afgives til en skorsten gennem en ledning 10.In Figure 1, reference numeral 1 denotes a conduit through which the exhaust gases from a Claus plant are supplied. These exhaust gases having a temperature of 150 ° C are heated by means of a heat exchanger 2 and passed over a reduction catalyst at 225 ° C and placed in a reactor 3. The hydrogen needed for the reduction can be supplied to the catalyst bed separately or added directly to the Claus exhaust gases in conduit 1. The treated gases leave reactor 3 through a conduit 4 and cool in a heat exchanger 5. The exhaust gases enter an absorption column 6 at a temperature of 30 ° C and this column contains a liquid and regenerable absorbent. for hydrogen sulfide. If desired, a condenser may be inserted between the heat exchanger 5 and the absorption column 6 to remove water that may be present in the gases concerned. The unabsorbed components of the exhaust gases, consisting essentially of CO 2 and nitrogen, are passed through a conduit 7. To convert all traces of hydrocarbons and hydrogen sulfide, the remaining gas is heated in a heat exchanger 8 and burned at 400 ° C in an incinerator. 9 before being discharged to a chimney through a conduit 10.

En E^S-beriget absorbent føres gennem en ledning 11 til en desorptionskolonne 13 til regeneration. Den regenererede absorbent returneres til absorptionskolonnen 6 gennem en ledning 15, mens det frigjorte hydrogensulfid, som indeholder forholdsvis små mængder kuldioxyd, afgives til et Claus-anlæg gennem en ledning 17.An E 2 S-enriched absorbent is passed through a conduit 11 to a desorption column 13 for regeneration. The regenerated absorbent is returned to the absorption column 6 through a conduit 15, while the released hydrogen sulfide, which contains relatively small amounts of carbon dioxide, is delivered to a Claus plant through a conduit 17.

I kolonnen 13 regenereres absorbenten ved forhøjet temperatur ved at man opvarmer med damp som er tilført gennem en ledning 14. Da den regenererede absorbent bruges ved lav temperatur, varmeveksles den i en varmeveksler 12 med den til regenerering værende absorbent, og derefter afkøles den i en køler 16. Den hydrogen-sulfidholdige gas som afgives gennem ledningen 17 afkøles i en køler 18 for at kondensere al vanddamp indeholdt deri; det kondenserede vand returneres til desorptionskolonnen gennem en ledning 19.In column 13, the absorbent is regenerated at elevated temperature by heating with steam supplied through a conduit 14. As the regenerated absorbent is used at low temperature, it is heat exchanged in a heat exchanger 12 with the absorbent which is regenerated, and then cooled in an cooler 16. The hydrogen sulfide-containing gas delivered through conduit 17 is cooled in a cooler 18 to condense all water vapor contained therein; the condensed water is returned to the desorption column through a conduit 19.

I figur 2 er dele som svarer til dele i figur 1 angivet med de samme henvisningstal som der. I det integrerede anlæg indføres en hydrogensulfidrig gasstrøm gennem en ledning 24 til en absorptionskolonne 23 som indeholder en regenererbar hydrogensulfidabsor-bent. En gasstrøm som er fattig på hydrogensulfid afgives gennem en ledning 25, mens den hydrogensulfidberigede absorbent afleveres gennem en ledning 26 til desorptionskolonnen 13 til regeneration. Ledninger 26 og 11 (fra absorptionskolonnen 6) forenes i et punkt B og fører til kolonnen 13 som den fælles ledning 11. Den regenererede 8 149328 absorbent afgives gennem ledningen 15 og underkastes varmeveksling ' i varmeveksleren 12 med den til regenerering værende absorbent.In Figure 2, parts corresponding to parts in Figure 1 are indicated by the same reference numerals as there. In the integrated plant, a hydrogen sulfide-rich gas stream is introduced through a conduit 24 to an absorption column 23 containing a regenerable hydrogen sulfide absorbent. A gas stream which is poor in hydrogen sulfide is delivered through a conduit 25, while the hydrogen sulfide-enriched absorbent is delivered through a conduit 26 to the desorption column 13 for regeneration. Conduits 26 and 11 (from the absorption column 6) are joined at a point B and lead to the column 13 as the common conduit 11. The regenerated absorbent is discharged through conduit 15 and subjected to heat exchange in the heat exchanger 12 with the regenerating absorbent.

Efter køleren 16 er ledningen 16 delt i punktet A; en slipstrøm af den regenererede absorbent strømmer gennem ledningen 15 til absorptionskolonnen 6, hvor den bringes i kontakt med de reducerede Claus-afgangsgasser. Hovedstrømmen returnerer til absorptionskolonnen 23 gennem en ledning 22.After the cooler 16, line 16 is divided at point A; a slip stream of the regenerated absorbent flows through the conduit 15 to the absorption column 6 where it is contacted with the reduced Claus exhaust gases. The main stream returns to the absorption column 23 through a conduit 22.

Det hydrogensulfid der frigives fra absorbenten ved regeneration afkøles i køleren 18 for at fjerne vandet, og det går til et Claus-anlæg som er skematisk repræsenteret af det med henvisningstallet 20 viste. Afgangsgasserne fra dette Claus-anlæg afgives gennem ledningen 1 og behandles derefter som beskrevet i relation til figur 1. .The hydrogen sulfide released from the absorbent by regeneration is cooled in the cooler 18 to remove the water, and it goes to a Claus plant which is schematically represented by the reference numeral 20. The exhaust gases from this Claus plant are discharged through line 1 and then treated as described in relation to Figure 1.

Fremgangsmåden ifølge opfindelsen er særlig egnet til behandling af Claus-afgangsgasser som foruden hydrogensulfid har et forholdsvis højt indhold af kuldioxyd. Kuldioxydindholdet i disse afgangsgasser kan overstige 5 rumfangs% og fx være 8-15 rumfangs% uden at bevirke tekniske vanskeligheder eller økonomiske ulemper ved processens gennemførelse.The process of the invention is particularly suitable for treating Claus exhaust gases which, in addition to hydrogen sulfide, have a relatively high carbon dioxide content. The carbon dioxide content of these exhaust gases can exceed 5% by volume and, for example, be 8-15% by volume without causing any technical difficulties or financial disadvantages in the process.

Fremgangsmåden ifølge opfindelsen skal i det følgende belyses nærmere ved nogle udførelseseksempler.The process according to the invention will now be described in more detail by some exemplary embodiments.

Eksempel l 9 149328Example 1 9 149328

En syntetisk Claus-afgangsgas reduceredes over en sulfi-deret Co/tøo/AlgOg-katalysator (3»2 vægtdele Co, 13,4 vægtdele Mo og 100 vægtdele AlgO^) under anvendelse af en blanding af hydrogen og kulmonoxyd. Den syntetiske Claus-afgangsgas, som havde varierende svovldioxydindhold, førtes over katalysatoren sammen med den reducerende gas ved en rumhastighed på 1700 NI gas pr. liter katalysator pr. time. Sammensætningen af hele gasblandingen var: SO2 variabeltA synthetic Claus waste gas was reduced over a sulfated Co / terto / AlgOg catalyst (3 »2 parts by weight Co, 13.4 parts by weight Mo and 100 parts by weight AlgO ^) using a mixture of hydrogen and carbon monoxide. The synthetic Claus exhaust gas, which had varying sulfur dioxide content, was passed over the catalyst along with the reducing gas at a room rate of 1700 NI gas per hectare. per liter of catalyst per hour. The composition of the entire gas mixture was: SO2 variable

Hg 0,5 - 0,6 rumfangs# CO 0,3 - 0,4 " H2S 1,2Hg 0.5 - 0.6 volume # CO 0.3 - 0.4 "H2S 1.2

Ng restenNg the rest

Katalysatoren brugtes i form af partikler med en størrelse på 0,3 - 0,6 mm (30-50 mesh).The catalyst was used in the form of particles having a size of 0.3 - 0.6 mm (30-50 mesh).

Sulfidering af katalysatoren udførtes ved en maksimal- n temperatur på 375 °C og et tryk på 10 kg/cm under anvendelse af en Hg/iigS-gåsblanding indeholdende 12,5 rumfangs# hydrogensulfid. Temperaturen forøgedes trinvis over en periode på 4 timer fra stuetemperatur til 375°C (første time fra 20°C til 100°C ; anden og tredje time fra 100°C til 250°C; og fjerde time fra 250°C til 375°C }. Efter sulfideringen afkøles katalysatoren til 100°C med uafbrudt tilførsel af den nævnte hydrogensulfidholdige gasblanding; derefter førtes kun hydrogengas derover og til slut påbegyndtes reduktionen af Claus-afgangsgassen. Forsøget udførtes ved forskellige reduktionstemperaturer. Resultaterne vises i nedenstående tabel A.Sulfurization of the catalyst was carried out at a maximum temperature of 375 ° C and a pressure of 10 kg / cm using a Hg / µg goose mixture containing 12.5 volumes of hydrogen sulfide. The temperature was incrementally increased over a period of 4 hours from room temperature to 375 ° C (first hour from 20 ° C to 100 ° C; second and third hours from 100 ° C to 250 ° C; and fourth hour from 250 ° C to 375 ° After the sulfidation, the catalyst is cooled to 100 ° C with uninterrupted supply of the said hydrogen sulfide-containing gas mixture, then only hydrogen gas is passed over and finally the reduction of the Claus exhaust gas is started.The test was carried out at various reduction temperatures.

Tabel ATable A

SO.-indhold i gasblanding, Reaktions- Omdannelse i # cn vol# (fødegas) temperatur, °C - SOg-mdhold H_ CO H.+CO efter reduktion, ___________________________. d vol# ___ 0,17 222 34 65 45 <0,001 0,17 250 27 100 50 <0,001 0,36 250 63 100 80 <0,03 0,36 280 89 100 94 <0,001SO. content in gas mixture, Reaction Conversion in # cn vol # (feed gas) temperature, ° C - SOg content H_ CO H. + CO after reduction, ___________________________. d vol # ___ 0.17 222 34 65 45 <0.001 0.17 250 27 100 50 <0.001 0.36 250 63 100 80 <0.03 0.36 280 89 100 94 <0.001

Eksempel 2 ίο U9328Example 2 or U9328

En syntetisk Claus-afgangsgas som foruden svovldioxyd og hydrogensulfid også indeholdtten ringe mængde gasformigt elementært svovl reduceredes med hydrogen ved 220°C under anvendelse af samme sulf iderede Co/Mo/AlgOg-katalysator som anvendt i forsøgene i eksempel 1. Afgangsgassen førtes over nævnte katalysa-tor/ållfPÉydrogenet med en rumhastighed på 1400 NI gas pr. liter katalysator pr. time. Sammensætningen af den samlede gasblanding før og efter reduktion fremgår af nedenstående tabel:-A synthetic Claus waste gas which, in addition to sulfur dioxide and hydrogen sulfide, also contained a small amount of gaseous elemental sulfur, was reduced with hydrogen at 220 ° C using the same sulfated Co / Mo / AlgOg catalyst as used in the experiments of Example 1. The exhaust gas was passed over said catalyst. The dry / eel pHPeydrogen at a room rate of 1400 NI gas per per liter of catalyst per hour. The composition of the total gas mixture before and after reduction is shown in the following table: -

GaSS“ftoing før efter reduktion S02 0,18 - 1 < 0,002GaSS “ftoing before after reduction SO2 0.18 - 1 <0.002

Sg 0,018 . j H2 1,5 0,8 H20 29 30 H2S ‘ 1,3 1,7 N2 resten restenSg 0.018. j H2 1.5 0.8 H2 O 29 30 H2 S '1.3 1.7 N2 residue residue

Den totale omdannelse, beregnet på basis af konsumeret hydrogen, er 45%.The total conversion, calculated on the basis of hydrogen consumed, is 45%.

Eksempel 3Example 3

En syntetisk Claus-afgangsgas reduceredes med kulmonoxyd over samme sulfiderede Co/Mo/AlgO^-katalysator som anvendt i de to foregående eksempler. Reduktionstemperaturen var 230°C og rumhastigheden af afgangsgassen sammen med kulmonoxyd var 1700 NI pr. liter katalysator pr. time. Den samlede gasblanding før reduktionen havde følgende sammensætning: S02 0,4 rumfangs^ CO 1,2 " H20 30 « H2S 1,2 N2 resten På basis af konsumeret kulmonoxyd beregnedes omdannelsesgraden til at være 35%.A synthetic Claus exhaust gas was reduced with carbon monoxide over the same sulfided Co / Mo / AlgO 2 catalyst as used in the two previous examples. The reduction temperature was 230 ° C and the space velocity of the exhaust gas together with carbon monoxide was 1700 NI per liter. per liter of catalyst per hour. The total gas mixture prior to the reduction had the following composition: SO 2 0.4 volume ^ CO 1.2 "H2 O 30 H 2 S 1.2 N 2 residue On the basis of carbon monoxide consumed the conversion rate was calculated to be 35%.

Når dette forsøg gentoges med en rumhastighed på 900 NI pr. liter katalysator pr. time ved identisk reduktionstemperatur, blev omdannelsesgraden 90%.When this experiment was repeated at a room rate of 900 NI per per liter of catalyst per hour at identical reduction temperature, the conversion rate was 90%.

Eksempel 4 11 149328Example 4 11 149328

En Claus-afgangsgas med højt indhold a£ kuldioxyd reduceredes med hydrogen over en sulfideret Co/Mo/AlgO^-katalysator ved en temperatur på·-. 220 °C. Den gas der vandtes efter reduktionen havde følgende sammensætning:A high-content Claus exhaust gas of carbon dioxide was reduced with hydrogen over a sulfated Co / Mo / AlgO 2 catalyst at a temperature of -. 220 ° C. The gas obtained after the reduction had the following composition:

HgS 2,5 rumfangs# C02 11,1 « H2 0,6% N2 85,8HgS 2.5 volume # C02 11.1 ° H2 0.6% N2 85.8

Gassen med denne sammensætning førtes med en hastighed på 2,0 m/sek. gennem en kolonne'indeholdende 11-12 bunde og hvori der cirkulerede en diisopropanolaminopløsning på 27 vægt# i vand. temperaturen af dialkanolaminopløsningen-før den bragtes i kontakt med den hydrogensulfidholdige gas var 20°C i ét tilfælde og 40°C i det andet. Sammensætningen af den behandlede gas efter passage gennem diisopropanolaminopløsningen og sammensætningen af den hydrogensulfidrige gas som vandtes efter regenerationen af nævnte aminopløsning fremgår af nedenstående tabel B. Den behandlede gas førtes til slut til en brænder og den hydrogensulfidrige gas recirkuleredes til det ciaus-anlæg, hvorfra afgangsgasseme var afledet.The gas of this composition was conducted at a speed of 2.0 m / sec. through a column containing 11-12 bottoms and circulating a 27 weight percent diisopropanolamine solution in water. the temperature of the dialkanolamine solution before contacting the hydrogen sulfide-containing gas was 20 ° C in one case and 40 ° C in the other. The composition of the treated gas after passage through the diisopropanolamine solution and the composition of the hydrogen sulfide-rich gas which was recovered after the regeneration of said amine solution is shown in Table B. The treated gas was finally led to a burner and the hydrogen sulfide-rich gas was recycled to the exhaust gas from which the exhaust gases was derived.

149328 12 o »-s ω <5 ro h 3 i+ 0*5 πιο ro tf149328 12 o »-s ω <5 ro h 3 i + 0 * 5 πιο ro tf

•fe IO ts 4 CQ• fe IO ts 4 CQ

o o H* ro roo o H * ro ro

{S pt H{S pt H

CQ sJ COCQ sJ CO

- 4 ro o 4 O JS)- 4 ro o 4 O JS)

Hj μ· ro **Hj μ · ro **

3 O3 O

Η HΗ H

W IW I

a & a 3 ro ιο o p co O. o H H-*da & a 3 ro ιο o p co O. o H H- * d

H· HH · H

PS CQ QPS CQ Q

ro h cq ro to » <· lo ts oo ui H-ro h cq ro to »<· lo ts oo ui H-

IV) 10 Γ+ PIV) 10 Γ + P

h-cqH-cq

HH

JJ

σ4 ro · 'g o ^σ4 ro · 'g o ^

HH

ro σ' o o - » a o* co ro o o to rororo σ 'o o - »a o * co ro o o to roro

UI UI co pr g HUI UI co pr g H

ro 3 ts ro η Λ trops ω vo o Om« * o ro fy CO Ό [O rf rt-ro 3 ts ro η Λ trops ω vo o Om «* o ro fy CO Ό [O rf rt-

fSfS

cq ι-ι- Ο O ro ps - · a to cq o\ σ\ ro S" <i Hj o oo oo a μ co cd ro · -· - « UI Ό a ^ pc co σι ό ro o ro ro o ui co h co 3 ^ å.s CQ (0 «ft - ro ts co H- » pscq ι-ι- Ο O ro ps - · a to cq o \ σ \ ro S "<i Hj o oo oo a μ co cd ro · - · -« UI Ό a ^ pc co σι ό ro o ro ro o ui co h co 3 ^ å.s CQ (0 «ft - ro ts co H-» ps

-TO IO O CQ-TO IO O CQ

Om OAbout O

ιο ro H) 13 149328ιο ro H) 13 149328

Det fremgår af forsøgsresultaterne, at når man udnytter de foreskrevne betingelser ved fremgangsmåden ifølge opfindelsen, absorberes hydrogensulfid i høj grad selektivt, selv i nærværelse af høje CO2-koncentrationer.It is evident from the test results that when utilizing the prescribed conditions of the process of the invention, hydrogen sulfide is highly selectively absorbed, even in the presence of high CO2 concentrations.

Eksempel 5Example 5

En gasblanding indeholdende 2,37 rumfangs^ HgS og 10,38 rumfangs^ C02 bragtes i en kolonne med bunde under varierende betingelser i kontakt med en vandig diisopropanolaminopløsning som var 2-molær med hensyn til aminen. Betingelserne med hensyn til temperatur, gashastighed, antal bunde i kolonnen og dispersionshøjden for opløsningen på disse bunde varierede på en sådan måde at hydrogensulfidkoncentrationen i den behandlede gas var 0,05 rumfangs^. Resultaterne fremgår af nedenstående tabel C.A gas mixture containing 2.37 volumes of HgS and 10.38 volumes of CO 2 was brought into contact with a bottom column under varying conditions with an aqueous diisopropanolamine solution which was 2-molar with respect to the amine. The conditions with respect to temperature, gas velocity, number of bottoms in the column and the dispersion height of the solution on these bottoms varied in such a way that the hydrogen sulfide concentration in the treated gas was 0.05 vol. The results are shown in Table C below.

Tabel CTable C

Temp., Gas- Disper- Antal Opløsning, Behandlet gas °C Sa!ti9/‘*) =ionsh?;j- mvtonol ns, CO,, hed m/s ' de pr.bund, w ς ή nac 2 2 cm H2S 1 gas vol.% vol.% 30 1,0 10 6 2,48 0,05 8,47 30 1,5 10 9 2,20 0,05 8,89 30 2,5 10 15 1,97 0,05 9,45 20 2,5 20 . 7 1,59 0,05 9,50 30 2,5 20 7 2,11 0,05 9,17 40 2,5 20 7 2,82 0,05 8,70 s) med hensyn til luftet bund-overflade.Temp., Gas Disper- Number of Solution, Treated Gas ° C Sa! Ti9 / '*) = ionsh?; J- mvtonol ns, CO ,, hot m / s' de per.bund, w ς ή nac 2 2 cm H2S 1 gas vol% vol% 30 1.0 10 6 2.48 0.05 8.47 30 1.5 10 9 2.20 0.05 8.89 30 2.5 10 15 1.97 0, 05 9.45 20 2.5 20. 7 1.59 0.05 9.50 30 2.5 20 7 2.11 0.05 9.17 40 2.5 20 7 2.82 0.05 8.70 s) with respect to aerated bottom surface.

Det kan sluttes af de i tabellen anførte data, at det ved lav temperatur er fordelagtigt at arbejde med forholdsvis høje gashastigheder under anvendelse, af forholdsvis stor højde af spredning af bundene i kolonnen; dette sikrer at der opnås den højest mulige selektivitet med hensyn til hydrogensulfidabsorption, under samtidig anvendelse af forholdsvis små mængder opløsning.It can be concluded from the data set out in the table that it is advantageous to operate at relatively high gas velocities during use, at a relatively high altitude of dispersion of the bottoms in the column; this ensures that the highest possible selectivity with respect to hydrogen sulfide absorption, while using relatively small amounts of solution.

DK349871A 1970-07-17 1971-07-15 PROCEDURE FOR REDUCING THE TOTAL SULFUR CONTENT IN THE GAS FROM A CLAUS PLANT DK149328C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NLAANVRAGE7010604,A NL171144B (en) 1970-07-17 1970-07-17 PROCESS FOR REDUCING THE TOTAL SULFUR CONTENT OF CLAUSE GASES.
NL7010604 1970-07-17

Publications (2)

Publication Number Publication Date
DK149328B true DK149328B (en) 1986-05-05
DK149328C DK149328C (en) 1986-10-06

Family

ID=19810608

Family Applications (1)

Application Number Title Priority Date Filing Date
DK349871A DK149328C (en) 1970-07-17 1971-07-15 PROCEDURE FOR REDUCING THE TOTAL SULFUR CONTENT IN THE GAS FROM A CLAUS PLANT

Country Status (18)

Country Link
JP (1) JPS5716846B1 (en)
AT (1) AT308768B (en)
AU (1) AU459768B2 (en)
BE (1) BE770058A (en)
CH (1) CH580982A5 (en)
CS (1) CS179372B2 (en)
DE (1) DE2135522C2 (en)
DK (1) DK149328C (en)
ES (1) ES393290A1 (en)
FI (1) FI56320C (en)
FR (1) FR2101724A5 (en)
GB (1) GB1356289A (en)
IE (1) IE35451B1 (en)
IT (1) IT941574B (en)
NL (1) NL171144B (en)
NO (1) NO132088C (en)
SU (1) SU751318A3 (en)
ZA (1) ZA714698B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7310929A (en) * 1973-08-08 1974-01-25
FR2295784A1 (en) * 1974-12-27 1976-07-23 Inst Francais Du Petrole PROCESS FOR DEPURING A GAS CONTAINING SULFUR COMPOUNDS
GB1470950A (en) * 1976-03-08 1977-04-21 Shell Int Research Process for working-up hydrogen sulphide-containing gases
DE2648190C3 (en) * 1976-10-25 1980-02-21 Metallgesellschaft Ag, 6000 Frankfurt Process for the production of sulfur by the Claus process
GB1563251A (en) * 1976-12-07 1980-03-26 Shell Int Research Process for working hydrogen suphidecontaining gases
NL7701174A (en) * 1977-02-04 1978-08-08 Shell Int Research PROCESS FOR PREPARING A GAS MIX WITH DESIRED H2S / CO2 RATIO.
FR2425886A1 (en) * 1978-05-16 1979-12-14 Elf Aquitaine PROCESS FOR PURIFYING INDUSTRIAL WASTE GASES CONTAINING LOW CONCENTRATIONS OF SULFUR COMPOUNDS
NL186377C (en) 1978-05-23 1990-11-16 Shell Int Research PROCESS FOR PROCESSING HYDROGEN-CONTAINING GASES.
GB2116531B (en) * 1982-03-11 1985-11-20 Shell Int Research Process and apparatus for the combustion of ammonia-containing waste gases
FR2631561B1 (en) * 1988-05-20 1990-07-20 Elf Aquitaine PROCESS AND DEVICE FOR THE REMOVAL OF LOW CONCENTRATION OF H2S IN A GAS ALSO CONTAINING A LARGE QUANTITY OF WATER VAPOR
GB8830199D0 (en) * 1988-12-23 1989-02-22 Shell Int Research Removing hydrogen sulphide from a gas mixture
DE3901600C2 (en) * 1989-01-20 1998-12-24 Krupp Koppers Gmbh Process for the treatment of vacuum exhaust air from tar distillation plants
AU638543B2 (en) * 1990-02-09 1993-07-01 Mitsubishi Jukogyo Kabushiki Kaisha Process for purifying high-temperature reducing gases and integrated coal gasification combined cycle power generation plant
US5266274A (en) * 1992-10-13 1993-11-30 Tpa, Inc. Oxygen control system for a sulfur recovery unit
AR009277A1 (en) * 1996-08-22 2000-04-12 Shell Int Research PROCESS FOR THE REDUCTION OF THE TOTAL SULFUR CONTENT IN GASES CONTAINING HYDROGEN SULFIDE AND OTHER SULFUR COMPONENTS
RU2562481C2 (en) * 2014-01-29 2015-09-10 Игорь Анатольевич Мнушкин Method and apparatus for producing elementary sulphur with tail gas post-treatment
EP3067109B1 (en) * 2015-03-12 2018-12-05 Prosernat Process for removing sulfur compounds from a gas with hydrogenation and direct oxidation steps
WO2019022603A1 (en) 2017-07-26 2019-01-31 Wte-Tech B.V. Process to treat a sulphur compounds comprising gaseous feed

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2361825A (en) * 1941-08-25 1944-10-31 Union Oil Co Reduction of sulphur dioxide to hydrogen sulphide and free sulphur
FR1105475A (en) * 1954-01-24 1955-12-05 Azote Office Nat Ind Process for the desulphurization of industrial gases and vapors
US2860030A (en) * 1954-12-17 1958-11-11 Phillips Petroleum Co Recovery of hydrogen sulfide and/or carbon dioxide substantially free from hydrocarbons and substantially pure hydrocarbons by chemical treatment of an impure hydrocarbon stream
US2887363A (en) * 1956-09-28 1959-05-19 Exxon Research Engineering Co Conversion of methane to produce hydrogen sulfide
US3476513A (en) * 1966-08-25 1969-11-04 Exxon Research Engineering Co Process and apparatus for the conversion of so2 in flue gas to sulfur
GB1116129A (en) * 1967-03-02 1968-06-06 Shell Int Research Catalytic reduction of sulphur dioxide to hydrogen sulphide

Also Published As

Publication number Publication date
DK149328C (en) 1986-10-06
NL7010604A (en) 1972-01-19
DE2135522C2 (en) 1983-01-13
FI56320C (en) 1980-01-10
AU3128371A (en) 1973-01-18
GB1356289A (en) 1974-06-12
ES393290A1 (en) 1973-08-16
IE35451B1 (en) 1976-02-18
ZA714698B (en) 1972-04-26
NO132088B (en) 1975-06-09
FR2101724A5 (en) 1972-03-31
AU459768B2 (en) 1975-04-10
IE35451L (en) 1972-01-17
FI56320B (en) 1979-09-28
CS179372B2 (en) 1977-10-31
NO132088C (en) 1975-09-17
NL171144B (en) 1982-09-16
IT941574B (en) 1973-03-10
AT308768B (en) 1973-07-25
CH580982A5 (en) 1976-10-29
DE2135522A1 (en) 1972-01-20
BE770058A (en) 1972-01-17
SU751318A3 (en) 1980-07-23
JPS5716846B1 (en) 1982-04-07

Similar Documents

Publication Publication Date Title
DK149328B (en) PROCEDURE FOR REDUCING THE TOTAL SULFUR CONTENT IN THE GAS FROM A CLAUS PLANT
US6616908B2 (en) Treatment of a gas stream containing hydrogen sulphide
KR100786412B1 (en) Method of recovering sulphur from a gas stream containing hydrogen sulphide
JPS627960B2 (en)
US4241032A (en) Process for the removal of hydrogen sulfide from gas streams
US4001386A (en) Process for H2 S removal employing a regenerable polyalkanolamine adsorbent
EP0073074B1 (en) Process for reducing the total sulphur content of a high co2-content feed gas
CN105327599B (en) The processing method of molten sulfur degasification exhaust gas
WO2002032810A1 (en) Method and apparatus for removing sulfur compound in gas containing hydrogen sulfide, mercaptan, carbon dioxide and aromatic hydrocarbon
JP4652399B2 (en) Composition and method for treatment of exhaust gas
WO2012089776A1 (en) Process for removing sulphur-containing contaminants from a gas stream
CA2994281C (en) Systems and methods for improved sulfur recovery from claus process tail gas
US4263270A (en) Process for working-up hydrogen sulphide-containing gases
WO2006106289A1 (en) Treatment of fuel gas
JP2021505364A (en) Sulfur recovery unit tail gas treatment system
JP4837176B2 (en) Method for removing sulfur compounds from natural gas
US2994588A (en) Process for production of sulphur from sour gas
US4267162A (en) Process and apparatus for the exploitation of the sulfur compounds contained in gases containing oxygen and a high water vapor content
AU2014222437A1 (en) Method for removing sulphur dioxide from gas streams, using titanium dioxide as catalyst
GB2114106A (en) Process for the production of elemental sulphur
Khairulin et al. Direct Selective Oxidation of Hydrogen Sulfides Laboratory, Pilot and Industrial Tests Catalysts. 2021. 11. 1109
JPH05237344A (en) Treatment of off gas
US20020025284A1 (en) Treatment of gas streams containing hydrogen sulphide
KR820000450B1 (en) Process for the further processing of hydrogen sulphidecontaing gases
US20020051743A1 (en) Treatment of a gas stream containing hydrogen sulphide

Legal Events

Date Code Title Description
PBP Patent lapsed