DK145242B - COMBUSTION ENGINE SYSTEM WITH A TURBOLED, WATER COOLED ENGINE - Google Patents

COMBUSTION ENGINE SYSTEM WITH A TURBOLED, WATER COOLED ENGINE Download PDF

Info

Publication number
DK145242B
DK145242B DK437279AA DK437279A DK145242B DK 145242 B DK145242 B DK 145242B DK 437279A A DK437279A A DK 437279AA DK 437279 A DK437279 A DK 437279A DK 145242 B DK145242 B DK 145242B
Authority
DK
Denmark
Prior art keywords
steam
circuit
charge air
working medium
condensate
Prior art date
Application number
DK437279AA
Other languages
Danish (da)
Other versions
DK437279A (en
DK145242C (en
Inventor
A Steiger
Original Assignee
Sulzer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Ag filed Critical Sulzer Ag
Publication of DK437279A publication Critical patent/DK437279A/en
Publication of DK145242B publication Critical patent/DK145242B/en
Application granted granted Critical
Publication of DK145242C publication Critical patent/DK145242C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • F02B33/446Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs having valves for admission of atmospheric air to engine, e.g. at starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supercharger (AREA)

Description

145242 1 Opfindelsen angår et forbrændingsmotoranlæg med en turboladet, vandkølet motor og af den i krav l's indledning angivne art.The invention relates to an internal combustion engine plant with a turbocharged, water-cooled engine and of the kind specified in the preamble of claim 1.

5 Et sådant anlæg er allerede foreslået i dansk patentansøgning nr. 4979/78. Ved dette anlæg tjener lade-luftkøleren som fordamper for mindst én del af ar-bejdsmediet i det andet dampkredsløb, der i forhold til det første kredsløb arbejder på et lavere tryk-10 og temperaturniviau. Ved det omtalte anlæg bliver den frembragte damp fra ladeluftkøleren som mættet damp uden overhedning tilført til arbejdsydende ekspansion i en turbine eller et mellemtrin i en turbine.5 Such a plant has already been proposed in Danish patent application no. 4979/78. In this plant, the charge air cooler serves as an evaporator for at least one part of the working medium in the second steam circuit which, in relation to the first circuit, operates at a lower pressure -10 and temperature level. At the said plant, the steam generated from the charge air cooler as saturated steam without superheating is supplied to the working performance expansion in a turbine or intermediate stage in a turbine.

15 Ved det nævnte anlæg har det vist sig som en ulempe, at fremstillingen af ladeluftkøleren stiller store krav, da fx den rørslange for ophederen, i hvilken fordampningen af arbejdsmediet i det andet dampkredsløb sker, skal have en stor overflade.15 At the said plant, it has been found to be a disadvantage that the manufacture of the charge air cooler places great demands, for example, the tube hose for the heater, in which the evaporation of the working medium in the second steam circuit must have a large surface.

2020

Den foreliggende opfindelse tager sigte på at angive et anlæg af den omhandlede art, ved hvilket man under bibeholdelse af den gode spildevarmeudnyttelse, der opnås ved det kendte anlæg, kan reducere omkostnin-25 gerne ved fremstillingen af ladeluftkøleren, og dette opnås ifølge opfindelsen ved, at anlægget er udformet som angivet i krav l's kendetegnende del.SUMMARY OF THE INVENTION The present invention aims to provide a plant of the kind in which, while maintaining the good waste heat utilization achieved by the known plant, the costs of producing the charge air cooler can be reduced and this is achieved according to the invention by: that the plant is designed as specified in the characterizing part of claim 1.

I ophederen i anlægget ifølge opfindelsen bliver 30 det flydende arbejdsmedium i det andet dampkredsløb ifølge opfindelsen ophedet eller "overhedet" så meget, at den påkrævede dampmængde bliver frembragt ved hjælp af en ekspansionsfordampning, der finder sted efter ladeluftkøleren, regnet i strømningsretningen, 35 uden at der kræves en ekstra ekstern varmekilde.In the heater of the plant according to the invention, the liquid working medium in the second steam circuit according to the invention is heated or "superheated" so much that the required amount of steam is produced by an expansion evaporation which takes place after the charge air cooler, calculated in the flow direction, 35 an additional external heat source is required.

145242 2 1 På basis af grundkonceptionen for det omhandlede anlæg lykkes det på denne måde at dimensionere lade-luftkøleren på sekundærsiden - som det i og for sig er kendt, se "Schiff- & Hafen/Kommandobrucke" 29, 5 1977j hæfte 5, side 488/489 - alene for flydende varmebæremedier, uden at herved de specifikke fordele ved det kendte anlæg går tabt.145242 2 1 On the basis of the basic concept of the plant in question, we succeed in this way of dimensioning the charge air cooler on the secondary side - as is known per se, see "Schiff- & Hafen / Kommandobrucke" 29, 5 1977j booklet 5, page 488/489 - only for liquid heating mediums, without losing the specific advantages of the known plant.

Den samlede udnyttelse, herunder navnlig den mængde 10 mekanisk arbejde, der ydes af alle varmekilder i forbrændingsmotoren, kan herved forøges, når der i damprummet for væskeudskilleren findes en kølevandsopvarmet overheder for dampen i det andet dampkredsløb, idet det efter omstændighederne kan være hen-15 sigtsmæssigt, at kølevandet fra forbrændingsmotoren før varmeafgivelsen til arbejdsmediet i det andet dampkredsløb bliver ophedes ved hjælp af den spildegas opvarmede spildevarmekedel i anlægget.The total utilization, in particular the amount of 10 mechanical work provided by all heat sources in the combustion engine, can be increased when a liquid-heated superheated steam for the steam in the second steam circuit can be found in the steam separator, as may be the case. preferably, the cooling water from the internal combustion engine before the heat release to the working medium in the second steam circuit is heated by means of the waste gas heated boiler in the plant.

20 Klargørelsen af det forvarmede kondensat til ophederen sker hensigtsmæssigt fra væskeudskilleren over en med en trykforøgende pumpe udstyret kondensattilbageføringsledning og/eller ved hjælp af en kondensatforvarmer, der er indskudt foran ophederen i 25 ladeluftkøleren.The preparation of the preheated condensate to the heater is conveniently effected from the liquid separator over a condensate return line equipped with a pressure increasing pump and / or by means of a condensate preheater inserted in front of the heater in the charge air cooler.

Endvidere kan man som ekstra anvendelsesmulighed for det i væskeudskilleren fremkommende forvarmede kondensat anvende et med en cirkulationspumpe forsynet, 30 til væskeudskilleren tilsluttet fordampmingskredsløb, der er opvarmet fra forbrændingsmotorens kølevand.Furthermore, as an additional application for the preheated condensate present in the liquid separator, a vaporizing circuit connected to the liquid separator which is heated from the cooling water of the internal combustion engine can be used.

Endelig kan det være hensigtsmæssigt, når ophederen og eventuelt kondensatforvarmeren begge er dimensio-35 neret til arbejdsmediummængden i hvert af de to damp- 145242 3 1 kredsløb, på hvilke arbejdsmediumstrømmen mellem ophederen og ekspansionsorganet er opdelt, da varme-udnyttelsen i ladeluftkøleren herved bliver forøget ikke uvæsentligt.Finally, it may be convenient when the heater and optionally the condensate preheater are both sized to the working medium amount in each of the two steam circuits on which the working medium flow between the heater and the expansion means is divided as the heat utilization in the charge air cooler is thereby pre-heated. not unimportant.

55

Opfindelsen forklares nærmere under henvisning til tegningen, der skematisk viser en udførelsesform for anlægget.The invention is further explained with reference to the drawing, which schematically shows an embodiment of the plant.

10 Til en skematisk vist motor 1 hører der en ladegruppe, hvis ladeluftblæser 3 indsuger luft over et filter 2 og gennem en ledning 4 og transporterer luften gennem en ledning 6 til motoren 1. I ledningen 6 er der indskudt en ladeluftkøler 7 for den komprimerede 15 luft.10 A schematically shown motor 1 belongs to a charging group whose charge air blower 3 draws air over a filter 2 and through a conduit 4 and transports the air through a conduit 6 to the motor 1. A conduit air cooler 7 for the compressed 15 is inserted into the conduit 6. air.

Ladeluftblæseren 3 er drevet af en spildegasturbine 8 over en aksel 10, idet de varme udstødsgasser fra motoren 1 strømmer til turbinen 8 gennem en ledning 20 9 og efter ekspansion i turbinen 8 bortføres gennem en ledning 11, i hvilken der er anbragt en varmeud-veksler eller spildevarmekanal 12.The charge air blower 3 is driven by a waste gas turbine 8 over a shaft 10, the hot exhaust gases from the engine 1 flowing to the turbine 8 through a conduit 20 9 and after expansion in the turbine 8 being discharged through a conduit 11 in which a heat exchanger is arranged. or wastewater duct 12.

Varmeudveksleren 12 tjener som fordamper og overheder 25 for arbejdsmedium i et dampkredsløb 13, der arbejder med forholdsvis høje tryk og tjener til udnyttelse af spildegasvarmen.The heat exchanger 12 serves as a vaporizer and superheater 25 for working medium in a steam circuit 13 which operates at relatively high pressures and serves to utilize the waste gas heat.

Det til det nævnte dampkredsløb hørende system er 30 afgrenet på et sted 15 fra en kondensatledning 16, der indtil dette punkt er fælles for dampkredsløbet 13 med det højere liggende energipotential og for det andet dampkredsløb 25 med et lavere liggende energipotential. Opbygningen af dampkredsløbet 25 35 beskrives mere udførligt nedenfor.The system associated with said steam circuit 30 is branched at a location 15 from a condensate conduit 16, which up to this point is common to the steam circuit 13 with the higher energy potential and the second steam circuit 25 with a lower energy potential. The construction of the steam circuit 25 35 is described in more detail below.

145242 4 1 I dampkredsløbssystemet 13 forbinder en kondensatførende ledning 14 et sted 15 med en spildegasopvarmet fordamper 17, til hvilken en væskeudskiller 18 er tilsluttet. Den i denne udskiller udskilte væske bort-5 føres gennem en ledning 49 og føres efter delvis udnyttelse af væskens restvarmeindhold tilbage til den fælles arbejdsmediumstrøm for de to dampkredsløb 13 og 25. Damprummet i udskilleren 18 er forbundet med en ligeledes spildegasopvarmet overheder 19, 10 fra hvilken en dampledning 20 fører til højtrykssiden i en ligeledes for de to dampkredsløb 13 og 25 fælles turbine 32, der driver en generator 33·In the steam circulation system 13, a condensate conductor 14 connects a location 15 with a waste gas heated evaporator 17 to which a liquid separator 18 is connected. The liquid separated in this separator is discharged through a conduit 49 and, after partial utilization of the residual heat content of the liquid, is returned to the common working medium stream for the two steam circuits 13 and 25. The steam space in the separator 18 is connected to a similar waste gas heated super heaters 19, 10 from a steam line 20 leading to the high pressure side of a common turbine 32 for the two steam circuits 13 and 25 driving a generator 33

Til motoren 1 hører der endvidere på tegningen et 15 hedtvandskølekredsløb 21, der, regnet fra kølevands siden, indeholder en ligeledes spildegasopvarmet, i spildevarmekedlen 12 anbragt ophedningsvarmeudveksler 24, en køler 22 og en pumpe 23. Den i og for sig kendte hedtvandskøling adskiller sig fra de alminde-20 lige kølesystemer ved, at den arbejder ved temperaturer over 100°C, idet kølevandet fx kan forlade motoren 1 med omkring 130°C - til forskel fra de gængse anlæg -, og i det foreliggende anlæg først bliver ophedet i varmeudveksleren 24 til omkring 133°C, derefter 25 strømmer ind i køleren 22, i denne afkøles omkring 13°C til 120°C, og transporteret af pumpen 23 strømmer tilbage til motoren 1.Further to the engine 1 there is included in the drawing a 15 hot water cooling circuit 21 which, calculated from the cooling water side, also contains a waste gas heated, located in the waste heat boiler 12, a heating heat exchanger 24, a cooler 22 and a pump 23. The hot water cooling known per se the general cooling systems in that they operate at temperatures above 100 ° C, for example, the cooling water can leave the engine 1 by about 130 ° C - unlike the conventional systems - and in the present system is first heated in the heat exchanger 24 to about 133 ° C, then 25 flows into cooler 22, therein it is cooled to about 13 ° C to 120 ° C, and conveyed by pump 23 flows back to motor 1.

Da fordampning må forhindres i et sådant kølevands-30 kredsløb, står kredsløbssystemet under et overtryk, der fx ved hjælp af en ikke vist høj tank ved hjælp af komprimeret luft holdes på 5 ata.Since evaporation must be prevented in such a cooling water circuit, the circulation system is under an overpressure which is maintained, for example, by means of a compressed air not shown high tank, at 5 ata.

Som varmeoptagende medium tjener i hedtvandskøleren 35 22 arbejdsmediet i det andet dampkredsløb .25, der i 145242 5 1 parallelle strømme passerer gennem en overheder 36 og en fordamper 40. Dette andet dampkredsløb 25, der i forhold til det første arbejder på et lavere tryk-og temperaturniveau, er fra udstrømningen fra tur-5 binen 32 indtil forgreningspunktet 15 forbundet med det første dampkredsløb 13. I dette fælles delområde findes der en fødepumpe 26, ved hjælp af hvilken arbejdsmediet, i almindelighed vand, transporteres fra en kondensator 27 til en kondensatforvarmer 28.As the heat-absorbing medium, in the hot water cooler 35 22, the working medium of the second steam circuit .25, which in parallel flows passes through a superheater 36 and an evaporator 40. serves this second steam circuit 25 which, in relation to the first, operates at a lower pressure. and temperature level, from the outflow from the turbine 32 to the branching point 15 is connected to the first steam circuit 13. In this common sub-area there is a feed pump 26, through which the working medium, generally water, is conveyed from a capacitor 27 to a condensate preheater. 28th

10 I denne forvarmer 28, der ligger i ladeluftkøleren 7, bliver det kolde kondensat forvarmet af den komprimerede ladeluft, før det i en opheder 29 ophedes så højt som muligt, uden at der indtræder dampdannelse.In this preheater 28, which is in the charge air cooler 7, the cold condensate is preheated by the compressed charge air before it is heated as high as possible in a heater 29 without steam formation occurring.

15 Det varmeafgivende medium i ophederen 29 er ligeledes den komprimerede ladeluft.The heat-dissipating medium in the heater 29 is also the compressed charge air.

Mellem kondensatforvarmeren 28 og ophederen 29 indmunder en kondensat-tilbageføringsledning 30, der 20 fører forvarmet kondensat tilbage ind foran ophederen 29. Ved enden af ophederen 29, i strømmens retning, er den allerede nævnte kondensatledning 16 tilsluttet.Between the condenser preheater 28 and the heater 29, a condensate return line 30 leading 20 preheated condensate back in front of the heater 29. At the end of the heater 29, in the direction of flow, the aforementioned condensate line 16 is connected.

Over dette punkt 15, i hvilket ledningen 14 for det 25 forvarmede flydende arbejdsmedium i det første dampkredsløb 13 er afgrenet, fører ledningen 16 til et ekspansions- eller afspændingsorgan 31, fx et drøvle-organ. I dette bliver en del af arbejdsmediet, der cirkulerer i det andet dampkredsløb, fordampet ved 30 ekspansion, under samtidig afkøling. Damp og restkondensat strømmer i ledningen 16 i fællesskab til en væskeudskiller 34 til adskillelse af damp og væske.Above this point 15, in which the conduit 14 for the preheated liquid working medium in the first steam circuit 13 is branched, the conduit 16 leads to an expansion or relaxation means 31, for example a throttle means. In this, a portion of the working medium circulating in the second vapor cycle is evaporated by expansion, while simultaneously cooling. Steam and residual condensate flow in conduit 16 jointly to a liquid separator 34 for separating steam and liquid.

Pra damprummet i denne væskeudskiller 34 fører en 35 ledning 35 til en kølevandsopvarmet overheder 36, 145242 6 1 fra hvilken overhedet damp gennem en ledning 37 strømmer til arbejdsydende ekspansion i et mellemtrin i den fælles turbine 32.In the steam room of this liquid separator 34, a 35 conduit 35 leads to a cooling water heated superheater 36, from which superheated steam flows through a conduit 37 for working performance expansion in an intermediate stage of the common turbine 32.

5 Pra kondensatrummet i væskeudskilleren 34 transporterer en pumpe 38, der samtidig udligner det på grund af ekspansionen fremkaldte trykfald, det forvarmede kondensat gennem kondensattilbageføringsledningen 30 tilbage til et mellem forvarmeren 28 og ophederen 29 10 liggende sted 39 i det fælles delområde for de to dampkredsløb 13 og 25. Dette tilbageførte, forvarmede kondensat kan opvarmes på ny og i tilslutning hertil tilledes til ekspansionsfordampning.The pr condensate compartment in the liquid separator 34 transports a pump 38 which at the same time compensates for the pressure drop induced by the expansion, the preheated condensate through the condensate return line 30 back to a location 39 between the preheater 28 and the heater 29 10 in the common subarea of the two steam circuits 13 and 25. This reversed preheated condensate can be reheated and subsequently allowed for expansion evaporation.

15 Til ekstra dampfrembringelse i det andet dampkredsløb 25 tjener den allerede nævnte kølevandsopvarmede fordamper 40, der over en kondensatførende ledning 41 er forbundet med ledningen 30 eller kondensatrummet i væskeudskilleren 34 og ved hjælp af en ledning 42 20 med damprummet i denne væskeudskiller 34. Strømmen gennem fordamperen 40 bliver derved sikret ved hjælp af en i ledningen 4l indskudt cirkulationspumpe 43.15 For additional steam generation in the second steam circuit 25, the aforementioned cooling water heated evaporator 40, connected via a condensate conducting line 41 to the line 30 or the condensate space of the liquid separator 34, and by means of a line 42 20 to the steam space of this liquid separator 34. evaporator 40 is thereby secured by means of a circulation pump 43 inserted in conduit 4l.

Er denne varmeafgivelse, der fremkaldes af det gennem 25 forvarmeren 28 og ophederen 29 cirkulerende arbejds-medium, ikke tilstrækkelig til at afkøle ladeluften i tilstrækkelig grad, findes der for luften ved enden af ladeluftkøleren 7 en varmeudveksler 45, idet det ydre kølemiddel samtidig tjener som varmebortfØrende 30 medium i kondensatoren 27. Til dette formål er der for kølemidlet parallelt med varmeudveksleren 45 indskudt en varmeudveksler 46 i kondensatoren 27·If this heat release produced by the working medium circulating through the preheater 28 and the heater 29 is not sufficient to cool the charge air sufficiently, there is a heat exchanger 45 for the air at the end of the charge air cooler 7, the external refrigerant simultaneously serving as heat transfer medium 30 in the capacitor 27. For this purpose, for the refrigerant parallel to the heat exchanger 45, a heat exchanger 46 is inserted in the capacitor 27 ·

Opdelingen af kølemiddelstrømmen på de to aggregater 45 og 46 sker ved hjælp af indstillelige drøvleorga-35 ner 47 og 48, der kun er vist skematisk.The splitting of the refrigerant flow into the two assemblies 45 and 46 is effected by adjustable throttle bodies 47 and 48, shown schematically only.

145242 7 1 Alt efter mængden og temperaturfordelingen for den opstående spildevarme fra spildevarmekilderne kan kølevand og ladeluft efter omstændighederne enten fordamperen 40 eller kondensatortilbageføringslednin-5 gen 30 falde bort og erstattes af den ene af disse to muligheder for dampfremstillingen i det andet dampkredsløb 25, i forbindelse med ekspansionsorganet 31- 10 Endvidere er det muligt efter omstændighederne at adskille de to dampkredsløb 13 og 25 trinvist yderligere fra hinanden, fx at anvende adskilte kondensatorforvarmere og -ophedere eller endog adskilte føde-pumper, kondensatorer og/eller turbiner for de to 15 kredsløb.Depending on the amount and temperature distribution of the arising wastewater from the wastewater sources, cooling water and charge air can, as the case may be, either the evaporator 40 or the condenser return line 30, and be replaced by one of these two options for steam generation in the second steam circuit 25. with the expansion means 31-10. Furthermore, it is possible, according to the circumstances, to separate the two steam circuits 13 and 25 further stepwise, for example using separate capacitor heaters and heaters or even separate feed pumps, capacitors and / or turbines for the two circuits.

Hvilken af de forskellige muligheder der er den gunstigste til en optimal varmegenvinding med anlægget ifølge opfindelsen, må bestemmes i de enkelte til-20 fælde ud fra temperaturerne og varmemængderne i de to spildevarmekilder. Til at give et indtryk af de givne temperaturforhold er der på tegningen indført de på forskellige steder målte temperaturværdier i °C i et forsøgsanlæg.Which of the various options is the most favorable for an optimal heat recovery with the plant according to the invention must be determined in each case based on the temperatures and amounts of heat in the two waste heat sources. In order to give an impression of the given temperature conditions, the temperature values measured at different places in ° C in an experimental plant are introduced in the drawing.

Claims (3)

145242145242 1. Forbrændingsmotoranlæg med en turboladet, vand-kølet motor, med mindst én ladegruppe, i hvis lade- 5 luftledning der er indskudt mindst én luftkøler, og med mindst ét dampkredsløb, i hvilket i det mindste en del af spildevarmen fra motoren tjener til opvarmning og fordampning af et arbejdsmedium, idet der til spildevarmeudnyttelse fra spildegasserne 10 findes et første dampkredsløb på et højere tryk- og temperaturniveau i forhold til et andet dampkredsløb til udnyttelse af kompressionsvarmen i ladeluften og spildevarmen i kølevandet, og at arbejdsmediet i det mindste delvist tilføres til mindst én dampturbine 15 til arbejdsydende ekspansion, og idet endvidere kølevandskredsløbet for forbrændingsmotoren er udformet som hedtvands-kredsløb, der står under overtryk og har kølevandstemperatur på over 100°C, kendetegnet ved, at der i det andet dampkredsløb 20 (25) til fordampning af arbejdsmediet er indskudt en i ladeluftkøleren (7) anbragt opheder (29) for forvarmet i flydende arbejdsmedium, et ekspansionsorgan (31) for dampfrembringelse og en damp-væskeadskiller (34). 25An internal combustion engine system with a turbocharged, water-cooled engine, having at least one charge group, in which the charge air line is injected with at least one air cooler, and with at least one steam circuit, in which at least part of the waste heat from the engine serves for heating and evaporation of a working medium, for wastewater utilization from the waste gases 10 there is a first steam circuit at a higher pressure and temperature level relative to a second steam circuit for utilizing the compression heat in the charge air and the waste heat in the cooling water, and the working medium is at least partially supplied to the at least one steam turbine 15 for working performance expansion, and furthermore, the cooling water circuit of the internal combustion engine is designed as hot water circuit which is under pressure and has cooling water temperature above 100 ° C, characterized in that in the second steam circuit 20 (25) for evaporation of the working medium is inserted into a preheater (29) preheated in liquid working cooler (7) edium, an expansion means (31) for steam generation and a steam-liquid separator (34). 25 1 PATENTKRAV1 PATENT REQUIREMENT 2. Anlæg ifølge krav 1, kendetegnet v e d , at en med en trykforøgende pumpe (38) forsynet kondensattilbageføringsledning (30) fører fra væskeudskilleren (34) ind foran ophederen (29)· 30Installation according to claim 1, characterized in that a condensate feedback line (30) provided with a pressure-increasing pump (38) leads from the liquid separator (34) in front of the heater (29) · 30 3. Anlæg ifølge et af kravene 1 eller 2, kendetegnet ved, at der foran ophederen (29) er indskudt en kondensatforvarmer (28) i ladeluft-køleren (7). 35Installation according to one of claims 1 or 2, characterized in that a condensate preheater (28) is inserted in front of the heater (29) in the charge air cooler (7). 35
DK437279A 1978-10-25 1979-10-17 Combustion engine system with a turbocharged, water-cooled engine DK145242C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1102978 1978-10-25
CH1102978A CH632051A5 (en) 1978-10-25 1978-10-25 INTERNAL COMBUSTION ENGINE.

Publications (3)

Publication Number Publication Date
DK437279A DK437279A (en) 1980-04-26
DK145242B true DK145242B (en) 1982-10-11
DK145242C DK145242C (en) 1983-02-28

Family

ID=4369325

Family Applications (1)

Application Number Title Priority Date Filing Date
DK437279A DK145242C (en) 1978-10-25 1979-10-17 Combustion engine system with a turbocharged, water-cooled engine

Country Status (9)

Country Link
JP (1) JPS5557609A (en)
CH (1) CH632051A5 (en)
DE (1) DE2847028C2 (en)
DK (1) DK145242C (en)
FR (1) FR2439871A1 (en)
GB (1) GB2033017B (en)
IT (1) IT1123877B (en)
NL (1) NL7907785A (en)
SE (1) SE7908812L (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2489418A1 (en) * 1980-08-26 1982-03-05 Bertin & Cie Heat recovery for IC engine - has fluid for rankine cycle vapour motor heated by exhaust gases
JPS57108402A (en) * 1980-12-25 1982-07-06 Mitsui Eng & Shipbuild Co Ltd Equipment for recovering heat of exhaust gas of internal combustion engine
JPS5865917A (en) * 1981-10-15 1983-04-19 Takuma Sogo Kenkyusho:Kk Power generating device of exhaust heat recovery in diesel engine
US4586338A (en) * 1984-11-14 1986-05-06 Caterpillar Tractor Co. Heat recovery system including a dual pressure turbine
DE3630413A1 (en) * 1986-09-06 1988-03-17 Porsche Ag DRIVE UNIT
NL9000690A (en) * 1990-03-23 1991-10-16 Adviesbureau Amerconsult B V GAS HEATING SYSTEM.
US5351487A (en) * 1992-05-26 1994-10-04 Abdelmalek Fawzy T High efficiency natural gas engine driven cooling system
IT1272684B (en) * 1993-09-27 1997-06-26 Gianluigi Reis DISSIPATED ENERGY RECOVERY SYSTEM, DURING ITS RUNNING, FROM AN INTERNAL COMBUSTION MOTOR VEHICLE
FI101167B (en) * 1995-06-12 1998-04-30 Waertsilae Nsd Oy Ab Utilization of low-value heat in a supercharged thermal power plant
WO1999040379A1 (en) * 1998-02-03 1999-08-12 Miturbo Umwelttechnik Gmbh & Co. Kg Method of heat transformation for generating heating media with operationally necessary temperature from partly cold and partly hot heat loss of liquid-cooled internal combustion piston engines and devices for executing the method
FR2891050B1 (en) * 2005-09-20 2008-01-25 Renault Sas CENTRAL SUPERVISION
JP4923639B2 (en) * 2005-11-11 2012-04-25 ダイキン工業株式会社 Indoor panel of air conditioner and air conditioner
DE102005063056B4 (en) * 2005-12-29 2008-10-30 Deutsche Energie Holding Gmbh ORC engine
WO2008035108A1 (en) * 2006-09-21 2008-03-27 Ray Mason Engine assemblies
ITMI20062046A1 (en) * 2006-10-24 2008-04-25 Iveco Motorenforschung Ag MOTOR SYSTEM WITH HEAT RECOVERY SYSTEM AND RELATIVE HEAT RECOVERY METHOD
EP1925806B1 (en) * 2006-11-24 2017-10-04 MAHLE Behr GmbH & Co. KG System with an organic Rankine cycle for operating at least one expansion machine, heat exchanger for operating one expansion machine, method for operating at least one expansion machine
WO2008125827A2 (en) * 2007-04-13 2008-10-23 City University Organic rankine cycle apparatus and method
DE102008029729A1 (en) * 2008-06-20 2009-12-24 Müller, Robert Thermally-combined combustion engine, particularly internal combustion engine, has body for burning in circulating heat transfer medium with high boiling point, where additional heat exchanger is provided
DE102010000487B4 (en) 2010-02-21 2023-06-29 von Görtz & Finger Techn. Entwicklungs GmbH Process and device for internal combustion engines
JP2011231636A (en) * 2010-04-26 2011-11-17 Mitsubishi Heavy Ind Ltd Exhaust heat recovery power generator and ship provided with exhaust heat recovery power generator
SE535877C2 (en) * 2010-05-25 2013-01-29 Scania Cv Ab Cooling arrangement of a vehicle driven by a supercharged internal combustion engine
DE102011080208A1 (en) * 2011-08-01 2013-02-07 Behr Gmbh & Co. Kg A heat exchanger system and method of operating a heat exchanger system for a vehicle
CN103758658B (en) * 2013-12-27 2015-06-24 天津大学 Heat recovery system for gradient utilization of two-stage double-circuit internal-combustion engine waste heat
JP6382127B2 (en) * 2015-02-13 2018-08-29 株式会社神戸製鋼所 Heat exchanger, energy recovery device, and ship
CN104929805A (en) * 2015-06-22 2015-09-23 沈阳航空航天大学 Vehicle engine waste heat recycling device using reheat type organic Rankine cycle technology
RU2630284C1 (en) * 2016-06-08 2017-09-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ярославский государственный технический университет" (ФГБОУВО "ЯГТУ") Cogeneration unit with deep waste energy disposal of thermal engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2637684A (en) * 1945-05-08 1953-05-05 Badger Mfg Company Engine-driven vapor compression distillation
CH457038A (en) * 1966-04-28 1968-05-31 Sulzer Ag Plant for the utilization of waste heat from a reciprocating internal combustion engine to drive ships
JPS52149514A (en) * 1976-06-07 1977-12-12 Kawasaki Heavy Ind Ltd Effective use of heat generated from supercharged air of diesel engine
CH626426A5 (en) * 1977-11-21 1981-11-13 Sulzer Ag Internal combustion engine system with a pressure-charged, water-cooled engine
CH627524A5 (en) * 1978-03-01 1982-01-15 Sulzer Ag METHOD AND SYSTEM FOR THE USE OF HEAT THROUGH THE EXTRACTION OF HEAT FROM AT LEAST ONE FLOWING HEAT CARRIER.

Also Published As

Publication number Publication date
SE7908812L (en) 1980-04-26
GB2033017B (en) 1982-12-08
CH632051A5 (en) 1982-09-15
JPS5557609A (en) 1980-04-28
NL7907785A (en) 1980-04-29
DE2847028B1 (en) 1980-04-24
DK437279A (en) 1980-04-26
IT7926548A0 (en) 1979-10-17
DK145242C (en) 1983-02-28
FR2439871A1 (en) 1980-05-23
DE2847028C2 (en) 1980-12-18
FR2439871B1 (en) 1983-07-08
IT1123877B (en) 1986-04-30
GB2033017A (en) 1980-05-14

Similar Documents

Publication Publication Date Title
DK145242B (en) COMBUSTION ENGINE SYSTEM WITH A TURBOLED, WATER COOLED ENGINE
CA1215238A (en) Generation of energy
CN1097152C (en) Combined generating equipment by using forced-circulation steam boiler as gas-turbine radiator
US4232522A (en) Method and apparatus for utilizing waste heat from a flowing heat vehicle medium
US7458217B2 (en) System and method for utilization of waste heat from internal combustion engines
JP2634918B2 (en) Thermodynamic cycle execution method and apparatus
US5000003A (en) Combined cycle engine
EP0280453B1 (en) Direct fired power cycle
FI102405B (en) Method for improving the total useful energy production of a thermal power plant i and a power plant with a liquid-cooled thermal power plant
RU2126491C1 (en) Device for cooling gas turbine cooler of gas-and-steam turbine plant
US4313305A (en) Feedback energy conversion system
CN102834591A (en) Exhaust heat recovery power generation device and vessel provided therewith
JP4698590B2 (en) Heat tempering system
US4292809A (en) Procedure for converting low-grade thermal energy into mechanical energy in a turbine for further utilization and plant for implementing the procedure
CN101705849B (en) Self-coupling cold source heat pump circulating device of low-temperature exhaust heat power generating system in low temperature exhaust steam condensation process
DK153239B (en) PROCEDURE FOR RECOVERY OF ENERGY IN A POWER GENERATOR AND A POWER GENERATOR FOR USE IN THE PROCEDURE
US4120157A (en) Power generating and air conditioning system utilizing waste heat
US6052997A (en) Reheat cycle for a sub-ambient turbine system
US8584462B2 (en) Process and power system utilizing potential of ocean thermal energy conversion
US11008899B2 (en) Internal combustion engine with evaporative cooling and waste heat utilization
US2778607A (en) Recovery of heat contained in cooling fluid of transformers and alternators
JPH02181002A (en) Double flow turbine plant
CA1162802A (en) Installation for generating superheated process steam from salt-containing raw water
KR20210104067A (en) District heating network including heat pump unit and heat pump unit
SU1514966A1 (en) Power unit