DK142473B - Apparatus with an optical transmitter and receiver, in particular a flight time laser anemometer. - Google Patents

Apparatus with an optical transmitter and receiver, in particular a flight time laser anemometer. Download PDF

Info

Publication number
DK142473B
DK142473B DK468177A DK468177A DK142473B DK 142473 B DK142473 B DK 142473B DK 468177 A DK468177 A DK 468177A DK 468177 A DK468177 A DK 468177A DK 142473 B DK142473 B DK 142473B
Authority
DK
Denmark
Prior art keywords
receiver
optical
lens
transmitter
measurement
Prior art date
Application number
DK468177A
Other languages
Danish (da)
Other versions
DK468177A (en
DK142473C (en
Inventor
Lars Lading
Arne Skov Jensen
Christian Fog
Original Assignee
Risoe Forsoegsanlaeg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Risoe Forsoegsanlaeg filed Critical Risoe Forsoegsanlaeg
Priority to DK468177A priority Critical patent/DK142473B/en
Priority to DE19782845592 priority patent/DE2845592C2/en
Publication of DK468177A publication Critical patent/DK468177A/da
Publication of DK142473B publication Critical patent/DK142473B/en
Application granted granted Critical
Publication of DK142473C publication Critical patent/DK142473C/da

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/68Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

OD FREMLÆGGELSESSKRIFT 142473OD PRESENTATION 142473

(ÉM(eM

\RB/ DANMARK (51) *nt· ^,3 ® p 5/20 // g 01 p 3/35 §(21) Ansøgning nr. 4681/77 (22) Indleveret den 20· Okt. 1577 (24) Løbedag 20. okt. 1977 (44) Ansøgningen fremlagt og .\ RB / DENMARK (51) * nt · ^, 3 ® p 5/20 // g 01 p 3/35 § (21) Application No. 4681/77 (22) Filed on 20 · Oct. 1577 (24) Race day 20 Oct. 1977 (44) The application presented and.

fremlaaggelsesekriftet offentliggjort den 3· DOV. lycSOthe petition published on 3 · DOV. lycSO

DIREKTORATET FOR LDIRECTORATE OF L

PATENT-OG VAREMÆRKEVÆSENET (30) Prioritet begæret fra den (71) FORSØGSANLÆG RISØ, 4000 Roskilde, DK.PATENT AND TRADE MARKET (30) Priority requested from (71) RISØ TRIAL, 4000 Roskilde, DK.

(72) Opfinder: Lars Lading, Dyssevej 35* Aagerup, 4000 Roskilde, DK: Arne Skov Jensen, Munkebjergvej 17* 4100 RingBted, DK: Christian Pog, Høj* gaardsvej 15, Aagerup, 4000 Roskilde, DK.(72) Inventor: Lars Lading, Dyssevej 35 * Aagerup, 4000 Roskilde, DK: Arne Skov Jensen, Munkebjergvej 17 * 4100 RingBted, DK: Christian Pog, Høj * gaardsvej 15, Aagerup, 4000 Roskilde, DK.

(74) Fuldmægtig under sagens behandling:(74) Plenipotentiary in the proceedings:

Internationalt Patent-Bureau. __ (54) Apparat med en optisk sender og modtager, navnlig et flyvetids® laseranemometer.International Patent Office. __ (54) Apparatus with an optical transmitter and receiver, in particular a flight-time® laser anemometer.

Opfindelsen angår et apparat med en optisk sender, i hvilken indgår mindst én lyskilde, f.eks. en laser, og et optisk systen med to linser og et dobbeltbrydende optisk element til udsendelse af to lysstråler, der på målestedet har to fokale voluminer, der ligger i lille afstand fra hinanden, og med en optisk modtager, i hvilken indgår et optisk system til modtagelse af spredt stråling hidrørende fra partikler på målestedet og mindst én fotodetektor til omsætning af den modtagne stråling til elektroniske signaler, samt med elektronisk udstyr til analyse af signalerne fra fotodetektoren eller fotodetektorerne og tilvejebringelse af et analyseresultat, navnlig et flyvetidslaser-anemometer, hvorhos det dobbeltbrydende optiske element i senderen og et optisk element i modtagerens strålegang sammen er drejelige 2 142473 til ændring af måleretningen.The invention relates to an apparatus with an optical transmitter which includes at least one light source, e.g. a laser, and a two-lens optical system and a double-refractive optical element for emitting two light rays having, at the measurement site, two distant focal volumes and with an optical receiver incorporating an optical system for receiving scattered radiation from particles at the measurement site and at least one photodetector for converting the received radiation into electronic signals, as well as with electronic equipment for analyzing the signals from the photodetector or photodetectors and providing an analysis result, in particular a flight time laser anemometer, where optical element in the transmitter and an optical element in the receiver's beam path together are rotatable for changing the measurement direction.

Laseranemometre af denne art benyttes til at bestemme den tid, partikler i et medium er om at bevæge sig fra et målested til et andet. Med kendskab til tiden og vejlængden kan partiklernes hastighed bestemmes.Laser anemometers of this kind are used to determine the time that particles in a medium are moving from one measurement site to another. Knowing the time and the path length, the velocity of the particles can be determined.

Der kendes optiske apparater til ruhedsundersøgelser baseret på et lignende princip, hvor analyseresultatet benyttes til at tilvejebringe en afbildning, der illustrerer de rumlige forhold på den målte flade. I sådanne optiske apparater er der et behov for at kunne indstille måleretningen, der er bestemt af den indbyrdes beliggenhed af de to fokale målevoluminer. I de kendte måleudstyr ligger målestedet i kort afstand fra de optiske systemer.Optical apparatus for roughness studies are known based on a similar principle, where the analysis result is used to provide an image illustrating the spatial conditions of the measured surface. In such optical devices, there is a need to be able to set the measurement direction, which is determined by the mutual location of the two focal measurement volumes. In the known measuring equipment, the measurement location is a short distance from the optical systems.

Der kendes endvidere fra beskrivelsen til tysk Auslegeschrift 24 49 358 et optisk apparat til måling af strømningsvektoren i en gasstrøm ved måling af hastighed og retning af optisk iagttagelige partikler i strømmen, i hvilket apparat et Rockon prisme i senderen og en tohuLsblænder i modtageren er drejelige samtidigt med henblik på at sikre, at de to i modtageren indgående stråler stadig rammer hver sin fotoelektriske detektor, når Rockon prismet drejes til drejning- af retningen mellem målevoluminerne i gasstrømmen.Further, from the description of German Auslegeschrift 24 49 358, an optical apparatus for measuring the flow vector in a gas stream is known by measuring the velocity and direction of optically observable particles in the stream, in which apparatus a Rockon prism in the transmitter and a two-hole aperture in the receiver are rotatable simultaneously. in order to ensure that the two rays received in the receiver still hit each of their photoelectric detectors when the Rockon prism is rotated to rotate the direction between the measuring volumes in the gas stream.

Dette kendte apparat egner sig ikke til fjernmåling. Der kræves en meget præcis føring af tohulsblænderen selv ved nærmåling, og apparatet er følsomt for parallelforskydning af blænderen på tværs af eller langs med strålernes optiske akse. Der kræves endvidere et særligt linsearrangement med to linser for de to stråler.This known apparatus is not suitable for remote measurement. A very precise guide of the two-hole aperture is required even at close-up, and the apparatus is sensitive to parallel displacement of the aperture across or along the optical axis of the jets. A special lens arrangement with two lenses is also required for the two rays.

Når Rockon prismet drejes, vil det ene af de to lyssignaler enten, hvis det er fokuseret, beskrive en cirkel eller, hvis det er defoku-seret, udfylde et stort areal i forhold til billedet af et måle-volumin. Der kræves derfor i begge tilfælde et tilsvarende stort detektorareal med deraf følgende større mørkestrøm. Dette er ufordelagtigt, ikke blot når der anvendes halvleder-fotodioder, men generelt når der skal arbejdes med lave lysniveauer.When the Rockon prism is rotated, one of the two light signals will either, if focused, describe a circle or, if defocused, fill a large area relative to the image of a measurement volume. Therefore, in both cases, a correspondingly large detector area is required, with the resultant greater dark current. This is disadvantageous, not only when using semiconductor photodiodes, but generally when working with low light levels.

Til grund for den foreliggende opfindelse ligger den opgave at tilvejebringe et sådant optisk apparat, som tillader en let og hurtig indstilling af måleretningen, navnlig et laseranemometer, der er egnet til at foretage målinger på et målested, der ligger fjernt fra selve udstyret. Et sådant måleudstyr er især egnet til meteorologiske undersøgelser og kan med fordel anvendes i lufthavne, men kan i øvrigt anvendes overalt, hvor der er brug for at måle U 2473 3 strømmende mediers hastighed eller partikelbevægelser i flydende og luftformige medier eller eventuelt i rummet. Når udstyret skal indrettes til fjernmålinger er problemerne med indstillingen af måleretningen særlig store. Selv om man sammenbygger sender og modtager til én enhed og indretter denne enhed indstillelig, opnår man ikke et betjeningsvenligt apparat.The object of the present invention is to provide such an optical apparatus which allows for easy and quick adjustment of the measurement direction, in particular a laser anemometer suitable for making measurements at a measurement location remote from the equipment itself. Such measuring equipment is particularly suitable for meteorological studies and can be used advantageously at airports, but can also be used wherever the velocity or particle movements of liquid media in liquid and gaseous media or possibly in space are needed. When adjusting the equipment for remote measurements, the problems with setting the measurement direction are particularly serious. Even if you combine transmitter and receiver into one unit and adjust this unit adjustably, you will not achieve an easy-to-use device.

Ifølge den foreliggende opfindelse løses opgaven ved, at det drejelige optiske element i modtagerens strålegang er et drejeligt dobbeltbrydende element.According to the present invention, the task is solved by the rotatable optical element of the receiver beam path being a rotatable double refractive element.

Ved denne foranstaltning undgås de ovennævnte ulemper, og der fås et apparat, ved hvilket de ændringer, der optræder som følge af en afstandsindstilling ved fjernmåling kan gøres identiske i sender og modtager, hvilket er af betydning ved målinger på objekter med meget lille spredningstværsnit.By this measure, the above-mentioned disadvantages are avoided and an apparatus is obtained in which the changes which occur as a result of a distance measurement by remote measurement can be made identical in transmitter and receiver, which is important in measurements on objects with very small scattering cross sections.

Selv om det til reduktion af falsk lys kan være en fordel, at der ikke er fælles optiske komponenter mellem sender og modtager foretrækkes det med henblik på lettelse af indstillingen, at udgangslinsen i den optiske sender indgår som indgangslinse i den optiske modtager.Although it is advantageous for the reduction of false light that there are no common optical components between transmitter and receiver it is preferred for the purpose of facilitating the setting that the output lens of the optical transmitter is included as the input lens of the optical receiver.

I en hensigtsmæssig udførelsesform for anemometeret ifølge opfindelsen indeholder cfet optiske system i strålegangen efter indgangslinsen dels en linse og et dobbeltbrydende optisk element, som omsætter det opfangede lys til én stråle, dels en linse, der afbildér målestedets to fokale voluminer i én lysplet, i hvis plan er anbragt en blænder P, dels en λ./2 optisk plade, som er anbragt drejelig og ved drejning bevæger sig med den halve vinkel af drejningen af det dobbeltbrydende optiske element, dels et faststående dobbeltbrydende element, dels to fotodetektorer eventuelt med foranstående båndpas-filtre. Ved denne indretning af modtageren undgår man ved drejning af måleretningen at skulle dreje de to fotodetektorer, der overflødiggør en elektronisk adskillelse af signalerne fra målevoluminerne.In a convenient embodiment of the anemometer of the invention, the cfet optical system in the beam passage following the input lens contains, on the one hand, a lens and a double refractive optical element, which converts the captured light into one beam, and a lens that depicts the two focal volumes of the measurement site in one light spot. plane is arranged a aperture P, partly an λ / 2 optical plate, which is rotatable and rotates at half the angle of rotation of the double-refractive optical element, and a fixed double-refractive element, and two photodetectors, optionally with the preceding bandpass. filters. In this arrangement of the receiver, the rotation of the measuring direction avoids having to rotate the two photodetectors, which unnecessarily electronic separation of the signals from the measuring volumes.

Opfindelsen forklares i det følgende nærmere under henvisning til den skematiske tegning, hvor fig. 1 i diagramform viser et apparat med en optisk sender og modtager ifølge opfindelsen, fig. 2 et blokdiagram over det tilhørende elektroniske udstyr til analyse af signalerne fra de to fotodetektorer i fig. 1, og fig. 3 i diagramform en forenklet udførelsesform for modtageren i fig. 1.The invention is explained in more detail below with reference to the schematic drawing, in which fig. 1 is a diagram showing an apparatus with an optical transmitter and receiver according to the invention; FIG. 2 is a block diagram of the associated electronic equipment for analyzing the signals from the two photodetectors of FIG. 1, and FIG. 3 is a simplified embodiment of the receiver of FIG. First

4 U2473 I den kombinerede optiske sender og modtager, der er vist i diagram i fig. 1 findes en lasergenerator, i hvis strålegang ligger et λ/4 optisk element, et dobbeltbrydende optisk element W1 fortrinsvis et Wollaston prisme, en linse Li, to spejle Si og s2 samt en udgangslinse L2. Målestedet, der ligger fjernt fra linsen L2, er i figuren til højre vist skematisk med de to fokale voluminer Fl og F2. Den her beskrevne sender er i hovedsagen kendt fra artiklerne L. Lading "The Time-of-Flight Laser Anemometer", AGARD-CP-193, paper 23 og R. Schodl "The Laser-Dual-Focus Flow Velocimeter", AGARD-CP-193, paper 21 og behøver således ikke nærmere omtale. Det skal blot nævnes, at laserstrålen opdeles i to angulært adskilte stråler med ortogonal polarisation af Wollaston prismet W1 og brydes og fokuseres af linsen LI i to rumligt adskilte lyspletter. Disse lyspletter afbildes af linsen L2 i en afstand på fra 10 til 100 meter. Wollaston-prismets W1 placering i den fokale. plan til venstre for linsen LI i stedet for i den fokale plan for linsen L2 medfører, at separationen mellem de afbildede lyspletter er proportional med afstanden, samt at en fokuseret laserstråle inden for Wollaston-prismet Wl undgås. I fokus er lyspletdiametrene også proportionale med afstanden, fordi sender-aperturen er fast. En placering af Wollaston-prismet Wl i den fokale plan til venstre for L2 ville give parallelle stråler, men ikke et konstant forhold mellem strålediameteren og afstanden mellem strålerne.4 U2473 In the combined optical transmitter and receiver shown in the diagram in FIG. 1 there is a laser generator in whose beam path lies an λ / 4 optical element, a double refractive optical element W1, preferably a Wollaston prism, a lens Li, two mirrors Si and s2 and an output lens L2. The target location distant from the lens L2 is shown diagrammatically in the figure to the right with the two focal volumes F1 and F2. The transmitter described herein is generally known from the articles L. Lading "The Time-of-Flight Laser Anemometer", AGARD-CP-193, paper 23 and R. Schodl "The Laser-Dual-Focus Flow Velocimeter", AGARD-CP -193, paper 21 and thus need no further discussion. It should be mentioned that the laser beam is divided into two angularly spaced beams with orthogonal polarization of the Wollaston prism W1 and refracted and focused by the lens L1 into two spatially spaced light spots. These light spots are imaged by the lens L2 at a distance of 10 to 100 meters. The Wollaston prism W1 placement in the focal. plane to the left of the lens L1 instead of the focal plane of the lens L2 causes the separation between the depicted light spots to be proportional to the distance, and to avoid a focused laser beam within the Wollaston prism W1. In focus, the light spot diameters are also proportional to the distance because the transmitter aperture is fixed. Placing the Wollaston prism W1 in the focal plane to the left of L2 would provide parallel rays, but not a constant relationship between the beam diameter and the distance between the rays.

Modtagerens indgangslinse L2 er den føromtalte udgangslinse i senderen L2 og bag den findes en spærreblænder S, som spærrer •for direkte lys fra senderen. I modtagerens strålegang findes en linse L3 og et Wollaston-prisme W2, som tilsammen omsætter det indfangede lys til δη stråle, som, når den fokuseres ved en linse L4, giver ét enkelt billede af de to lyspletter. Mellem Wollaston-prismet W2 og linsen L4 er indskudt to spejle S3 og S4.The receiver's input lens L2 is the aforementioned output lens of the transmitter L2 and behind it is a detent bar S which blocks • direct light from the transmitter. In the receiver beam path, there is a lens L3 and a Wollaston prism W2, which together converts the captured light into δη beam, which, when focused by a lens L4, provides a single image of the two light spots. Two mirrors S3 and S4 are inserted between the Wollaston prism W2 and the lens L4.

I detfokale plan for linsen L4 findes en blænder (matched pinhole) P, der tjener som rumligt filter for de to kanaler, der indgår i strålen. Efter det rumlige filter P følger et 7</2 optisk element og endnu et Wollaston-prisme W3, som adskiller de to kanaler i hver sin stråle, der er rettet mod hver sin fotodetektor PMTl og PMT2. Foran fotodetektorerne er anbragt båndpasfiltre Bl og B2.In the focal plane of lens L4, there is a matched pinhole P which serves as a spatial filter for the two channels included in the beam. Following the spatial filter P follows a 7 </ 2 optical element and yet another Wollaston prism W3, which separates the two channels in each beam directed at each photodetector PMT1 and PMT2. In front of the photodetectors are bandpass filters B1 and B2.

De to Wollaston-prismer Wl og W2 er anbragt drejelige om den optiske akse hensigtsmæssigt på en sådan måde, at de er sammenkoblede, således at man med et enkelt håndtag kan dreje dem 142473 5 begge én og samme vinkel til indstilling af måleretningen. Det optiske λ/2 element, der har den egenskab, at det drejer polarisationsretningen med den dobbelte drejningsvinkel målt i forhold til en retning, i hvilken ingen polarisationsændring finder sted, er ligeledes anbragt drejeligt og hensigtsmæssigt sammenkoblet med de to Wollaston-prismer, således at Λ/2 elementet udfører en vinkel-drejning, der er halvt så stor som den, de to Wollaston-prismer Wl og W2 udfører ved drejning af håndtaget. Når de to Wollaston-prismer Wl og W2 er identiske, sker der i øvrigt ingen ændring af justeringen af det optiske system. Da blænderen P kun har en enkelt åbning (pin-hole), behøver den ikke at drejes. Drejningen af Λ/2 elementet medfører, at man ikke behøver at rotere de to fotodetektorer omkring en fælles akse, når måleretningen ændres ved drejning af Wollaston-prismerne Wl og W2. Ved anvendelse af en forholdsvis stor afstand mellem linserne L3 og L4 reduceres synsfeltet og denned baggrundslyset.The two Wollaston prisms W1 and W2 are arranged pivotally about the optical axis in such a way that they are interconnected so that with a single handle they can be rotated both at the same angle for adjusting the measurement direction. The optical λ / 2 element, which has the property of rotating the direction of polarization with the double angle of rotation measured relative to a direction in which no polarization change occurs, is also arranged pivotally and suitably coupled to the two Wollaston prisms. The Λ / 2 element performs an angular rotation that is half the size of the two Wollaston prisms W1 and W2 when turning the handle. Moreover, when the two Wollaston prisms W1 and W2 are identical, there is no change in the adjustment of the optical system. Since the aperture P has only a single opening (pin-hole), it does not need to be turned. The rotation of the Λ / 2 element means that there is no need to rotate the two photodetectors around a common axis when the measurement direction is changed by rotating the Wollaston prisms W1 and W2. By using a relatively large distance between the lenses L3 and L4, the field of view and then the backlight are reduced.

Behandlingen af signalerne fra fotodetektorerne PMT1 og PMT2 i fig. 1 kan ske i et udstyr, som det i blokdiagram i fig. 2 viste eller i et andet egnet udstyr Indrettet efter apparatets anvendelse.The processing of the signals from the photodetectors PMT1 and PMT2 in FIG. 1 can be done in a device such as that shown in the block diagram of FIG. 2 or in another suitable device.

I fig. 2 føres signalerne fra fotodetektorerne PMT1 og PMT2 gennem forstærkere Al og A2 og filtre F3 og F4 samt diskrimina-torer Dl og D2 til en omformer, der omsætter tidsværdier til impulser med amplituder, der er afhængige af tidslængden. Udgangssignalerne herfra tilføres en histograf, der giver et histogram over flyvetiderne,og heraf kan hastighedernes sandsynlighedsfordeling udledes.In FIG. 2, the signals from the photodetectors PMT1 and PMT2 are passed through amplifiers A1 and A2 and filters F3 and F4 as well as discriminators D1 and D2 to a converter that converts time values to pulses with amplitudes dependent on the length of time. The output signals from this are fed to a histograph which provides a histogram of flight times, from which the probability distribution of velocities can be deduced.

Til visse formål kan anvendes en forenklet udføreIses.form for apparatet, således som det er illustreret i fig. 3, der viser en optisk modtager, som den ses i fig. 1, men med udeladelse af den ene fotodetektor PMT2, Wollaston-prismet W3 og λ/2 elementet. Med dette forenklede apparat kan man ikke som med apparatet i fig. 1 bestemme flyveretningen, og det kan derfor kun med fordel anvendes ved målingen, hvor den kendes eller er uden interesse.For some purposes, a simplified embodiment of the apparatus may be used, as illustrated in FIG. 3, showing an optical receiver as seen in FIG. 1, but excluding the one photodetector PMT2, the Wollaston prism W3 and the λ / 2 element. With this simplified apparatus, as with the apparatus of FIG. 1, it can only be used advantageously in the measurement where it is known or is of no interest.

Det i fig. 1 viste λ/4 element kan undværes, hvis den anvendte lyskilde afgiver upolariseret eller cirkulært polariseret lys.The FIG. 1 λ / 4 element can be avoided if the light source used emits unpolarized or circularly polarized light.

I den enkle udførelsesform er de dobbeltbrydende elementer Wl og W2 manuelt indstillelige uafhængigt af hinanden. En sådan manuel indstilling er ganske ukompliceret, men ved større og langt-In the simple embodiment, the double breaking elements W1 and W2 are manually adjustable independently of one another. Such a manual setting is quite straightforward, but at larger and far-

DK468177A 1977-10-20 1977-10-20 Apparatus with an optical transmitter and receiver, in particular a flight time laser anemometer. DK142473B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DK468177A DK142473B (en) 1977-10-20 1977-10-20 Apparatus with an optical transmitter and receiver, in particular a flight time laser anemometer.
DE19782845592 DE2845592C2 (en) 1977-10-20 1978-10-19 Time-of-flight anemometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK468177A DK142473B (en) 1977-10-20 1977-10-20 Apparatus with an optical transmitter and receiver, in particular a flight time laser anemometer.
DK468177 1977-10-20

Publications (3)

Publication Number Publication Date
DK468177A DK468177A (en) 1979-04-21
DK142473B true DK142473B (en) 1980-11-03
DK142473C DK142473C (en) 1981-03-30

Family

ID=8135749

Family Applications (1)

Application Number Title Priority Date Filing Date
DK468177A DK142473B (en) 1977-10-20 1977-10-20 Apparatus with an optical transmitter and receiver, in particular a flight time laser anemometer.

Country Status (2)

Country Link
DE (1) DE2845592C2 (en)
DK (1) DK142473B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2500167A1 (en) * 1980-12-03 1982-08-20 Onera (Off Nat Aerospatiale) Instantaneous fluid flow velocity component measuring appts. - uses luminous crosses, of which branches have different optical characteristics, having preset separation for measuring displacement time
DK148334C (en) * 1982-04-07 1985-11-04 Risoe Forsoegsanlaeg PROCEDURE FOR MEASURING SPEED GRADIENTS IN A FLOWING MEDIUM AND APPARATUS FOR IMPLEMENTING THE PROCEDURE
DE4130526C2 (en) * 1991-09-13 1996-09-26 Rainer Dr Kramer Laser time-of-flight anemometer

Also Published As

Publication number Publication date
DK468177A (en) 1979-04-21
DK142473C (en) 1981-03-30
DE2845592C2 (en) 1982-12-23
DE2845592A1 (en) 1979-04-26

Similar Documents

Publication Publication Date Title
US4265538A (en) Optical sample cell for analysis of particles in liquid suspension
CN103868831B (en) Cloud particle Spectral structure measuring method and measuring system
US4134679A (en) Determining the volume and the volume distribution of suspended small particles
US7538874B2 (en) Measurement of light from a predefined scatter angle from particulate matter in a media
US7528951B2 (en) Optical design of a measurement system having multiple sensor or multiple light source paths
US7911591B2 (en) Optical transit time velocimeter
US3860342A (en) Dual-wavelength scanning doppler velocimeter
US20070222987A1 (en) Optical Design of a Particulate measurement system
EP0034772B1 (en) Device for determining the angular position of a target illuminated by light pulses
KR102232785B1 (en) Apparatus for measuring fine particles
US5033851A (en) Light scattering method and apparatus for detecting particles in liquid sample
US4560272A (en) Three-axis angle sensor
DK142473B (en) Apparatus with an optical transmitter and receiver, in particular a flight time laser anemometer.
GB1298658A (en) Photometer for measuring total radiant energy at selected angles
US7505132B2 (en) Self calibrating measurement system
WO2001042749A1 (en) Apparatus and method for detecting polarization
DK159946B (en) METHOD AND APPARATUS FOR MEASURING GAS FLOW VECTORS
JPH0444204B2 (en)
SE463840B (en) PROCEDURES FOR A LASER DETECTOR AND LASER DETECTOR
US5065005A (en) Polychromatic mutual alignment device for an aiming apparatus
CA1192286A (en) Three-axis angle sensor
US20150009486A1 (en) Imaging System
RU2761781C1 (en) Method for measuring the degree of polarisation of light emission of lightning and apparatus for implementation thereof (variants)
JP3096795B2 (en) Tracking ranging system
GB1605012A (en) Range responsive apparatus

Legal Events

Date Code Title Description
PBP Patent lapsed