DE4437205A1 - Ultrasonic displacement measuring unit consisting of ultrasonic transmitter and receiver - Google Patents

Ultrasonic displacement measuring unit consisting of ultrasonic transmitter and receiver

Info

Publication number
DE4437205A1
DE4437205A1 DE19944437205 DE4437205A DE4437205A1 DE 4437205 A1 DE4437205 A1 DE 4437205A1 DE 19944437205 DE19944437205 DE 19944437205 DE 4437205 A DE4437205 A DE 4437205A DE 4437205 A1 DE4437205 A1 DE 4437205A1
Authority
DE
Germany
Prior art keywords
signal
transmitter
ultrasonic
receiver
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19944437205
Other languages
German (de)
Inventor
Walter Prof Dr Kaestel
Christian Prof Dr Schroedter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19944437205 priority Critical patent/DE4437205A1/en
Publication of DE4437205A1 publication Critical patent/DE4437205A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S15/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

A sound wave is produced in a continuous wave operation by a carrier signal in the mechanical inherent resonance of the ultrasonic converter, which is modulated by a second signal using a modulation generator (8). A comparator (7) is provided for a phase comparison and a comparator (6) for a signal comparison. A relatively exact measurement of the displacement is achieved by the phase comparison in the comparator (7) of the phase position of the carrier signal at the US transmitter (1) and the US transmitter (4). An absolute measurement is also carried out by a comparison of the modulated signal in a comparator (6). So that by the combination of both evaluation steps. a very exact absolute measurement of the displacement can be reached.

Description

Ultraschall-Meßverfahren sind heute gängige Verfahren in der Längenmeßtechnik. Es sind in der Praxis zwei Methoden bekannt: Das Impuls-Echo - Verfahren, nach dem ein Schallpaket ausgesandt und von einem anderen oder demselben Wandler aufgenommen wird und die Laufzeit des Schallpakets ermittelt wird.Ultrasonic measuring methods are now common methods in length measurement technology. It is in two methods are known in practice: the impulse-echo method, according to which a sound package sent out and recorded by another or the same converter and the Running time of the sound package is determined.

Ein anderes Verfahren arbeitet im Dauerstrichbetrieb. Ein Schallsender sendet durchgehend eine Schallwelle ab. Ein Empfänger nimmt diese auf, der Vergleich der Phasenlage zwischen Sender- und Empfängersignal gestattet nun einen Rückschluß auf eine Wegänderung. Das erste Verfahren mißt absolut, jedoch ungenau, weil nur schwierig auf Bruchteile von einer Wellenlänge gemessen werden kann, besteht doch das Pulspaket selbst nur aus wenigen Schallwellen. Das zweite Verfahren ist hingegen sehr genau, da über einen Phasendiskriminator sehr kleine Bruchteile einer Wellenlänge aufgelöst werden kann, jedoch wiederholen sich die Phasenlagen periodisch, die Messung ist also nicht absolut, es werden nur Wegunterschiede gemessen.Another method works in continuous wave mode. A sound transmitter transmits continuously a sound wave. A receiver records this, comparing the phase position between The transmitter and receiver signals now allow conclusions to be drawn about a change in route. The first method measures absolutely but imprecisely because it is difficult to measure a fraction of one Wavelength can be measured, since the pulse package itself consists of only a few Sound waves. The second method, on the other hand, is very precise because it uses one Phase discriminator can resolve very small fractions of a wavelength, however the phase positions are repeated periodically, so the measurement is not absolute, it will only be Path differences measured.

In den Einschränkung: Ungenau und absolut bzw. genau und relativ liegen die Grenzen der Schall - Entfernungsmessung. Auch die Temperaturkompensation ist eine wichtig zu nehmende Einschränkung des Verfahrens, da die Schallgeschwindigkeit mit der Wurzel aus der Temperatur zunimmt und dadurch eine Fehlerquelle gegeben ist.In the restriction: imprecise and absolute or exact and relative are the limits of Sound distance measurement. Temperature compensation is also important Limiting process because the speed of sound with the root out the temperature increases and there is a source of error.

Weiterhin setzt das Impulsecho - Verfahren voraus, daß ein relativ starker Impuls vorhanden ist, um den Schallwandler anzuregen. Das Dauerstrichverfahren hingegen hat den Vorteil, daß bei geringerer Erregerspannung des Senders eine Signalübertragung möglich ist, weil Sender und Empfänger durchgängig in Eigenresonanz schwingen können. Ein weiterer Nachteil des Impuls-Echo - Verfahrens liegt darin, daß durch die endliche Länge des Schallpakets erst ab einem Grundabstand gemessen werden kann.Furthermore, the pulse echo method requires a relatively strong pulse to be present is to excite the transducer. The continuous wave method, however, has the advantage that with a lower excitation voltage of the transmitter, a signal transmission is possible because the transmitter and receiver can vibrate throughout in self-resonance. Another disadvantage of Pulse-echo - the process is based on the finite length of the sound package a basic distance can be measured.

Das vorgeschlagene Verfahren ermöglicht es, zunächst im Dauerstrich zu arbeiten, wobei ein günstiges Verhältnis von Senderspannung zu Schallsignalhöhe erzeugt wird. Die Genauigkeit des Phasenvergleichverfahrens kann mit der Absolutmessung durch das modulierte Signal kombiniert werden, weiterhin wird durch die nun gewonnene Genauigkeitserhöhung auch eine sehr viel bessere Temperaturkompensation möglich. Zusätzlich erniedrigt sich der erzielbare Mindestabstand für die Abstandsmessung.The proposed method makes it possible to work first in a continuous line, with a favorable ratio of transmitter voltage to sound signal level is generated. The precision the phase comparison method can be carried out with the absolute measurement by the modulated signal be combined, furthermore, due to the now increased accuracy, also one much better temperature compensation possible. In addition, the achievable decreases Minimum distance for the distance measurement.

Die Erfindung ist im folgenden anhand schematischer Zeichnungen an Ausführungsbeispielen mit weiteren Einzelheiten näher erläutert. Es zeigt:The invention is based on schematic drawings of exemplary embodiments explained in more detail with further details. It shows:

Fig. 1 im Blockschaltbild eine grundsätzliche Schaltungsmöglichkeit;1 shows a basic circuit possibility in the block diagram;

Fig. 2 im Blockschaltbild eine Ausführungsform mit digitaler Modulation des Trägersignals; Fig. 2 is a block diagram showing an embodiment with digital modulation of the carrier signal;

Fig. 3 die Anordnung im Reflexionsbetrieb. Fig. 3 shows the arrangement in reflection mode.

Eine Darstellung ist aus Fig. 1 ersichtlich. Ein Generator 2 erzeugt, um die Schallabstrahlung zu optimieren, ein Signal in der mechanischen Eigenresonanz des Ultraschallsenders 1. Das Signal wird dem Wandler von einem Modulationsgenerator 8 über einen Modulator 3 zugeführt. Hierdurch erhält der Wandler zusätzlich noch ein Modulationssignal, so daß er Schwingungen mit einem trägermodulierten Signal ausführt. Ein Empfänger 4 nimmt das Signal auf, es wird in einem Demodulator 5 in seine Bestandteile, in den Träger und das modulierte Signal zerlegt und danach beide Signale in den Vergleichern 6 und 7 mit den ursprünglichen Signalen bezüglich ihrer Phasenlage und/oder Laufzeit verglichen. An illustration is shown in FIG. 1. In order to optimize the sound radiation, a generator 2 generates a signal in the mechanical natural resonance of the ultrasound transmitter 1 . The signal is fed to the converter from a modulation generator 8 via a modulator 3 . As a result, the converter also receives a modulation signal so that it carries out vibrations with a carrier-modulated signal. A receiver 4 receives the signal, it is broken down into its components, the carrier and the modulated signal in a demodulator 5 and then both signals in the comparators 6 and 7 are compared with the original signals with regard to their phase position and / or transit time.

Die absolute Anzeige soll dabei so genau sein, daß eine additive Darstellung über die Feinanzeige durch Phasenvergleich möglich ist.The absolute display should be so precise that an additive representation of the Fine display by phase comparison is possible.

Allgemeine Funktionsbausteine wie Signalverstärker sind hier nicht gezeichnet, da sie jedem Fachmann selbstverständlich sind.General function blocks such as signal amplifiers are not shown here because they are used by everyone Expert are self-evident.

Eine weitere Konkretisierung ist aus Fig. 2 ersichtlich:
Hier ist gezeigt, wie durch Kreuzkorrelation trotz der Komplexität des Verfahrens eine preiswerte Lösung zu realisieren ist:
Wieder sind vorhanden Sender 1 und Empfänger 2, ein Modulator 3, ein Demodulator 4 und ein Ultraschallgenerator 5, der auf die Sendereigenfrequenz abgestimmt ist. Nun wird digital ein PRN-Signal 6 (Periodic random noise) erzeugt, was digital ohne großen Aufwand über ein Schieberegister oder einen Mikrokontroller möglich ist. Um nun zur Korrelationsfunktion zu gelangen, müssen die beiden Signale, das ursprüngliche und das demodulierte miteinander multipliziert und zeitlich gemittelt werden, dies für verschiedene Zeitverzögerungen zwischen beiden Signalen. Vorteilhaft und kostengünstig läßt sich dies so realisieren, daß das PRN-Signal digital verzögert 7, dann multipliziert wird 8, und schließlich ein Regler 9 die Zeitverzögerung so einstellt, daß jeweils das Optimum des Korrelogramms eingeregelt wird und sich somit immer der gewünschte Meßwert einstellt. Wie bereits dargestellt, wird der Phasendiskriminator 10 für die Feinmessung genutzt.
A further specification can be seen in FIG. 2:
Here is shown how an inexpensive solution can be achieved through cross-correlation despite the complexity of the method:
Again there are transmitter 1 and receiver 2 , a modulator 3 , a demodulator 4 and an ultrasound generator 5 which is tuned to the transmitter natural frequency. A PRN signal 6 (periodic random noise) is now generated digitally, which is possible digitally without great effort using a shift register or a microcontroller. In order to arrive at the correlation function, the two signals, the original and the demodulated one, have to be multiplied and time-averaged, this for different time delays between the two signals. This can be realized advantageously and inexpensively in such a way that the PRN signal is digitally delayed 7 , then multiplied 8 , and finally a controller 9 sets the time delay in such a way that the optimum of the correlogram is adjusted in each case and thus the desired measured value is always set. As already shown, the phase discriminator 10 is used for the fine measurement.

In Fig. 3 ist außerdem dargestellt, daß das Verfahren auch im Reflexionsbetrieb arbeiten kann. Hier besteht auch die Möglichkeit, über ein Hindernis 1, dessen Abstand von Sender 2 und Empfänger 3 sehr genau bekannt ist, eine Temperaturkompensation herzustellen, deren Genauigkeit entsprechend der eigentlichen Messung sehr hoch ist.In Fig. 3 is shown furthermore that the process can also operate in reflection mode. Here there is also the possibility of producing a temperature compensation via an obstacle 1 , the distance of which from the transmitter 2 and receiver 3 is very precisely known, the accuracy of which is very high according to the actual measurement.

Nicht eingezeichnet ist die Möglichkeit der Genauigkeitsverbesserung, indem entsprechend Fig. 1 sowohl Sendersignal 2 und Trägersignal am Empfänger 4 phasenstarr, z. B. durch eine Phase - locked - loop - Schaltung multipliziert und dann die Phasenlage des höherfrequenten Signals in 7 ausgewertet wird.The possibility of improving the accuracy is not shown, in that, according to FIG. 1, both the transmitter signal 2 and the carrier signal at the receiver 4 are phase-locked, e.g. B. multiplied by a phase-locked-loop circuit and then the phase position of the higher-frequency signal in 7 is evaluated.

Claims (5)

1. Ultraschall-Wegmeßeinrichtung, bestehend aus einem Ultraschallsender und einem Ultraschallempfänger, wobei der Sender ein Schallsignal aussendet, welches vom Empfänger aufgenommen wird und wobei über die wegabhängige Laufzeit des Ultraschallsignals durch eine entsprechende elektronische Auswerteeinheit eine Wegmessung durchgeführt wird, dadurch gekennzeichnet, daß im Dauerstrichbetrieb durch ein Trägersignal in der mechanischen Eigenresonanz des Ultraschallwandler eine Schallwelle erzeugt wird, welches durch ein zweites Signal moduliert wird. Nach der Demodulation erfolgt eine genaue relative Messung des Weges durch Phasenvergleich der Phasenlagen des Trägersignals am Sender und Empfänger als auch eine absolute Messung durch Vergleich des aufmodulierten Signals, wobei durch Kombination beider Auswertungsschritte eine sehr genaue absolute Messung erreicht wird.1. Ultrasonic displacement measuring device, consisting of an ultrasonic transmitter and an ultrasonic receiver, the transmitter emitting a sound signal which is received by the receiver and wherein a distance measurement is carried out over the path-dependent transit time of the ultrasonic signal by a corresponding electronic evaluation unit, characterized in that in continuous wave mode a sound signal is generated by a carrier signal in the mechanical natural resonance of the ultrasonic transducer, which is modulated by a second signal. After demodulation, an accurate relative measurement of the path is carried out by comparing the phases of the carrier signals at the transmitter and receiver, and an absolute measurement is made by comparing the modulated signal, a combination of the two evaluation steps resulting in a very precise absolute measurement. 2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß das aufmodulierte Signal ein Rauschsignal ist und die Wegmessung durch die Kreuzkorrelationsfunktion ermittelt wird.2. Sensor according to claim 1, characterized in that the modulated signal Is a noise signal and the distance measurement is determined by the cross-correlation function. 3. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß das aufmodulierte Signal ein digitales Rauschsignal (periodic random noise) ist, das digital erzeugt wird.3. Sensor according to claim 1, characterized in that the modulated signal is a digital noise signal (periodic random noise) that is generated digitally. 4. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß das aufmodulierte Signal ein im Vergleich zum Träger niederfrequentes periodisches Signal ist, das den Aufbau eines Grobrasters für die Messung ermöglicht.4. Sensor according to claim 1, characterized in that the modulated signal is an im Comparison to the carrier low-frequency periodic signal, which is the construction of a Coarse grid allows for the measurement. 5. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß eine Genauigkeitssteigerung erreicht wird, indem eine phasenstarre Multiplikation des Trägersignals am Sender und am Empfänger erfolgt und zwischen diesen beiden Signalen nun ein Phasenvergleich durchgeführt wird.5. Sensor according to claim 1, characterized in that an increase in accuracy is achieved is achieved by a phase-locked multiplication of the carrier signal at the transmitter and at the receiver and a phase comparison is now carried out between these two signals.
DE19944437205 1994-10-18 1994-10-18 Ultrasonic displacement measuring unit consisting of ultrasonic transmitter and receiver Withdrawn DE4437205A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19944437205 DE4437205A1 (en) 1994-10-18 1994-10-18 Ultrasonic displacement measuring unit consisting of ultrasonic transmitter and receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19944437205 DE4437205A1 (en) 1994-10-18 1994-10-18 Ultrasonic displacement measuring unit consisting of ultrasonic transmitter and receiver

Publications (1)

Publication Number Publication Date
DE4437205A1 true DE4437205A1 (en) 1996-04-25

Family

ID=6531070

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19944437205 Withdrawn DE4437205A1 (en) 1994-10-18 1994-10-18 Ultrasonic displacement measuring unit consisting of ultrasonic transmitter and receiver

Country Status (1)

Country Link
DE (1) DE4437205A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969292A2 (en) * 1998-06-30 2000-01-05 Subacoustech Limited Distance measuring systems, altimeters and aircraft
DE19841154A1 (en) * 1998-09-09 2000-04-06 Holger Loehmer Measurement of propagation time of sound waves; involves measuring phase shift between transmitted and received signals at two different frequencies
DE19628849C2 (en) * 1996-07-17 2002-10-17 Eads Deutschland Gmbh Acoustic directional emitter through modulated ultrasound
DE10142364A1 (en) * 2001-08-30 2003-04-03 Advanced Acoustix Gmbh Determination of the distance to a soft sound object, whereby measurements are made at two or more different frequencies so that a material dependent phase correction can be made
WO2005019858A1 (en) * 2003-08-26 2005-03-03 David Antony Crellin A method of and apparatus for measuring a change in distance between two locations
DE102007060346A1 (en) * 2007-12-14 2009-06-18 Hochschule Offenburg Delay measuring method for two dimensional or three dimensional-positioning of objects, involves evaluating correlation signal according to magnitude and phase for determining delay of ultrasonic pulse at transmission path
DE102011004830A1 (en) 2011-02-28 2012-08-30 Holger Löhmer Method for measuring propagation velocity of sound waves in e.g. liquid medium, involves determining approximation of propagation velocity of sound waves in measuring section based on phase angles of sound waves

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2253975A (en) * 1938-09-26 1941-08-26 Radio Patents Corp Distance determining system
US3433058A (en) * 1966-05-04 1969-03-18 United Eng Foundry Co Acoustic flatness measurement device
US4054862A (en) * 1975-10-28 1977-10-18 Raytheon Company Ranging system with resolution of correlator ambiguities
GB1533630A (en) * 1975-09-22 1978-11-29 Eastman Kodak Co Sheet detecting method and apparatus
GB2121174A (en) * 1982-05-20 1983-12-14 Robert James Redding Measurement of distance using ultrasound
DE3406083A1 (en) * 1984-02-20 1985-08-22 Siemens AG, 1000 Berlin und 8000 München WIRELESS WORKING SIGNAL TRANSMISSION SYSTEM
EP0201989A2 (en) * 1985-04-12 1986-11-20 United Kingdom Atomic Energy Authority Ultrasonic range finding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2253975A (en) * 1938-09-26 1941-08-26 Radio Patents Corp Distance determining system
US3433058A (en) * 1966-05-04 1969-03-18 United Eng Foundry Co Acoustic flatness measurement device
GB1533630A (en) * 1975-09-22 1978-11-29 Eastman Kodak Co Sheet detecting method and apparatus
US4054862A (en) * 1975-10-28 1977-10-18 Raytheon Company Ranging system with resolution of correlator ambiguities
GB2121174A (en) * 1982-05-20 1983-12-14 Robert James Redding Measurement of distance using ultrasound
DE3406083A1 (en) * 1984-02-20 1985-08-22 Siemens AG, 1000 Berlin und 8000 München WIRELESS WORKING SIGNAL TRANSMISSION SYSTEM
EP0201989A2 (en) * 1985-04-12 1986-11-20 United Kingdom Atomic Energy Authority Ultrasonic range finding

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DOUSSIS,E.: A Hardware-level Method to Improve the Range and Accuracy of an Ultrasonic Ranging System. In: ACUSTICA, Vol.78, 1993, S.226-232 *
FIGUEROA,J.F. *
GAST,Theodor *
KÄSTEL,Walter: Eine Ultraschall-Ab- standsmeßeinbrichtung mit dekrementaler Meßwert- gewinnung. In: Technisches Messen tm, 1979, H.7/8, S.293-295 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628849C2 (en) * 1996-07-17 2002-10-17 Eads Deutschland Gmbh Acoustic directional emitter through modulated ultrasound
EP0969292A2 (en) * 1998-06-30 2000-01-05 Subacoustech Limited Distance measuring systems, altimeters and aircraft
EP0969292A3 (en) * 1998-06-30 2002-01-16 Subacoustech Limited Distance measuring systems, altimeters and aircraft
DE19841154A1 (en) * 1998-09-09 2000-04-06 Holger Loehmer Measurement of propagation time of sound waves; involves measuring phase shift between transmitted and received signals at two different frequencies
DE19841154C2 (en) * 1998-09-09 2002-11-07 Holger Loehmer Method and device for measuring the transit time of sound waves
DE10142364A1 (en) * 2001-08-30 2003-04-03 Advanced Acoustix Gmbh Determination of the distance to a soft sound object, whereby measurements are made at two or more different frequencies so that a material dependent phase correction can be made
WO2005019858A1 (en) * 2003-08-26 2005-03-03 David Antony Crellin A method of and apparatus for measuring a change in distance between two locations
DE102007060346A1 (en) * 2007-12-14 2009-06-18 Hochschule Offenburg Delay measuring method for two dimensional or three dimensional-positioning of objects, involves evaluating correlation signal according to magnitude and phase for determining delay of ultrasonic pulse at transmission path
DE102011004830A1 (en) 2011-02-28 2012-08-30 Holger Löhmer Method for measuring propagation velocity of sound waves in e.g. liquid medium, involves determining approximation of propagation velocity of sound waves in measuring section based on phase angles of sound waves
DE102011004830B4 (en) * 2011-02-28 2015-10-29 Holger Löhmer Phase method for measuring the propagation velocity of sound waves with dynamic measurement window

Similar Documents

Publication Publication Date Title
DE102004059994B4 (en) Device for detecting a body
DE3316631C2 (en) Device for determining the transit time of ultrasonic pulses in a fluid
DE1908511A1 (en) Ultrasonic flow meter
DE102010062235A1 (en) Driver assistance system for detecting an object in a vehicle environment
DE102007027188A1 (en) Ultrasonic flow sensor with quadrature demodulation
DE2513143C3 (en) Speedometer
DE2853170C2 (en)
DE4437205A1 (en) Ultrasonic displacement measuring unit consisting of ultrasonic transmitter and receiver
DE10140346A1 (en) Distance measurement method
EP0829734B1 (en) Method and device for measuring the difference in time of travel of an electrical, electromagnetic or acoustic signal
DE2828937C2 (en)
DE19841154A1 (en) Measurement of propagation time of sound waves; involves measuring phase shift between transmitted and received signals at two different frequencies
DE102009045677A1 (en) Frequency modulated continuous wave radar sensor for use in motor vehicle for measuring e.g. distance of ahead driving vehicles in surrounding of vehicle, has filter and window function generator for compensating power output in time signal
DE2943810C2 (en) Measurement arrangement for the speed of flowable media by determining the transit time of sound waves
DE2010742A1 (en)
DE4322849C1 (en) Method for determining the propagation time (delay time) of sound signals, and a sound-wave propagation-time determining device
DE2823497C3 (en) Method for measuring the flow rate of gases or liquids and device for this
EP0176931A1 (en) Method for the measurement of the wall thickness of bodies by ultrasonic pulses, and device for carrying out the process
DE4232254A1 (en) Ultrasonic testing method for locating material defects - driving ultrasonic transducer with FM chirp signal with instantaneous frequency variation matched to transmission path transfer function
DE3825422A1 (en) Device for measuring the density of fluids by means of acoustic signals
EP0218126A1 (en) Method for measuring fluid speeds by means of ultrasonic vibrations
DE2837014C3 (en) Arrangement for measuring the distance between the change in distance and the speed of change in distance between two bodies which can be moved relative to one another on a predetermined path of movement
DE10062875A1 (en) Measurement of mass flow rate of liquids or gases using an ultrasonic transducer, with use of additional pressure gauges enabling determination of fluid density, temperature or viscosity
EP0025026B1 (en) Device for measuring the flow velocity of a fluid
DE102010039978A1 (en) Method for measuring running time of pulse received by transducer arranged in holder at outer side of e.g. car, in spatial area, involves determining running time of pulse as start of receive pulse is detected by detecting regularity size

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee