DE4431824C1 - Mähdrescherbetrieb mit Betriebsdatenkataster - Google Patents

Mähdrescherbetrieb mit Betriebsdatenkataster

Info

Publication number
DE4431824C1
DE4431824C1 DE4431824A DE4431824A DE4431824C1 DE 4431824 C1 DE4431824 C1 DE 4431824C1 DE 4431824 A DE4431824 A DE 4431824A DE 4431824 A DE4431824 A DE 4431824A DE 4431824 C1 DE4431824 C1 DE 4431824C1
Authority
DE
Germany
Prior art keywords
data
coordinates
combine
target
shs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE4431824A
Other languages
English (en)
Inventor
Stefan Dr Boettinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Claas KGaA mbH
Original Assignee
Claas KGaA mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Claas KGaA mbH filed Critical Claas KGaA mbH
Priority to DE4431824A priority Critical patent/DE4431824C1/de
Priority to DK95113347T priority patent/DK0702891T3/da
Priority to EP95113347A priority patent/EP0702891B1/de
Priority to DE59505891T priority patent/DE59505891D1/de
Priority to US08/523,333 priority patent/US5666793A/en
Priority to RU95115047/13A priority patent/RU2152147C1/ru
Application granted granted Critical
Publication of DE4431824C1 publication Critical patent/DE4431824C1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/005Precision agriculture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S56/00Harvesters
    • Y10S56/15Condition responsive

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Combines (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betrieb eines Mähdreschers, der laufend zur Ernteleistungsoptimierung durch einen Steuerprozessor mit Soll- und/oder Grenz­ betriebsdaten von einem Bediener extern gesteuert sowie intern bei laufender Messung und Auswertung von Ist- Betriebsdaten, insbes. Fahrdaten, geregelt betrieben wird, wobei laufend die absoluten und/oder relativen Ortskoordi­ naten des Mähdreschers erfaßt und diesen zugeordnet die jeweiligen flächenspezifischen Ertragsmeßdaten, insbesondere als ein Ertragsdatenkataster, zur Verwendung als historisches Datenkataster gespeichert werden.
Ein derartige Mähdrescher ist aus der WO86/05353 bekannt. Von diesem werden laufend Wegmeßsignale und/oder Funkortungssignale aufgenommen und diesen zugeordnet eine laufende Katastererstellung der spezifischen Ertragsmeß­ daten vorgenommen. Dieser Ertragskataster dient der späteren Bestimmung eines optimalen Düngemittel- oder Schädlingsbekämpfungsmittel-Einsatzes und/oder einer Steuerung einer Sämaschine oder einer Bodenbearbeitungs­ maschine um dem spezifischen Ertrag gemäß, der die Bodenart und -beschaffenheit widerspiegelt, geeignet das Saatgut aus zubringen oder die Bearbeitungsintensität zu steuern.
Weiterhin ist aus der DE 42 23 585 A1 eine Vorrichtung zum Ausbringen von landwirtschaftlichem Material bekannt, dessen Steuerung mittels in einem Grenzkataster gehaltener Feldkonturen und eines Funkortungsgerätes erfolgt, so daß das Material nur innerhalb der Kontur und nahe bis an diese ausgebracht wird. Es ist auch vorgesehen, den Konturverlauf und den Standort des Streugerätes auf einem Bildschirm dem Bediener darzubieten.
Weiterhin ist in der DE 43 41 834 A1 der Anmelderin ein Mähdrescher der eingangs bezeichneten Art beschrieben, der eine prozessorbetriebene Steuer- und Regelvorrichtung umfaßt, die einen optimalen Erntebetrieb durch eine interaktive Bedienersteuerung erbringt und dem Bediener laufend Soll-, Grenz- und Ist-Betriebsdaten in Bildschirmmasken mit Piktogrammon und in alpha-numerischen Anzeigefeldern darbietet sowie ein Erntekataster zur späteren Verwendung erstellt.
Es ist Aufgabe der Erfindung, eine weitere Entlastung des Mähdrescherfahrers und eine noch höhere Optimierung des Erntebetriebes durch Erreichung eines hohen Durchsatzes bei relativ geringem flächenspezifischen Ernteverlust zu erreichen, wenn in einem Feldgebiet unter­ schiedliche Erntegutzustände oder -arten anzutreffen sind, sowie Überlastfälle und Maschinenschaden zu vermeiden.
Die Lösung der Aufgabe ist dadurch gegeben, daß der Steuerprozessor des Mähdreschers ein historisches Datenkataster im Zugriff hat und mit den jeweiligen Ortskoordinaten des Mähdreschers, verknüpft mit dessen jeweiligen Fahrdaten, dort gespeicherte historischen Daten, jeweils den aktuellen Koordinaten vorgreifend, adressiert und liest und daraus neue Soll- oder Grenzbetriebsdaten bestimmt und aktuell vorgibt.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
Das wesentliche Prinzip besteht darin, daß die Katasterdaten von früheren Mähdrescherdurchläufen aus Vorjahren oder von vorherigen Durchläufen benachbarter Schneisen als Grundlage für eine Gewinnung von Soll- und/oder Grenzdaten genutzt werden, wodurch eine Regelungsoptimierung erreicht wird, indem die Daten vorausschauend ausgewertet werden und bereits vor dem Erreichen eines kritischen Feldbereiches, in welchem z. B. ein dichterer Bestand vorliegt oder das Getreide in einer ungünstigen Richtung liegt oder das Gelände in der Hang­ neigung wechselt, eine Anpassung der Betriebsbedingungen erfolgt, so daß insbesondere eine Überlastung oder eine Beschädigung des Dresch- oder Mähwerkes ausgeschlossen wird. Insbesondere wird dabei, wenn vorher mit hoher Geschwindigkeit in einem schwachen Bestand geerntet wurde, die Geschwindigkeit herabgesetzt oder bei Änderung der Hangneigung oder Bodenwelligkeit die Schneidwerkneigungs­ regelung und/oder die Schnitthöhenregelung mit neuen Soll- oder Grenzdaten versorgt.
Für die möglichst ortgenaue Vorgabe der Betriebsgrößen ist es zum einen notwendig, daß die katasterisierten Daten bezüglich des wahren Entstehungsortes, also korrigiert um den Weg den der Mähdrescher während der Verzögerung vom Schnitt des Erntegutes bis zu einer jeweiligen Meßgrößengewinnung zurücklegt, ausgewertet werden und zum anderen, daß die Regelzeitkonstante der jeweiligen Einstellvorrichtung berücksichtigt wird, also die Koordinaten des Katasterzugriffs entsprechend dem Fahrweg, den der Mähdrescher während der Regelzeitkonstanten zurücklegt, vorverlegt werden, wenn die neue Einstellung eine schadensträchtigere ist also z. B. zu einer höheren Geschwindigkeit oder einer geringeren Schneidhöhe führt.
Sofern die aus den historischen Daten ermittelten Soll- oder Grenzbetriebsdaten nicht unmittelbar einem Regler zugeführt werden sondern dem Bediener zur Einstellung durch Visualisierung empfohlen werden, ist auch dessen Reaktionszeit zu berücksichtigen.
Eine weitere Vorausschau in der Bildung der Soll- und Grenzdaten ist dann vorgesehen, wenn nicht von einem Vollkataster sondern von einem Teilkataster der letzten benachbarten Ernteschneisen ausgegangen wird, indem eine Analyse der Datenänderungen jeweils in den angrenzenden benachbarten vor- und rückliegenden Schneisenbereichen auf einen zur Schneisenrichtung vorhandenen Schrägverlauf einer Boden- oder Erntegutänderung erfolgt und demgemäß eine Extrapolation auf den jeweiligen für die Datenan­ wendung relevanten Mähdrescherort unter Berücksichtigung der Regelzeitkonstanten und des damit verbundenen Fahrweges sowie einer Schadensrelevanz der vorgesehenen Einstellung erfolgt. Hierdurch stellen sich die Betriebs­ werte auf einen zur Fahrtrichtung schrägen Erntegutände­ rungsverlauf, also einer schräg zur Fahrtrichtung verlaufenden Fertilitätsgrenze, automatisch ein; eine solche Betriebs-Einstellung ist wegen einer mangelnden Beobachtungsmöglichkeit dem Fahrer oft nicht von Hand möglich,da der zurückgelegte Weg bis zu einer Meßwert­ gewinnung und der weitere Weg bis zur Maschinenend­ einstellung jeweils ca. 50 m betragen.
Als Betriebsdaten werden vorteilhaft nicht nur die flächenspezifischen Kornerntemengen sondern auch die relativen Kornverluste und die Strohdurchsatzmengen und u. U. auch die Soll- und Grenzwerte der Betriebsdaten im Kataster erfaßt. Hierdurch kann eine Betriebssteuerung nach verschiedenen Kriterien, z. B. hohem Durchsatz oder geringem Verlust an Getreide oder an Stroh, gewählt werden. Die ermittelten Grenz- und Soll-Betriebsdaten werden vorteilhaft wahlweise unmittelbar der Regelvorrichtung zugeführt oder dem Fahrer in seiner Kanzel zur Anzeige gebracht. In jedem Fall wird dem Fahrer aus Sicherheitsgründen eine Übersteuerungsmöglichkeit per Hand gegeben, so daß er die Geschwindigkeit herabsetzen oder den Mähdrescher stillsetzen sowie das Schneidwerk anheben kann, um Hindernissen oder Überlastungen zu entgehen.
Selbstverständlich lassen sich in gleicher Weise wie die Fahrgeschwindigkeit, die Schnittbreite und -höhe auch andere Einstellgrößen des Mähdreschers, wie die Trommel­ drehzahl, die Gebläsedrehzahl, die Einzugsschneckendreh­ zahl, die Elevatorgeschwindigkeit und die Siebeinstellung aufgrund von Katasterdaten vorgeben. Hierbei sind jeweils die zugehörigen Durchlaufzeiten des Erntegutes bis zur Meßstelle einer zugehörigen Meßgröße und die Einstellzei­ ten der Vorrichtung auf Gegensteuerungsmaßnahmen entspre­ chend zu berücksichtigen, wie analog in den Beispielen gezeigt ist.
Eine besonders speichersparende Katasterisierung wird dadurch erreicht, daß jeweils nur dann ein Betriebsdaten- Koordinatenpaar gespeichert wird, wenn ein abzuspeichern­ des Betriebsdatum sich um einen vorgegebenen relativen oder absoluten Betrag geändert hat. Dies Art der Speiche­ rung erleichtert auch die Extrapolation von Betriebsdaten­ änderungen aus benachbarten Schneisen in die laufende Fahrposition, da die gespeicherten Daten den größeren Betriebsdatenänderungen zugeordnet sind und die gespeicherten Koordinatendifferenzen zwischen den Punkten ähnlicher Änderungen der Betriebsdaten in den benachbarten abgeernteten Schneisen auf die laufend bearbeitete Schneise zu übertragen sind und dazu die zugehörigen Betriebsdaten einfach zu übernehmen sind.
Die Ortskoordinaten benachbarter Schneisen werden jeweils auf einen Anfangspunkt bezogen, so daß auch bei einer wegabhängigen Koordinatenart die Speicherung unabhängig von der Fahrrichtung des Mähdreschers auf den jeweils wahren Ort bezogen erfolgt.
Bei Mähdreschern wird angestrebt, eine maximale Durchsatz­ leistung bei noch akzeptablen Kornverlusten zu erreichen bzw. eine vom Fahrer als günstig erkannte Durchsatz­ leistung beizubehalten. Die Arbeitsorgane des Mähdreschers werden in ihrer Einstellung dieser Durchsatzleistung angepaßt, um so ein optimales Arbeitsergebnis zu erhalten. Sich ständig ändernde Bestandsdichten wirken sich auf einen mit konstanter Fahrgeschwindigkeit fahrenden Mäh­ drescher direkt auf sich ändernde Durchsatzleistungen aus. Um eine konstante Durchsatzleistung und/oder die Einstel­ lung der Arbeitsorgane des Mähdreschers zu erhalten, muß die Fahrgeschwindigkeit und/oder die Einstellung der Arbeitsorgane des Mähdreschers gesteuert bzw. geregelt werden. Zu diesem Zweck wurden verschiedene Durchsatz­ meßeinrichtungen für den Mähdrescher entwickelt. Durch darauf aufbauende Regeleinrichtungen für die Fahrgeschwin­ digkeit wurden z. B. erhebliche Leistungssteigerungen erzielt. Von Nachteil ist hierbei, daß der Gutdurchsatz erst gemessen werden kann, wenn das Erntegut bereits im Mähdrescher ist. So kann nur auf langwellige Bestands­ schwankungen reagiert werden.
Durch die vorausschauende Auswertung der historischen Daten wird dieser Nachteil der bisherigen Rückwärtsregelung beseitigt. Es können jedoch vorteilhaft die bekannten Optimierungsstrategien der Rückwärtsregelung in einer untergeordneten Regelschleife beibehalten werden.
Vorjährige katasterisierte Betriebsdaten werden jeweils in Relation zu den aktuellen Daten gesetzt und propor­ tional diesen angepaßt.
Arbeiten mehrere Mähdrescher auf einem Feld, benötigt nur eine Maschine ein Durchsatzmeßverfahren und die Möglich­ keit zur Korrektur der vorliegenden Feldkarte. Über eine Funkverbindung können diese Korrekturen an die anderen Mähdrescher auf dem Feld, die nicht zwingend ein Durch­ satzmeßverfahren aber ein Ortungs- oder Navigationssystem installiert haben müssen, weitergeleitet werden.
Die Korrekturdatenaufbereitung kann auch von einem stationären Rechner z. B. am Feldrand vorgenommen werden. Von einem Mähdrescher mit Durchsatzmeßeinrichtung und einem Ortungs- oder Navigationssystem werden Ertrags- und Positionsdaten an den stationären Rechner gesandt. Die Ertragskorrekturdaten werden an einen oder mehrere Mähdrescher auf dem Feld gefunkt. Zusätzlich zu diesen Ertragskorrekturdaten können über diese Funkstrecke auch Positionskorrekturdaten, wie sie z. B. für ein Differentielles Satellitennavigationsverfahren (DGPS) benötigt werden, gesendet werden.
Diese hier gezeigten Strategien, die die wahren Orte von Fertilitätsgrenzen, die Zeitkonstanten der Regelvorrich­ tungen, die gewonnenen Daten aus den Nachbarschneisen und die Gefahrenrelevanz der vorgesehenen Korrekturregelung berücksichtigen, können für jede andere Erntemaschine oder landwirtschaftliche Arbeitsmaschine, bei der eine oder mehrere Maschineneinstellungen in Abhängigkeit von einer oder mehreren mit den Fruchtbarkeitsunterschiedsdaten oder Bodendaten korrelierenden Größe gesteuert werden kann, verwendet werden.
Vorteilhafte Ausgestaltungen sind anhand der Fig. 1 bis 7 beschrieben.
Fig. 1 zeigt ein Übersichtsschema eines Mähdreschers mit einem Multiprozessornetzwerk und Ausschnittvergrößerungen in verschiedenen Maßstäben;
Fig. 2 zeigt eine Fahrbildmaske;
Fig. 3 zeigt eine Feldkarte mit aktueller, künftiger und historischer Mähdrescherstellung im absoluten Koordinatennetz;
Fig. 4 zeigt eine Feldkarte mit Extrapolationspunkten und Bahnkoordinaten;
Fig. 5 zeigt ein Ortsschemata verschiedenen Betriebsfälle;
Fig. 6 zeigt ein Blockschaltbild der Gesamtvorrichtung;
Fig. 7 zeigt ein Blockschaltbild einer Vorrichtung mit einer Funkverbindung.
Fig. 1 zeigt ein Übersichtsschema über einen Mähdrescher mit einer Steuervorrichtung (ST) mit einem Mikroprozes­ sornetzwerk mit dem Bus (B). In der Fahrerkanzel (1) ist der Leitstandprozessor (M1) installiert, und am Schneid­ werk (2) zur Schneidwerksteuerung und -regelung ein zweiter Mikroprozessor (M2), am Antrieb- und Fahrwerk (3) ein dritter Mikroprozessor (M3), am Dreschwerk (4) ein vierter Mikroprozessor (M4) und am Förder- und Reinigungswerk (N) ein fünfter Mikroprozessor (MN), der die Gutströme überwacht. Jeder Mikroprozessor (M1-MN) ist über einen Schnittstellenschaltkreis (SS) an den zentralen Nachrichtenbus (B) angeschlossen. Der Leitstandprozessor (M1) steuert das Bildschirmgerät (V) an und wird durch eine Steuertastatur (TA) mit sieben Tasten (T9-T14) für den Bildschirmdialogbetrieb sowie durch ergonomisch am Fahrhebel (F) angeordnete Schneidwerkstelltasten (T15- T18) angesteuert. Gegebenenfalls ist ein Ortungsgerät (GPS) installiert, das die Ortskoordinaten laufend an den Leitstandprozessor (M1) überträgt.
Die Bildschirm-Anzeigebereiche sind die Uhrzeit- und Datumsanzeige sowie die Flächen- und Fahrwegangabe (BF1), die Fahrgeschwindigkeitsanzeige (BF2), die Anzeige der Körnerverlust und Ernteleistung (BF3), die Anzeige der Arbeitsbreite (Teilbreite) (BF4), die Schnitthöhen- Richtwerkskala mit der Anzeige der Schnitthöhen-Sollwerte (BF5), die Dreschtrommeldrehzahl-Anzeige (BF6), die Gebläsedrehzahl-Anzeige (BF7) und die Auswahlleiste der Hauptmenüs (BF8). Die Tastenfunktionen vom Tastenfeld (TA) sind die Bestätigungstaste (T9) zum Öffnen von Menüs, zum Bestätigen vom Einstellwerk und zum Starten und Stoppen von Aufträgen, die Cursortaste "Rechts" (T10), die Cursortaste "Links" (T11) zur Auswahl von Menüpunkten; vom ersten Menüpunkt gelangt man mit "Links" zum letzten Punkt und umgekehrt; die +/- Wipptaste (T12) zur Verstellung von Werten, die Rücksprungtaste (T13) in die nächst höhere Menüstufe und die Hilfetaste (T14) zum Aufruf des Erklärungstextes zum aktuellen Menüpunkt. Nochmaliges Drücken dieser Hilfetaste führt zurück zum Menüpunkt. Werden die Tasten länger gedrückt gehalten, so wiederholt sich die Tastenfunktion automatisch mehrmals. Am Fahrhebel (F) sind die Tasten Drucktaster-Schneidwerkheber (T15), Drucktaster-Schneidwerksenken (T16), Drucktaster- Schnitthöhenvorwahl-Automatik-ein (T17) und Drucktaster- Kontur-Automatik-ein (T18) angeordnet.
Auf dem Bildschirm (V) sind die acht Bildfelder (BF1- BF8) angeordnet, in denen Piktogramme (P1) zur Analogdarstellung von Betriebsdaten, Zahlenangaben (Z1) zur numerischen Datenausgabe und in anderen Betriebszuständen Textangaben dargestellt werden.
Die Bildbereiche der Uhrzeitanzeige (BF1) und zur Menüauswahlanzeige (BF8) sind immer gleichartig vorhanden, worin die Uhrzeit und das Datum stets von der elektronischen internen Uhrzeit aktualisiert dargestellt werden und die Menüanzeige abhängig von der Tastenbetätigung der Steuertastatur (TA) erfolgt, indem die Hauptmenüanzeigesymbole aktuell massiv und ansonsten transparent dargestellt sind.
Details sind im Erntebild, Fig. 2, gezeigt, wo links der Tachometer und wo im rechten großen Bildfeld (BF3) in zwei Dreieckpiktogrammen laufend die Körnerverlustrate und die Ernteleistung dargestellt werden. In den kleineren Bildfeldern (BF4-BF7) darunter sind die jeweilige Arbeitsbreite (SBI), die Schnitthöhenvorwahl (SHI), die Dreschtrommeldrehzahl, die Gebläsedrehzahl und die Motordrehzahl mit der Motorauslastung veranschaulicht und beziffert.
In den einzelnen Bildfeldern (BF2-BF7) sind durch verschiedenartige und verschieden angeordnete Anzeigesymbole jeweils die aktuellen Meßwerte (VI, SBI, SHI, S11, S12) und die für den jeweiligen Ort maßgeblichen historischen Betriebsdaten (VS, SBS, SHS, SHS1, SHS2, H31, H32, H6, H7) angezeigt. Somit ist im zweiten Bildfeld (BF2) die Ist-Geschwindigkeit (VI) wie mit einer Tachometernadel dargestellt und außerhalb der Skala die historisch ermittelten Soll-Geschwindigkeit (VS) angegeben.
Weiter sind im dritten Bildfeld (BF3) als Eckenabschnitt die momentanen flächemäßigen Schüttler- und Sieb-Ist- Verluste angezeigt und dazu die historischen Verlustwerte (H31, H32), die auf den Ernteort transformiert sind. Es ist ersichtlich, daß die Verlustraten gegenüber den früher erreichten verbessert worden sind.
Weiter sind im vierten Bildfeld (BF4) die Ist- und Soll- Schnittbreiteneinstellung (SHI, SHS) dargestellt.
Im fünften Bildfeld (BF5) sind wiederum innen bzw. außen von der Skala die Ist-Schnitthöhe (SHI) und die historisch ermittelte Soll-Schnitthöhe (SHS) angezeigt. Hinzu kommen Grenzwertanzeiger (S11, S12) der aktuell vom Fahrer vorgegebenen Schnitthöhengrenzen und die außen hohl dargestellten Grenzwertvorgaben (SHS1, SHS2), die aus den historischen Daten ermittelt worden sind. Da die vorgegebenen Grenzwerte niedriger liegen als die historischen, ist ersichtlich, daß letztere nicht unmittelbar auf den Regler geführt sind sondern nur dem Bediener als Leithilfe dienen und er versucht, eine neue, günstigere Einstellung mit niedrigeren Stoppeln zu finden. Ob eine unmittelbare oder mittelbare Regeldatenvorgabe erfolgen soll, ist durch eine Tastenwahl für die einzelnen Bildfelder vorgebbar. Welche der Grenzwerte jeweils aktiviert oder nur informativ sind, ergibt sich aus der massiven bzw. leeren Darstellung der entsprechenden Symbole. Innerhalb der aktivierten Grenzwerte (S11, S12) arbeitet die interne Regelung der Schnitthöhenoptimierung.
Zu den Darstellungen der Ist- und Soll-Betriebsdaten werden übersteuernd Alarme und wichtige Meldungen in den variabel zuzuordnenden Bildfeldern (BF2-BF7) dargestellt. Ein Alarmfall tritt u. a. dann ein, wenn ein Soll- oder Grenzdatum vorgegeben ist, der aufgrund des historisch ermittelten Datums als gefahrträchtig zu beurteilen ist, also zu geringe Schnitthöhe oder zu hohe Geschwindigkeit vom Bediener zugelassen worden ist, die zu einem Schaden führen könnte. Eine Alarmsituation würde beispielsweise dann auftreten, wenn im Bildfeld (BFS) des Schnitthöhenanzeigers die Ist-Schnitthöhenanzeige (SHI) den unteren historischen Grenzwert (SHS1) unterschreiten würde.
Alarme sind eine Sonderform von Meldungen höherer Priorität. Sie erzeugen ein optisches und akustisches Signal, das vom Bediener quittiert werden muß. Das optische Signal besteht aus einem Symbol und erklärendem Text und überlagert den bisherigen Bildschirminhalt. Nach einem Quittieren erscheint der Alarm nur noch als Meldung.
In kurzen Zeitabständen werden die Ist-Fahrgeschwindigkeit die Wegsignale und der Ein-Auszustand des Schneidwerkes ermittelt und zur Ortsbestimmung und Adressierung des Katasters sowie zur Anzeige und als Regelgrößen ausgewertet.
Weiterhin werden vom Leitstandprozessor (M1) periodisch mit dem Antrieb- und Fahrwerkmikroprozessor (M3) folgende Nachrichten ausgetauscht und zwar:
empfangen:
  • - Teilbreite 1/1-1/4
  • - Arbeitsbreite
  • - Stat. Radius × Übersetzung
  • - Obere Leerlastdrehzahl Motor
  • - Vollastdrehzahl Motor
  • - Min. Arbeitsdrehzahl
  • - Zulässiger Schlupf
gesendet:
  • - bearbeitete Fläche
  • - Flächenleistung
  • - Wegstrecke
  • - Arbeitsstunden
  • - Betriebsstunden
  • - Bordnetzspannung
  • - Motorauslastung
  • - Gebläsedrehzahl
  • - Dreschtrommeldrehzahl.
Letztere Daten dienen insbes. für die Ernte- und Abrech­ nungsinformationsausgaben sowie für die Erstellung des Erntekatasters zur Korrelation der Getreidedurchsatzdaten, die der Förder- und Reinigungsmikroprozessor (MN) ermittelt und periodisch aus sendet und zu laufenden und akkumulierten Ausgaben gespeichert.
Eine laufende Kommunikation mit kurzen Reaktionszeiten findet insbes. auch zwischen dem Leitstandmikroprozessor (M1) und dem Schneidwerkreglerprozessor (M2) statt, da die Signale der Kommandotasten (T15-T18) am Fahrhebel (F) unverzüglich in Steueraktionen zur Höhen- und Neigungsein­ stellung des Schneidwerk umgesetzt werden müssen, da diese zur optimalen Erfassung unterschiedlich hohen und/oder geneigten oder liegenden Getreides und zur Verhinderung von Beschädigungen des Schneidwerks durch Steine oder Erdhaufen und zur Verhinderung von einer Überlastung des Förderers zur jeweils vorgegebenen Fahrgeschwindigkeit und Schnittbreite stehen, die durch die Längs- bzw. Querneigungseinstellung am Fahrhebel (F) bestimmt werden.
Zur Kommunikation des Schneidwerkprozessors (M2) sind insbes. folgende periodische Nachrichten vorgesehen:
Empfang:
  • - Geschwindigkeit
  • - Inkrementieren oder dekrementieren der Schnitthöhe,
  • - Sollwerte für die beiden Absenkautomaten
  • - Sollwert für den Schnitthöhenregler
Sendung:
  • - Istwerte der Absenkautomaten
  • - Istwerte der rechten und linken Bodentaster
  • - Konturautomatik ein - aus
  • - Stellgrößen der Absenkautomaten ein - aus
  • - Stellgrößen der Schnitthöhenregler ein - aus.
Außerdem werden mit Priorität Alarme gesendet, die die Überschreitung von vorgegebenen Istwert-Grenzwerten sowie Störungen an den Stellgliedern und den Magnetventilen der hydraulischen Höhen- und Neigungsverstellvorrichtungen signalisieren.
Die Istwerte für die Schnitthöhen- und Neigungseinstellung sind gebildet aus dem Auflagedruck (gemessen an der Schneidwerkfeder) und dem Bodenabstand (gemessen über Tastbügel). Damit hat der Fahrer die Möglichkeit, den Auflagedruck und den Bodenabstand des Schneidwerks stufenlos optimal einzustellen.
Damit das Schneidwerk parallel zum Boden geführt wird und die Schnitthöhe über die gesamte Schneidwerkbreite konstant ist, ist neben der Höhenreglung noch eine Querreglung aktiv. Diese Querreglung vergleicht den linken und rechten Bodenabstand und gibt bei Abweichungen Korrektursignale an die Neigungshydraulik.
Mit der Absenkautomatik hat der Fahrer die Möglichkeit, eine Schneidwerkhöhe von z. B. über 100 mm vorzuwählen. Die vorgewählte Höhe wird automatisch eingestellt. Der Fahrer kann während der Fahrt zwischen einem Absenkauto­ matikprogramm und einem Schnitthöhenreglerprogramm umschalten und so auf Tastendruck verschiedene Schneidwerkhöhen an fahren. Diese Funktionsumschaltungen werden hauptsächlich über die Taster am Multifunktions­ griff (F) des Fahrhebels gesteuert. Der obere Taster (T17) dient zum Ausheben des Schneidwerks aus dem bodennahen Kontur-Automatikstellbereich heraus in einen bodenferneren Schnitthöhenbereich. Der untere Taster (T18) dient zum Absenken des Schneidwerks in die Kontur-Automatikstellung, die entweder im Bereich einer vorgegebenen Schnitthöhen­ vorwahl als auch einer vorgegebenen Schnitthöhenregelung liegen kann. Dies entscheidet sich erst bei der Übernahme eines jeweils zugehörigen Sollwertes, der vom Bediener selbst festgelegt wird oder aus den katasterisierten Daten ermittelt laufend vorgegeben wird.
Es sind zwei Arten von Sollwert-Eingaben vorgesehen. Bei der ersten Methode kann der Sollwert durch die +/- Tasten (T12) der Tastatur (TA) verändert werden. Diese Sollwertänderung ist im Arbeitsmenü einstellbar. Das System unterstützt die Eingabe dadurch, daß der Cursor jeweils entsprechend der Automatik steht, die mit der Taste am Multifunktionsgriff (F) vom Fahrer vorgewählt wurde. Der Sollwert wird inkremental um kleine Schrittweiten (2,5%) verstellt. Die Ausführzeit liegt unter einer Sekunde. Das Terminal sendet dazu die Nachricht "Increment" oder "Decrement" an den Schneidwerkmikroprozessor (M2), welcher wiederum mit dem neuen Sollwert antwortet. So wird die Berechnung des neuen Sollwertes zentral an einer Stelle durchgeführt. Eine Voreinstellung der Sollwerte (S11, S12), Fig. 2, ist außerdem in einem Untermenü: Einstellen Kontur, möglich.
Die zweite Methode ermöglicht dem Fahrer, den aktuellen Istwert als neuen Sollwert zu übernehmen. Dazu wird das Schneidwerk über die Tasten (T15, T16) für Heben und Senken in die gewünschte Position gebracht und dann durch langes Drücken (über 3 Sekunden) der entsprechenden Automatiktaste (T17, T18) der Istwert als neuer Sollwert übernommen. Eine kurze Betätigung des Schalters senkt hingegen das Schneidwerk in die durch den anderen Sollwert bestimmte Automatikstellung, und der eingestellte Sollwert wird dabei nicht verändert. Die Entscheidung, ob mit dem alten Sollwert anschließend weitergefahren werden soll oder der Istwert als neuer Sollwert übernommen werden soll, wird jeweils erst nach dem Loslassen des Schalters gefällt.
Die neu von Hand vorgegebenen Soll- und Grenzbetriebswerte werden jeweils für die Nutzung beim Durchfahren der benachbarten Schneise katasterisiert. So kann in wenigen Umläufen eine optimale Einstellung gefunden werden und für die nächsten Umläufe übernommen werden.
So wie für die Schneidwerkregelung Standardeinstellwerte, d. h. Soll- und Grenzwerte, vorgegeben sind, von denen aus der Bediener eine Änderung bei von der Norm abweichenden äußeren Betriebsbedingungen vorgeben kann, so ist dies auch für die anderen Teilaggregate des Mähdreschers der Fall. Für die Ertragsmessung und Verlustmessung und die zugehörigen Berechnungen sind für die einzelnen Getreidearten jeweils Standardwerte der Litergewichte bei einer Durchschnittsqualität und Durchschnittsfeuchtigkeit eingespeichert, weshalb nach dem Einschalten menügeführt die jeweilige Getreideart auszuwählen ist. Es können darüberhinaus in Zeitabständen extern ermittelte Literge­ wichtsangaben eingegeben werden, falls keine Wägeautomatik vorhanden ist. Die Angaben werden in den Ertrag- und Verlustmeßmikroprozessor (MN) übertragen und zur Auswer­ tung der Meßdaten dort verwendet, worauf die Ergebnisse laufend an den Leitstandmikroprozessor (M1) übertragen werden und dort zur laufenden Ausgabe in dem Erntebild in die Piktogramme des Bildfeldes (BF3) eingetragen werden und zur Auswertung und späteren Ausgabe auf einem Drucker oder einer Kassette (C) zwischengespeichert werden. Auch die Körnerverlustmeßvorrichtung benötigt zur Korrelation der gemessenen Signale die Angabe der Getreideart, der jeweils charakteristische Werte zugeordnet gespeichert gehalten sind.
Tritt ein Verlustwert auf, der trotz der regelungsbeding­ ten Optimierungen einen vorgegebenen Grenzwert überschrei­ tet, wird eine Alarmmeldung gegeben. Durch die unüberseh­ bare, sehr anschauliche Darstellungen der Schüttlerver­ luste im linken Dreieck und der Siebverluste im rechten Dreieck des Bildfeldes (BF3) der Erntebildmaske, Fig. 2, hat der Bediener ständig diese wichtigen Bedienkriterien im Blickfeld, so daß er eine weitere Optimierung durch jeweils geeignete Schnittbreitenwahl, Fahrgeschwindig­ keitseinstellung, Schnitthöheneinstellung und evtl. Sieb- und Gebläseverstellungen laufend vornehmen kann.
Die ergonomische Anordnung des Fahrhebels (F) im Griffbereich der rechten Hand und die der Tastatur (TA) vor der rechten Hand erlaubt auch im laufenden Betrieb einen leichten Zugriff auf die gespeicherten Informationen und die Neuvorgabe von Soll-Betriebswerten.
Die Verarbeitung der eingehenden Nachrichten im Leitstand­ prozessor (M1) in die einzelnen Bildfelder geschieht in zwei verschiedenen Programmebenen. Eine einlaufende Nachricht wird zuerst in einer interruptgesteuerten Hintergrundprogrammebene wie folgt behandelt.
  • - Liegt identifikatorgemäß ein Alarm vor, wird die zugehörige Nachricht aus dem Puffer übernommen und ein Alarmmerker gesetzt und die Nachrichtenzuordnung zu dem zugehörigen Alarmbildfeld (BF3) getroffen und in einem Bildfeldkontrollspeicher vermerkt, die Hupe eingeschaltet sowie der Identifikator gelöscht.
  • - Liegt kein Alarm sondern eine Meldung vor, so wird die der Nachricht entsprechende Meldung in einem Kontrollfeld des Meldungsbildfeldbereichs (BF4) vorgemerkt und ein Kurzhupen initialisiert sowie der Identifikator gelöscht.
  • - Liegt weder ein Alarm noch eine Meldung vor und ist ein neuer Anzeigewert übergeben worden, so wird die Anzeige­ variable in den dem jeweiligen Anzeigewert zugehörige Bildfeldkontrollspeicher eingetragen sowie der Identifi­ kator gelöscht.
Die Weiterverarbeitung der Bildfeldkontrollspeicher­ informationen erfolgt periodisch in einem Hintergrund­ dienstprogramm. In diesem werden die einzelnen Bildbe­ reichinhalte abhängig von den Statusinformationen in den Bildfeldkontrollspeichern in einem Bildspeicher zusam­ mengestellt und/oder aktualisiert.
  • - Liegt ein Wechsel zum Status Dreschwerk-ein vor, wird das Erntebild, Fig. 2, aufbereitet; liegt der neue Status Dreschwerk-aus vor, so wird eine Fahrbildmaske aufgebaut.
  • - Ist ein Zustand der Bedientasten (T11-T18) geändert, so wird dementsprechend der Menüstatusspeicher aktualisiert, und die zugehörigen Bildfeldstatusspeicher werden mit entsprechende Eintragungen versehen bzw. gelöscht.
  • - Ist ein Alarm durch eine Tastenbetätigung bestätigt worden, so wird der Alarmstatus des Alarmbildfeldes (BF3) im zugehörigen Bildfeldstatusbereich gelöscht und die Hupe ausgeschaltet.
  • - Danach werden die in den einzelnen Bildfeldstatus­ speichern enthaltenen neuen Eintragungen hierarchisch übersteuernd bezogen auf Alarmeintragungen, Meldungs­ eintragungen und allgemeine Betriebsinformationen, wie neue Ist- und Sollwerte und Menüstatusänderungen, zur Steuerung der Änderung der Bildspeicherinhalte ausgewer­ tet, so daß der Bildinhalt vollständig aktualisiert ist.
Fig. 3 zeigt eine Feldkarte in einem absoluten Ortskoordinatennetz (X, Y). Das Feld (FE) wird in Bahnen oder Schneisen (E1, E2, E3), die sich in der relativen Koordinatenrichtung (KE) nebeneinander erstrecken und in der Wegkoordinatenrichtung (KS) gerichtet verlaufen, bearbeitet. Werden die Schneisen in wechselnder Richtung durchlaufen, so werden die Koordinaten entsprechend ausgewertet. Wenn beispielsweise der Mähdrescher in der historischen Position (1B) war, als Meßdaten an seinem Ausgang gewonnen wurden, so war er um die Strecke S(DT, VI), die in der Maschinen-Durchlaufzeit (DT) bei der Ist- Geschwindigkeit (VI) durchfahren hat auf der Position (1A) mit den wahren Koordinaten (XW, YW; KSW, KEW), unter denen die Meßdaten (Betriebsdaten) abgespeichert werden.
Bei einem späteren Erntevorgang wird dann, wenn sich der Mähdrescher in der aktuellen Position (1) mit den laufenden Koordinaten (X, Y; KS, E2) befindet auf diese gespeicherten Betriebsdaten vorgegriffen, die dann relevant sind für die Maschineneinstellung, wenn der Mähdrescher in die Zielposition (1A), mit den Koordinaten (XK1, YK1; KS1) eintrifft. Diese Zielposition (1A) liegt um die Strecke S(EZ1, VI) der aktuellen Position (1) voraus, die in der Maschineneinstellzeitkonstanten (EZ1) und der Geschwindigkeit (VI) des Mähdreschers durchfahren wird.
Befinden sich auf dem Feld (FE) Fertilitätsgrenzen (G1, G2), in denen jeweils für einen optimalen oder sicheren Betrieb mindestens eine größere Umstellung der Maschinen­ sollwerte vorgenommen werden muß, so werden die entsprechenden Vorgaben so rechtzeitig wirksam gemacht, daß die Umstellung beim Erreichen der Fertilitätsgrenzen (G1, G2) jeweils gerade abgeschlossen sind.
Fig. 4 zeigt eine weitere Feldkarte (FE) in den absoluten Koordinaten (X, Y) und mit den relativen Koordinaten (KE, KS). Die Ernteschneisen (E1, E2, E3) mit der Schneisenbreite (SB) werden jeweils auf benachbarte Anfangspunkte (EA1-EA3) bezogen kartiert.
An die Fertilitätsgrenze (G1) sind unter dem Koordinatenpaar (XB1, YB1) in der erste Ernteschneise (E1) Betriebsdatensprünge abgespeichert ebenso wie in der zweiten Ernteschneise (E2) unter den Koordinaten (XB2, YB2). Befindet sich der Mähdrescher in der aktuellen Position (1) unter den Koordinaten (X, Y, E3, S) in der dritten Ernteschneise (E3), so werden die gespeicherten Betriebsdaten in einem vorausliegenden Analysebereich (AB) auf Betriebsdatensprünge oder starke Betriebsdatenänderungen untersucht und die vorgenannten Koordinatenpaare (XB1, YB1; XB2, YB2) gefunden und daraus deren Versatz (V1) in der Fahrtrichtung (SR) ermittelt und ein entsprechender Versatz (V2) in die benachbarte Ernteschneise (E3) extrapoliert und dort der Verlauf der Fertilitätsgrenze (G1) postuliert. Hat sich der Mähdrescher diesem Grenzwert bis auf die Strecke S(EZ1, VT) genähert, die in der Maschineneinstellzeitkonstanten (EZ1) mit der Fahrgeschwindigkeit (VI) zu durchfahren ist, so findet die Soll- oder Grenzbetriebsdatenvorgabe nach den historischen Betriebswerten, die hinter der Fertilitätsgrenze (G1) zutreffen, bereit dort und nicht erst beim Erreichen der Fertilitätsgrenze (G1) statt, wenn die neue Einstellung hinter der Fertilitätsgrenze (G1) eine erhöhte Sicherheit gegen Überlastung und/oder Maschinenschaden bringt. Somit fallen die Zielkoordinaten (XK1, YK1) für die Beendigung der Umstellung in den angenommenen Grenzübergangspunkt. Ist die größere Gefahr eine Überlastung in dem Erntebereich der verlassen wird, so wird die Umstellung erst beim Erreichen der Fertilitätsgrenze eingeleitet.
Fig. 5 verdeutlicht über den Fahrweg (S) die Zusammenhänge zwischen den unterschiedlichen Maschinenstandorten und den Abhängigkeiten von den zeitrelevanten Größen. Im Abschnitt I sind die Größen eines Getreidebestandes (B) im Streckenverlauf einer Schneise über eine Fertilitätsgrenze (G1) hinaus veranschaulicht, sowie ein von einem Mähdrescher daraus gewonnenes Ertragsmeßsignal (EM). Der Ort mit der Streckenkoordinate (KS), an dem der Meßsignalsprung infolge des Fertilitätssprunges auftritt, liegt um die Strecke S(DT, VI), die sich aus der Durchlaufzeitkonstanten (DT) der Körner durch den Mähdrescher und aus der Ist-Fahrgeschwindigkeit (VI) ergibt, hinter der Lage der Fertilitätsgrenze (GI), welche die wahren Koordinaten (KSW) hat. Die Speicherung des Meßwertes wird deshalb auf die wahre Koordinate (KSW) bezogen vorgenommen.
Im Abschnitt II ist die Auswertung des unter der wahren Koordinate (KSW) abgespeicherten Ertragsmengensprunges veranschaulicht und zwar in Bezug auf eine Regelung der Geschwindigkeit des Mähdreschers, die laufend als Ist- Geschwindigkeit (VI) signalisiert wird und dargestellt ist. Damit die Ist-Geschwindigkeit (VI) beim Eintreffen des Mähdreschers an der Fertilitätsgrenze (GI) bereits soweit abgesunken ist, daß das höhere Getreideaufkommen den Mähdrescher nicht verstopft, ist die Geschwindigkeitsänderung bereits an einer vorverlegten Koordinate (SS1) eingeleitet, welche um eine Strecke S(EZ1, VI) vor den Zielort (KS1) an der Fertilitätsgrenze vorverlegt ist, die sich aus der Einstellzeitkonstante (EZ1) der zu verändernden Geschwindigkeit und der tatsächlichen Durchfahrgeschwindigkeit (VI) ergibt. Hierbei ist zu berücksichtigen, daß die Geschwindigkeit selbst während der Umstellung sich verändert und somit sich der Weg als ein Integral ergibt.
Im Abschnitt III ist wiederum ein Bestandsverlauf (BB) über die Fertilitätsgrenze (G1) gezeigt und dazu die Ist- Maschinenlast (MLI), welche mit einer gewissen Durchlaufverzögerung, insbes. an der eingangsseitigen Förderstrecke, auftritt. Diese Verzögerung (DT*) ergibt in Verbindung mit der Fahrgeschwindigkeit (VI) den Wegversatz bis zu dem Meßort mit den Koordinaten (KS*). Um diesen Versatz wird wiederum der Lastsprung auf die wahren Koordinaten (KSW) bezogen gespeichert.
Im Abschnitt IV ist die Einstellung der Schnitthöhe (SH) gezeigt, die sich ergibt, wenn an einem vorverlegten Koordinatenort (SS1*) die Schnitthöheneinstellung eingeleitet wird, so daß diese nach einer Einstellzeitkonstanten (EZ1*) bei der Fahrgeschwindigkeit (VI) dann abgeschlossen ist, wenn die Fertilitätsgrenze zu dem dichten Bestand erreicht ist.
Die Zeitkonstanten sind deshalb vor der Fertilitätsgrenze berücksichtigt, weil in dem ihr nachfolgend durchfahrenen dichteren Bestand, bereits mit der neuen Maschinenein­ stellung durchgeführt werden soll, um eine erhöhte Sicherheit gegen eine Überlastung oder eine Beschädigung des Mähwerkes zu haben. In den unteren Bildabschnitten V bis VIII wird eine Fertilitätsgrenze (G2) durchfahren, bei der ein starkes Absinken des Ertrages (EM) und ein Absinken der Last (MLI) auftritt. Auch hier ist bis zum Eintreffen der Meßsignale (EM, MLI) jeweils eine Durchlaufzeit (DT, DT*) des Getreides und der Körner sowie der dabei durchfahrene Weg S(DT,VI), S(DT*,VI) zu berücksichtigen, um die gemessenen Daten zu den wahren Ortskoordinaten (KSW) abzuspeichern.
Bei der späteren Nutzung dieser Daten wird die entsprechende Sollwertumstellung jeweils am Ort der Fertilitätsgrenze (SS2, SS2*) vorgenommen, damit in dem dichten Bestand noch keine Geschwindigkeitserhöhung und keine Schnitthöhenerniedrigung erfolgt, wodurch eine Überlastung oder Mähwerkbeschädigung vermieden wird. Die Umstellung der Geschwindigkeit (VI) und der Schnitthöhe (SH) geschieht wiederum mit den zugehörigen Zeitkonstanten (EZ1, EZ1*), was jedoch unkritisch ist, da der Betrieb in dem schwächeren Bestand gefahrlos ist.
Fig. 6 zeigt ein Blockschaltbild der Steuervorrichtung (ST). Diese wird von einer Ortungsvorrichtung (GPS) mit Koordinaten (X, Y) und von einer Uhr (CL) mit Zeitinformation gespeist. Die Steuervorrichtung (ST) speist mit Soll-Betriebssignalen (VS, SBS, SHS) das Mähdrescherwerk (MDW), welches seinerseits Ist-Signale (MLI, VI, SBI, SHI, SI, EMI, EVI) von dieser erhält. Außerdem liefert der Bediener über die Tastatur (TA) und den Fahrhebel (F) Betriebssteuersignale an die Steuervorrichtung (ST). In dieser sind zahlreiche Betriebsparameter gespeichert, insbes. auch die Einstellzeitkonstanten (EZ1, EZ1*) und die Durchlaufzeiten (DT, DT*). Die Steuervorrichtung ermittelt aus diesen Daten zu den wahren Koordinaten (XW, YW) Betriebsdaten (EM, EV) insbes. spezifische Ertragsmeßdaten und Verlustdaten, welche in dem Erntekataster (EK) den wahren Koordinaten zugeordnet jeweils abgespeichert werden. Bei einer Wiederverwendung dieser Daten befinden sich diese in dem historischen Datenkataster (HK) und werden dort mit Suchkoordinaten adressiert als historische Daten (DH) in die Steuervorrichtung zur Weiterverarbeitung übergeben. Gemäß dem vorher beschriebenen werden daraus Soll- Betriebsdaten für einen optimalen Betrieb ermittelt und entweder unmittelbar dem Mähdreschwerk (MDW) zugeführt oder auf einem Bildgerät (V) visualisiert dem Bediener gezeigt.
Fig. 7 zeigt eine abgewandelte Vorrichtung, bei der Teilfunktionen in einem separaten, insbesondere stationären, Prozessor (PR) ausgeführt werden, der den Katasterspeicher (EK) so wie das historische Kataster (HK) bedient und die historischen Daten (DH) über eine Funkstrecke (F1, F2) der Steuervorrichtung (ST) des Mähdreschers übermittelt. Dieser wiederum übermittelt die aktuellen Betriebsdaten sowie die von der Ortungsvorrichtung (GPS) ermittelten Koordinatendaten über die Funkstrecke (F1, F2) an den Prozessor (PR). Dieses System hat den Vorteil, daß mit einer Katasterstation mehrere Mähdrescher über Funk zusammenarbeiten können und somit auch mehrere Mähdrescher unmittelbar jeweils mit den Daten eines vorausfahrenden Mähdreschers, der eine benachbarte Schneise aberntet, arbeiten kann. Selbstverständlich kann die die Katasterspeicher beherbergende Vorrichtung auch auf einem der Mähdrescher selbst angeordnet sein und von dort aus mit weiteren Mähdreschern per Funk kommunizieren.

Claims (16)

1. Verfahren zum Betrieb eines Mähdreschers, der laufend zur Ernteleistungsoptimierung durch einen Steuerprozessor (ST) mit Soll- und/oder Grenzbetriebsdaten von einem Bediener extern gesteuert sowie intern bei laufender Messung und Auswertung von Ist-Betriebsdaten (VI, SBI, SHI), insbes. Fahrdaten, geregelt betrieben wird, wobei laufend die absoluten und/oder relativen Ortskoordinaten (X, Y) des Mähdreschers erfaßt und diesen zugeordnet die jeweiligen flächenspezifischen Ertragsmeßdaten (EM), insbesondere als ein Ertragsdatenkataster (EK), zur Verwendung als historisches Datenkataster (HK) gespeichert werden, dadurch gekennzeichnet, daß der Steuerprozessor (ST) des Mähdreschers ein historisches Datenkataster (HK) im Zugriff hat und mit den jeweiligen Ortskoordinaten (X, Y) des Mähdreschers, verknüpft mit dessen jeweiligen Fahrdaten (VI, SBI, SHI), dort gespeicherte historischen Daten (DH), jeweils den aktuellen Koordinaten vorgreifend, adressiert und liest und daraus neue Soll- oder Grenzbetriebsdaten (VS, SBS, SHS) bestimmt und aktuell vorgibt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als die Ist-Betriebsdaten eine Ist-Fahrgeschwindigkeit (VI), eine Ist-Schnittbreite (SBI), und eine Ist- Ertragsmenge (EMI) laufend gemessen werden und daraus jeweils die flächen-spezifischen Ertragsmeßdaten (EM) bezüglich der aus den laufenden Koordinaten (X, Y; KS, KE) und der Ist-Fahrgeschwindigkeit (VI) in Verbindung mit einer Erntegutdurchlaufzeit (DT) durch den Mähdrescher bestimmten rückliegende Koordinaten (XW, YW; KSW, KEW) des jeweils wahren Ernteortes katasterisiert werden und daß aus dem historischen Datenkataster (HK) später am gleichen Ort mit den Koordinaten (XW, YW; KSW, KEW) jeweils die historischen Daten (DH) bezüglich künftiger Koordinaten (XK1, YK1; KS1) des Mähdreschers, die dieser durch die jeweilige Fahrgeschwindigkeit nach einer Einstellzeit­ konstanten (EZ1) eines jeweiligen zugehörigen Maschinenlastregelvorganges erreicht haben wird, gelesen und die Soll-Geschwindigkeit (VS) und/oder die Soll- Schnittbreite (SBS) und/oder die Soll-Schnitthöhe (SHS) daraus so bestimmt werden, daß eine möglichst gleiche Maschinenlast beim Überfahren der künftigen Koordinaten (XK1, YK1; KS1) auftritt und eine Überlast oder Maschinengefährdung vermieden wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß laufende Ernteverluste (EVI) gemessen und flächenspezifisch bezüglich der wahren Koordinaten (XW, YW; KSW, KEW) katasterisiert werden und bei einem späteren Mähen am gleichen Ort (XW, YW) daraus bezüglich er künftigen Koordinaten (XK1, YK1; KS1, KE1) die Soll- Geschwindigkeit (VS) und/oder die Soll-Schnittbreite (SBS) und/oder die Soll-Schnitthöhe (SHS) so bestimmt werden, daß ein möglichst geringer flächenspezifischer Ernteverlust nach dem Überfahren der künftigen Koordinaten (XK1, YK1; KS1, KE1) auftritt.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß als Ist-Betriebsdaten eine gemessene Ist-Maschinenlast (MLI) bezüglich der aus dem laufenden Koordinaten (X, Y; KS, KE) und der Ist- Fahrgeschwindigkeit (VI) in Verbindung mit einer Ernteguteinlaufzeit (ET) bis zur Lastmessung bestimmten wahren Koordinaten (XW, YW; KSW, KEW) flächenspezifisch katasterisiert werden und daraus später am gleichen Ort mit den Koordinaten (XW, YW; KSW, KEW) jeweils die historischen Daten (DH) bezüglich künftiger Koordinaten (XK1, YK1) des Mähdreschers, die dieser durch die jeweilige Fahrgeschwindigkeit (VI) nach einer Einstell­ zeitkonstanten (EZ1) eines jeweiligen Maschinenlastregel­ vorganges erreicht haben wird, gelesen und die Soll- Geschwindigkeit (VS) und/oder die Soll-Schnittbreite (SBS) und/oder die Soll-Schnitthöhe (SHS) daraus so bestimmt werden, daß eine möglichst gleiche Maschinenlast beim Überfahren der künftigen Koordinaten (XK1, YK1; KS1, KE1) auftritt.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die katasterisierten historischen Daten (DH) mit jahresspezifischen Daten des jeweiligen Erntegutes oder der jeweiligen Witterungsein­ flüsse verknüpft werden, insbes. mit vorgegebenen Anfangs- Soll- Betriebswerten, vor ihrer Auswertung modifiziert werden.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die katasterisierten Daten (DH) einer oder mehrerer Ernteschneisen (E1, E2), die der laufend zu erntenden Ernteschneise (E3) benachbart sind, durch eine Koordinatenextrapolation der laufenden Wegkoordinaten (KS; X, Y) des Mähdreschers auf der benachbarte(n) Koordinaten (K3S, E3; XB1, YB1; XB2, YB2) und zur Bestimmung der Soll- oder Grenzbetriebsdaten (VS, SBS, SHS) ausgewertet oder unmittelbar als solche genutzt werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die katasterisierten Daten (DH) der jeweils benachbarten Ernteschneisen (E1, E2) bezüglich der laufenden Koordinaten (KS, E3; X, Y) des Mähdreschers jeweils einem voraus- und zurückliegenden Bereich auf, gegen oder in Richtung (SR) der Schneisen (E1, E2) auftretende Versetzungen (V1, V2) von jeweils einander ähnlichen Änderungen der Daten (DH) entsprechend den Versetzungen (V1, V2) auf die laufenden Koordinaten (KS, E3; X, Y) extrapoliert zur Bestimmung der Soll- oder Grenzbetriebsdaten (VS, SBS, SHS) ausgewertet oder unmittelbar genutzt werden.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die aus den katasterisierten Daten (DH) ermittelten Soll- oder Grenzbetriebsdaten (VS, SBS, SHS) jeweils einem Sollwerteingang eines zugehörigen Reglers unmittelbar zugeführt oder auf einem Leitstand- Bildschirmgerät (V) oder Anzeigegerät visualisiert werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Soll- oder Grenzbetriebsdaten (VS, SBS, SHS) jeweils spezifisch ausgebildet neben dem jeweiligen zugehörigen Ist-Betriebswerten (VI, SHI, SBI) und jeweils vom Bediener vorgegebenen Soll- und Grenzwerten (S11, S12) auf dem Leitstand-Bildschirmgerät (V) dargestellt sind.
10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die relativen Ortskoordinaten als richtungsorientierte Wegkoordinaten (KE, KS) bezüglich korrespondierender Schneisenanfangsorte (EA1, EA2, EA3) in den einzelnen Ernteschneisen (E1, E2, E3) durch eine laufende Wegmessung aus Ist-Wegmeßdaten (WI) ermittelt werden.
11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die absoluten Ortskoordinaten (X, Y) des Mähdreschers mittels einer Funkortungs­ vorrichtung (Satellitenortsbestimmung) (GPS, DGPS) und laufender Wegmessung bestimmt werden und eine Transformation in fahrtrichtungsorientierte Wegkoordinaten (KS, KE) und umgekehrt vorgenommen wird, wenn Katasterdaten gelesen bzw. eingespeichert werden.
12. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die zu katasterisierenden Daten alle laufend darauf überwacht werden, ob mindestens ein Datum der zuletzt gespeicherten zugehörigen Daten um einen vorgegebenen relativen oder absoluten Betrag über- oder unterschreitet, worauf die jeweiligen Daten mit ihren wahren Koordinaten (KEW, KSW; XW, YW) abgespeichert werden.
13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die aus den katasterisierten Daten (DH) ermittelten Soll-Betriebswerte (VS, SBS, SHS) jeweils nach Art einer übergeordneten Regelschleife den Betriebsreglern des Mähdreschers zugeführt werden, die ihrerseits untergeordnet regelnd arbeiten.
14. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Ortsbestimmung und/oder die Katasterdatenverarbeitung und/oder -bereitstellung mit einem ortsfesten Prozessor (PR) und einem mähdrescher­ seitigen Ortungsgerät (GPS) vorgenommen wird und die jeweiligen Ortskoordinaten (X, Y) von diesem per Funk an den stationären Prozessor (PR) und die jeweils ermittelten historischen Daten (DH) laufend per Funk an den Mähdrescher übertragen werden.
15. Vorrichtung zur Durchführung der Verfahren 1 bis 13, dadurch gekennzeichnet, daß der Mähdrescher Ortsbestim­ mungsmittel (GPS), Fahrgeschwindigkeitsmeßmittel und einen Katasterspeicher (HK) enthält, dessen gespeicherten Betriebsdaten (DH), durch einen Steuerprozessor (ST), der ein verfahrensgemäßes Programm enthält, zu Soll- und/oder Grenzbetriebsdaten (VS, SBS, SHS) verarbeitet werden, die Betriebsreglern zugeführt werden und/oder auf einem Bildschirmgerät (V) visualisiert werden.
16. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 14, dadurch gekennzeichnet, daß sie aus einem stationären Prozessor (PR) besteht, der Zugriff auf einen Katasterspeicher (HK) hat, und ein Programm enthält, das die Katasterdaten (DH) verfahrensgemäß bearbeitet, und ein Funkgerät (F1) enthält, das mit einem anderen Funkgerät (F2) kommuniziert, das auf einem Mähdrescher installiert ist, und von diesem laufend die Schnittbreiten und Geschwindigkeits- und/oder Wegmeßdaten (SBI, VI, WI) sowie die Ortskoordinaten, ggf. von einer Ortsbestimmungs­ vorrichtung (GPS), empfängt und dem Mähdrescher zur Weiterleitung an die Steuer- und Regelvorrichtung (ST) des Mähdreschers die historischen Daten (HD) und/oder die ermittelten Soll- und Grenzbetriebsdaten (VS, SBS, SHS) übermittelt.
DE4431824A 1994-09-07 1994-09-07 Mähdrescherbetrieb mit Betriebsdatenkataster Expired - Fee Related DE4431824C1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE4431824A DE4431824C1 (de) 1994-09-07 1994-09-07 Mähdrescherbetrieb mit Betriebsdatenkataster
DK95113347T DK0702891T3 (da) 1994-09-07 1995-08-25 Mejetærskerdrift med driftsdatafortegnelse
EP95113347A EP0702891B1 (de) 1994-09-07 1995-08-25 Mähdrescherbetrieb mit Betriebsdatenkataster
DE59505891T DE59505891D1 (de) 1994-09-07 1995-08-25 Mähdrescherbetrieb mit Betriebsdatenkataster
US08/523,333 US5666793A (en) 1994-09-07 1995-09-05 Combine operation with operating data register
RU95115047/13A RU2152147C1 (ru) 1994-09-07 1995-09-06 Способ эксплуатации комбайна и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4431824A DE4431824C1 (de) 1994-09-07 1994-09-07 Mähdrescherbetrieb mit Betriebsdatenkataster

Publications (1)

Publication Number Publication Date
DE4431824C1 true DE4431824C1 (de) 1996-05-02

Family

ID=6527608

Family Applications (2)

Application Number Title Priority Date Filing Date
DE4431824A Expired - Fee Related DE4431824C1 (de) 1994-09-07 1994-09-07 Mähdrescherbetrieb mit Betriebsdatenkataster
DE59505891T Expired - Lifetime DE59505891D1 (de) 1994-09-07 1995-08-25 Mähdrescherbetrieb mit Betriebsdatenkataster

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59505891T Expired - Lifetime DE59505891D1 (de) 1994-09-07 1995-08-25 Mähdrescherbetrieb mit Betriebsdatenkataster

Country Status (5)

Country Link
US (1) US5666793A (de)
EP (1) EP0702891B1 (de)
DE (2) DE4431824C1 (de)
DK (1) DK0702891T3 (de)
RU (1) RU2152147C1 (de)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629618A1 (de) * 1996-07-23 1998-01-29 Claas Ohg Routenplanungssystem für landwirtschaftliche Arbeitsfahrzeuge
DE19647433A1 (de) * 1996-11-15 1998-05-28 Andreas Hilker Verfahren und Vorrichtung zum Hanfdrusch mit Schleppergeräten
EP0845198A1 (de) * 1996-11-16 1998-06-03 CLAAS KGaA Landwirtschaftliches Nutzfahrzeug verstellbar angeordneten Bearbeitungsgerät
DE19800238C1 (de) * 1998-01-07 1999-08-26 Claas Selbstfahr Erntemasch System zur Einstellung einer selbstfahrenden Erntemaschine
DE10064861A1 (de) * 2000-12-23 2002-06-27 Claas Selbstfahr Erntemasch Vorrichtung und Verfahren zur automatischen Steuerung einer Überladeeinrichtung an landwirtschaftlichen Erntemaschinen
DE10147733A1 (de) * 2001-09-27 2003-04-10 Claas Selbstfahr Erntemasch Verfahren und Vorrichtung zur Ermittlung einer Erntemaschineneinstellung
EP0906720B1 (de) * 1997-10-04 2003-11-05 CLAAS Selbstfahrende Erntemaschinen GmbH Vorrichtung und Verfahren zur berührungslosen Erkennung von Bearbeitungsgrenzen oder entsprechenden Leitgrössen
DE102004048083A1 (de) * 2004-09-30 2006-04-06 Claas Selbstfahrende Erntemaschinen Gmbh Skalierbare Funktionsfenster innerhalb einer Anzeigeeinheit
DE102004063104A1 (de) * 2004-12-22 2006-07-13 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
DE102005000770B3 (de) * 2005-01-05 2006-07-20 Langlott, Jürgen Verfahren zur Steuerung der Arbeitsorgane und der Fahrgeschwindigkeit eines Mähdreschers
DE19742463B4 (de) * 1997-09-26 2007-06-21 Claas Selbstfahrende Erntemaschinen Gmbh Messwerte Kartierungsverfahren
DE102009034154A1 (de) * 2009-07-20 2011-02-03 Claas Selbstfahrende Erntemaschinen Gmbh Multifunktionsgriff
DE102011078290A1 (de) 2011-06-29 2013-01-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Klassifizieren eines Umgebungsbereiches eines Fahrzeuges
DE102012201333A1 (de) 2012-01-31 2013-08-01 Deere & Company Landwirtschaftliche Maschine mit einem System zur selbsttätigen Einstellung eines Bearbeitungsparameters und zugehöriges Verfahren
DE102013201996A1 (de) 2013-02-07 2014-08-07 Deere & Company Verfahren zur Einstellung von Arbeitsparametern einer Erntemaschine
EP2921042A1 (de) 2014-03-20 2015-09-23 Deere & Company Erntemaschine mit vorausschauender Vortriebsgeschwindigkeitsvorgabe
DE102014208068A1 (de) 2014-04-29 2015-10-29 Deere & Company Erntemaschine mit sensorbasierter Einstellung eines Arbeitsparameters
DE102015108374A1 (de) * 2015-05-27 2016-12-01 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Ansteuerung einer selbstfahrenden Erntemaschine
WO2017060168A1 (de) * 2015-10-05 2017-04-13 Bayer Cropscience Ag Verfahren zum betreiben einer erntemaschine mit hilfe eines pflanzenwachstumsmodells
EP3210447A1 (de) 2016-02-25 2017-08-30 Deere & Company Selbsttätige ermittlung von regelparametern einer anordnung zur ansteuerung eines aktors zur verstellung eines verstellbaren elements einer landwirtschaftlichen arbeitsmaschine
DE102017200336A1 (de) 2017-01-11 2018-07-12 Deere & Company Modellbasierte prädiktive Geschwindigkeitskontrolle einer Erntemaschine
US10588258B2 (en) 2016-02-25 2020-03-17 Deere & Company Automatic determination of the control unit parameters of an arrangement to control an actuator for the adjustment of an adjustable element of an agricultural machine
EP3259976B1 (de) 2016-06-24 2020-04-08 CLAAS Selbstfahrende Erntemaschinen GmbH Landwirtschaftliche arbeitsmaschine und verfahren zum betrieb einer landwirtschaftlichen arbeitsmaschine
EP3366104B1 (de) 2017-02-27 2020-05-13 CLAAS Selbstfahrende Erntemaschinen GmbH Landwirtschaftliches erntesystem
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
EP3626038B1 (de) 2018-09-24 2022-03-09 CLAAS Tractor S.A.S. Landwirtschaftliche arbeitsmaschine
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US20220110262A1 (en) * 2020-10-09 2022-04-14 Deere & Company Predictive map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9518473D0 (en) * 1995-09-09 1995-11-08 Massey Ferguson Sa Vehicle with weight sensing
US5991694A (en) * 1995-11-13 1999-11-23 Caterpillar Inc. Method and apparatus for determining the location of seedlings during agricultural production
DE19543343C5 (de) * 1995-11-22 2007-01-18 Claas Kgaa Mbh Landwirtschaftliche Ballenpresse
DE19623754A1 (de) * 1996-06-14 1997-12-18 Claas Ohg Erntemaschine mit einem in seiner Arbeitslage gegenüber dem Boden höhenverstellbaren Vorsatzbearbeitungsgerät
US5845229A (en) * 1996-10-28 1998-12-01 Appropriate Systems Method and apparatus for mapping crop quality
US5961573A (en) * 1996-11-22 1999-10-05 Case Corporation Height control of an agricultural tool in a site-specific farming system
US5878371A (en) * 1996-11-22 1999-03-02 Case Corporation Method and apparatus for synthesizing site-specific farming data
DE29724569U1 (de) 1997-06-25 2002-05-16 Claas Selbstfahr Erntemasch Vorrichtung an Landmaschinen zur berührungslosen Abtastung von sich über dem Boden erstreckender Konturen
US5899950A (en) 1997-07-07 1999-05-04 Case Corporation Sequential command repeater system for off-road vehicles
US5873227A (en) * 1997-11-04 1999-02-23 Agco Corporation Combine harvester rotor speed control and control method
DE19802756B4 (de) 1998-01-26 2004-04-22 Claas Selbstfahrende Erntemaschinen Gmbh Fördervolumen-Meßvorrichtung eines Elevators, insbes. für Erntegut
US6039141A (en) * 1998-02-23 2000-03-21 Case Corporation Moving operator and display unit
US6068059A (en) * 1998-05-28 2000-05-30 Recot, Inc. Ground-crop harvester control system
US6148593A (en) * 1998-06-17 2000-11-21 New Holland North America, Inc. Multifunctional handle for controlling an agricultural combine
US6216071B1 (en) * 1998-12-16 2001-04-10 Caterpillar Inc. Apparatus and method for monitoring and coordinating the harvesting and transporting operations of an agricultural crop by multiple agricultural machines on a field
US6212862B1 (en) * 1999-02-26 2001-04-10 Caterpillar Inc. Method and apparatus for determining an area of harvested crop
US6119442A (en) * 1999-05-14 2000-09-19 Case Corporation Combine setting autoadjust with machine vision
GB2351940A (en) * 1999-07-08 2001-01-17 Ford New Holland Nv Baler capacity display and method
US6908586B2 (en) * 2001-06-27 2005-06-21 Fusion Uv Systems, Inc. Free radical polymerization method having reduced premature termination, apparatus for performing the method and product formed thereby
US6553300B2 (en) * 2001-07-16 2003-04-22 Deere & Company Harvester with intelligent hybrid control system
DE10163947A1 (de) * 2001-12-22 2003-07-03 Deere & Co Bordcomputersystem für ein Arbeitsfahrzeug
US6726559B2 (en) * 2002-05-14 2004-04-27 Deere & Company Harvester with control system considering operator feedback
US6681551B1 (en) 2002-07-11 2004-01-27 Deere & Co. Programmable function control for combine
DE10327758A1 (de) * 2003-06-18 2005-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung eines Dreschwerks eines Mähdreschers
US6871483B1 (en) 2004-06-10 2005-03-29 Cnh America Llc Header height resume
DE102004038404B4 (de) * 2004-08-07 2021-01-07 Deere & Company Einrichtung zur selbsttätigen Einstellung der Schnitthöhe eines Erntevorsatzes zur Ernte stängelartiger Pflanzen
DE102004043169A1 (de) * 2004-09-03 2006-03-09 Claas Selbstfahrende Erntemaschinen Gmbh Elektronisches Datenaustauschsystem
WO2007008265A2 (en) * 2005-04-11 2007-01-18 Zetetic Institute Apparatus and method for in situ and ex situ measurement of spatial impulse response of an optical system using phase-shifting point-diffraction interferometry
US7725233B2 (en) * 2005-10-25 2010-05-25 Deere & Company Crop attribute map input for vehicle guidance
US7645190B2 (en) * 2006-05-30 2010-01-12 Cnh America Llc Combine cleaning fan control system
DE102006044159A1 (de) 2006-09-15 2008-04-30 Claas Selbstfahrende Erntemaschinen Gmbh Anzeigeeinheit einer landwirtschaftlichen Arbeitsmaschine
US7401455B1 (en) * 2007-01-03 2008-07-22 Cnh America Llc System and method for controlling the base cutter height of a sugar cane harvester
US9615501B2 (en) * 2007-01-18 2017-04-11 Deere & Company Controlling the position of an agricultural implement coupled to an agricultural vehicle based upon three-dimensional topography data
RU2457657C2 (ru) * 2007-01-24 2012-08-10 КЛААС Зельбстфаренде Эрнтемашинен ГмбХ Сельскохозяйственная рабочая машина
US8260499B2 (en) * 2007-05-01 2012-09-04 Deere & Company Automatic steering system and method for a work vehicle with feedback gain dependent on a sensed payload
DE102007022899A1 (de) * 2007-05-14 2008-11-20 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
WO2009011630A1 (en) * 2007-07-13 2009-01-22 Volvo Construction Equipment Ab A method for providing an operator of a work machine with operation instructions and a computer program for implementing the method
DE102007035647A1 (de) * 2007-07-27 2009-01-29 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
GB0721909D0 (en) * 2007-11-08 2007-12-19 Cnh Belgium Nv Apparatus and method for controlling the speed of a combine harvester
DE102007053910A1 (de) * 2007-11-09 2009-05-14 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
DE102007055074A1 (de) * 2007-11-16 2009-05-20 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende landwirtschaftliche Arbeitsmaschine
DE102008027906A1 (de) * 2008-06-12 2009-12-17 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Erntemaschine
GB0817172D0 (en) * 2008-09-19 2008-10-29 Cnh Belgium Nv Control system for an agricultural harvesting machine
DE102008057461A1 (de) * 2008-11-14 2010-05-20 Claas Selbstfahrende Erntemaschinen Gmbh Anzeigeeinheit
DE102009009767A1 (de) * 2009-02-20 2010-08-26 Claas Selbstfahrende Erntemaschinen Gmbh Fahrerassistenzsystem für landwirtschaftliche Arbeitsmaschine
US8186136B2 (en) * 2009-04-03 2012-05-29 Deere & Company Agricultural harvester with a draper platform direction shuttle
US20110029909A1 (en) * 2009-07-31 2011-02-03 Agco Corporation User Interface With Biomass Deflection Information
US20110024538A1 (en) * 2009-07-31 2011-02-03 Agco Corporation Combine Chopper For Feeding A Baler
US8464508B2 (en) * 2009-07-31 2013-06-18 Agco Corporation Biomass baler
US8443580B2 (en) * 2009-07-31 2013-05-21 Agco Corporation Baler pickup for collecting biomass from a combine harvester
US8490375B2 (en) * 2009-07-31 2013-07-23 Agco Corporation Baler collector for collecting biomass from a combine harvester
RU2517384C2 (ru) * 2010-01-15 2014-05-27 Лэйка Геосистемс Аг Система и способ обмена данными
US8463510B2 (en) * 2010-04-30 2013-06-11 Cnh America Llc GPS controlled residue spread width
DE102010017676A1 (de) * 2010-07-01 2012-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Fahrerassistenzsystem für landwirtschaftliche Arbeitsmaschine
US8452501B1 (en) * 2011-11-09 2013-05-28 Trimble Navigation Limited Sugar cane harvester automatic cutter height control
US8930039B2 (en) 2012-06-11 2015-01-06 Cnh Industrial America Llc Combine performance evaluation tool
DE102013106128A1 (de) * 2012-07-16 2014-06-12 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine mit zumindest einer Steuerungseinrichtung
DE102012107550A1 (de) * 2012-08-17 2014-05-15 Claas Selbstfahrende Erntemaschinen Gmbh Anzeigenvorrichtung für Landmaschinen
EP2902984A4 (de) 2012-09-26 2016-07-13 Kubota Kk Bodenarbeitsfahrzeug, verwaltungssystem für das bodenarbeitsfahrzeug und verfahren zur anzeige von bodenarbeitsinformationen
US20140277960A1 (en) * 2013-03-18 2014-09-18 Deere & Company Harvester with fuzzy control system for detecting steady crop processing state
US20150234767A1 (en) 2013-09-23 2015-08-20 Farmobile, Llc Farming data collection and exchange system
DE102013110610A1 (de) * 2013-09-26 2015-03-26 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine mit einer Anzeigevorrichtung
US10373353B2 (en) * 2013-10-31 2019-08-06 Trimble Inc. Crop yield data adjustments
JP2015084749A (ja) * 2013-11-01 2015-05-07 ヤンマー株式会社 圃場認識システム
SE537880C2 (sv) 2013-11-04 2015-11-10 Väderstad Verken Ab Ett system och metod hos en jordbruksmaskin för att optimeraarbetskapacitet
JP6305265B2 (ja) 2014-08-01 2018-04-04 株式会社クボタ 走行作業車
DE102014013257A1 (de) * 2014-09-12 2016-03-17 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliches Fahrzeug und Anzeigeinstrument dafür
DE102014113335A1 (de) * 2014-09-16 2016-03-17 Claas Tractor Sas Landwirtschaftliche Arbeitsmaschine mit und Verfahren zur vorausschauenden Regelung einer Antriebsleistung und/oder eines Antriebsstranges
US9934538B2 (en) 2014-09-24 2018-04-03 Deere & Company Recalling crop-specific performance targets for controlling a mobile machine
US9901031B2 (en) * 2014-09-24 2018-02-27 Deere & Company Automatic tuning of an intelligent combine
US10178829B2 (en) * 2015-03-18 2019-01-15 Kubota Corporation Combine and grain evaluation control apparatus for combine
CN107615282B (zh) * 2015-04-21 2021-11-30 法墨缘公司 产量数据校准方法
RU2644953C2 (ru) * 2015-06-23 2018-02-15 Общество с ограниченной ответственностью "Комбайновый завод "Ростсельмаш" Кабина комбайна
EP3114919B1 (de) * 2015-07-08 2020-10-28 Zürn Harvesting GmbH & Co. KG Schneidwerksanordnung
US20170112061A1 (en) * 2015-10-27 2017-04-27 Cnh Industrial America Llc Graphical yield monitor static (previous) data display on in-cab display
BE1023467B1 (nl) * 2016-02-01 2017-03-29 Cnh Industrial Belgium Nv Beheer van een restantensysteem van een maaidorser door veldgegevens te gebruiken
JP6289536B2 (ja) * 2016-05-26 2018-03-07 株式会社クボタ 作業機
DE102016118637A1 (de) 2016-09-30 2018-04-05 Claas Selbstfahrende Erntemaschinen Gmbh Mähdrescher mit einem Schneidwerk und Steuerung eines Schneidwerks
US10278328B2 (en) 2017-02-28 2019-05-07 Brandt Agricultural Products Ltd. Grain cart with automatic unloading of a predetermined weight of crop material
US10377290B2 (en) 2017-02-28 2019-08-13 Brandt Agricultural Products Ltd. Spout autorotate for a grain cart
US10351172B2 (en) 2017-02-28 2019-07-16 Brandt Agricultural Products Ltd. Tandem steering for a grain cart
KR102593355B1 (ko) * 2017-06-26 2023-10-25 가부시끼 가이샤 구보다 포장 맵 생성 시스템
US10588259B2 (en) 2017-07-10 2020-03-17 Cnh Industrial America Llc Location based chop to swath conversion for riparian buffer zone management
EP3438769B1 (de) 2017-08-01 2019-11-20 Kverneland Group Mechatronics BV Verfahren zum betrieb eines benutzerendgeräts einer landwirtschaftlichen maschine sowie landwirtschaftliche maschine
US11140807B2 (en) 2017-09-07 2021-10-12 Deere & Company System for optimizing agricultural machine settings
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US10980166B2 (en) * 2018-11-20 2021-04-20 Cnh Industrial America Llc System and method for pre-emptively adjusting machine parameters based on predicted field conditions
WO2020138462A1 (ja) * 2018-12-28 2020-07-02 株式会社クボタ 表示制御装置、作業機、プログラム、及びその記録媒体
US11369058B2 (en) 2019-03-19 2022-06-28 Deere & Company Forward-looking perception interface and control
US11457563B2 (en) * 2019-06-27 2022-10-04 Deere & Company Harvester stability monitoring and control
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
WO2024026055A1 (en) * 2022-07-29 2024-02-01 Cnh Industrial America Llc Agricultural combine vehicle display automated capture method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1605036A (en) * 1978-05-22 1981-12-16 Dye B J K Control systms for harvesters
GB2155666A (en) * 1984-02-24 1985-09-25 Mem Mueszaki Intezet Speed and load control of a mobile machine
WO1986005353A1 (en) * 1985-03-22 1986-09-25 Dronningborg Maskinfabrik A/S Agricultural husbandry
DE4223585A1 (de) * 1992-07-17 1994-01-20 Amazonen Werke Dreyer H Vorrichtung zum Ausbringen von landwirtschaftlichem Material
DE4341834C1 (de) * 1993-12-08 1995-04-20 Claas Ohg Landmaschine, insbesondere Mähdrescher, mit Multiprozessor-Leitvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296409A (en) * 1979-03-12 1981-10-20 Dickey-John Corporation Combine performance monitor
HU196543B (en) * 1986-08-13 1988-12-28 Fortschritt Veb K Electronic connection arrangement for controlling the technologic dates of harvester particularly the shaking and cleaning losses
US5359836A (en) * 1993-02-01 1994-11-01 Control Concepts, Inc. Agricultural harvester with closed loop header control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1605036A (en) * 1978-05-22 1981-12-16 Dye B J K Control systms for harvesters
GB2155666A (en) * 1984-02-24 1985-09-25 Mem Mueszaki Intezet Speed and load control of a mobile machine
WO1986005353A1 (en) * 1985-03-22 1986-09-25 Dronningborg Maskinfabrik A/S Agricultural husbandry
DE4223585A1 (de) * 1992-07-17 1994-01-20 Amazonen Werke Dreyer H Vorrichtung zum Ausbringen von landwirtschaftlichem Material
DE4341834C1 (de) * 1993-12-08 1995-04-20 Claas Ohg Landmaschine, insbesondere Mähdrescher, mit Multiprozessor-Leitvorrichtung

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629618A1 (de) * 1996-07-23 1998-01-29 Claas Ohg Routenplanungssystem für landwirtschaftliche Arbeitsfahrzeuge
DE19647433A1 (de) * 1996-11-15 1998-05-28 Andreas Hilker Verfahren und Vorrichtung zum Hanfdrusch mit Schleppergeräten
EP0845198A1 (de) * 1996-11-16 1998-06-03 CLAAS KGaA Landwirtschaftliches Nutzfahrzeug verstellbar angeordneten Bearbeitungsgerät
US6073070A (en) * 1996-11-16 2000-06-06 Claas Kgaa Agricultural vehicle with treatment device which is adjustable in its position and/or orientation relative to the vehicle
DE19742463B4 (de) * 1997-09-26 2007-06-21 Claas Selbstfahrende Erntemaschinen Gmbh Messwerte Kartierungsverfahren
EP0906720B1 (de) * 1997-10-04 2003-11-05 CLAAS Selbstfahrende Erntemaschinen GmbH Vorrichtung und Verfahren zur berührungslosen Erkennung von Bearbeitungsgrenzen oder entsprechenden Leitgrössen
DE19800238C1 (de) * 1998-01-07 1999-08-26 Claas Selbstfahr Erntemasch System zur Einstellung einer selbstfahrenden Erntemaschine
DE10064861A1 (de) * 2000-12-23 2002-06-27 Claas Selbstfahr Erntemasch Vorrichtung und Verfahren zur automatischen Steuerung einer Überladeeinrichtung an landwirtschaftlichen Erntemaschinen
DE10147733A1 (de) * 2001-09-27 2003-04-10 Claas Selbstfahr Erntemasch Verfahren und Vorrichtung zur Ermittlung einer Erntemaschineneinstellung
DE102004048083A1 (de) * 2004-09-30 2006-04-06 Claas Selbstfahrende Erntemaschinen Gmbh Skalierbare Funktionsfenster innerhalb einer Anzeigeeinheit
US7337023B2 (en) 2004-09-30 2008-02-26 Claas Selbstfahrende Erntemaschinen Gmbh Scalable functionality windows in a display unit
DE102004063104A1 (de) * 2004-12-22 2006-07-13 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
DE102005000770B3 (de) * 2005-01-05 2006-07-20 Langlott, Jürgen Verfahren zur Steuerung der Arbeitsorgane und der Fahrgeschwindigkeit eines Mähdreschers
DE102009034154A1 (de) * 2009-07-20 2011-02-03 Claas Selbstfahrende Erntemaschinen Gmbh Multifunktionsgriff
DE102011078290A1 (de) 2011-06-29 2013-01-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Klassifizieren eines Umgebungsbereiches eines Fahrzeuges
DE102012201333A1 (de) 2012-01-31 2013-08-01 Deere & Company Landwirtschaftliche Maschine mit einem System zur selbsttätigen Einstellung eines Bearbeitungsparameters und zugehöriges Verfahren
EP2622955A1 (de) 2012-01-31 2013-08-07 Deere & Company Landwirtschaftliche Maschine mit einem System zur selbsttätigen Einstellung eines Bearbeitungsparameters und zugehöriges Verfahren
US8738244B2 (en) 2012-01-31 2014-05-27 Deere & Company Agricultural machine having a system for automatic setting of a working parameter, and associated method
DE102013201996A1 (de) 2013-02-07 2014-08-07 Deere & Company Verfahren zur Einstellung von Arbeitsparametern einer Erntemaschine
US9226449B2 (en) 2013-02-07 2016-01-05 Deere & Company Method for setting the work parameters of a harvester
EP2764764A1 (de) 2013-02-07 2014-08-13 Deere & Company Verfahren zur Einstellung von Arbeitsparametern einer Erntemaschine
EP2921042A1 (de) 2014-03-20 2015-09-23 Deere & Company Erntemaschine mit vorausschauender Vortriebsgeschwindigkeitsvorgabe
DE102014205233A1 (de) 2014-03-20 2015-09-24 Deere & Company Erntemaschine mit vorausschauender Vortriebsgeschwindigkeitsvorgabe
US9521805B2 (en) 2014-03-20 2016-12-20 Deere & Company Harvester with predictive driving speed specification
DE102014208068A1 (de) 2014-04-29 2015-10-29 Deere & Company Erntemaschine mit sensorbasierter Einstellung eines Arbeitsparameters
DE102015108374A1 (de) * 2015-05-27 2016-12-01 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Ansteuerung einer selbstfahrenden Erntemaschine
EP3707988A1 (de) 2015-10-05 2020-09-16 BASF Agro Trademarks GmbH Verfahren zum betreiben einer erntemaschine mit hilfe eines pflanzenwachstumsmodells
WO2017060168A1 (de) * 2015-10-05 2017-04-13 Bayer Cropscience Ag Verfahren zum betreiben einer erntemaschine mit hilfe eines pflanzenwachstumsmodells
US11812683B2 (en) 2015-10-05 2023-11-14 Basf Agro Trademarks Gmbh Method for operating a harvesting machine with the aid of a plant growth model
US10856463B2 (en) 2015-10-05 2020-12-08 Basf Agro Trademarks Gmbh Method for operating a harvesting machine with the aid of a plant growth model
EP3210447A1 (de) 2016-02-25 2017-08-30 Deere & Company Selbsttätige ermittlung von regelparametern einer anordnung zur ansteuerung eines aktors zur verstellung eines verstellbaren elements einer landwirtschaftlichen arbeitsmaschine
US10588258B2 (en) 2016-02-25 2020-03-17 Deere & Company Automatic determination of the control unit parameters of an arrangement to control an actuator for the adjustment of an adjustable element of an agricultural machine
DE102017202491A1 (de) 2016-02-25 2017-08-31 Deere & Company Selbsttätige Ermittlung von Regelparametern einer Anordnung zur Ansteuerung eines Aktors zur Verstellung eines verstellbaren Elements einer landwirtschaftlichen Arbeitsmaschine
EP3259976B1 (de) 2016-06-24 2020-04-08 CLAAS Selbstfahrende Erntemaschinen GmbH Landwirtschaftliche arbeitsmaschine und verfahren zum betrieb einer landwirtschaftlichen arbeitsmaschine
DE102017200336A1 (de) 2017-01-11 2018-07-12 Deere & Company Modellbasierte prädiktive Geschwindigkeitskontrolle einer Erntemaschine
US11460852B2 (en) 2017-01-11 2022-10-04 Deere & Company Model-based predictive speed control of a harvesting machine
EP3366104B1 (de) 2017-02-27 2020-05-13 CLAAS Selbstfahrende Erntemaschinen GmbH Landwirtschaftliches erntesystem
EP3626038B1 (de) 2018-09-24 2022-03-09 CLAAS Tractor S.A.S. Landwirtschaftliche arbeitsmaschine
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US12010947B2 (en) 2018-10-26 2024-06-18 Deere & Company Predictive machine characteristic map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US20220110262A1 (en) * 2020-10-09 2022-04-14 Deere & Company Predictive map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US12013698B2 (en) 2020-10-09 2024-06-18 Deere & Company Machine control using a predictive map

Also Published As

Publication number Publication date
EP0702891B1 (de) 1999-05-12
DE59505891D1 (de) 1999-06-17
DK0702891T3 (da) 1999-11-29
RU2152147C1 (ru) 2000-07-10
US5666793A (en) 1997-09-16
EP0702891A1 (de) 1996-03-27

Similar Documents

Publication Publication Date Title
DE4431824C1 (de) Mähdrescherbetrieb mit Betriebsdatenkataster
EP3666050B1 (de) Landwirtschaftliches arbeitssystem
EP1645178B1 (de) Überladeassistenzsystem
EP3178307B1 (de) Landwirtschaftliche arbeitsmaschine
EP1219159B1 (de) Vorrichtung und Verfahren zur automatischen Steuerung einer Überladeeinrichtung an landwirtschaftlichen Erntemaschinen
EP1616470B1 (de) Verfahren und Vorrichtung zur Steuerung einer landwirtschaftlichen Arbeitsmaschine
EP0682785B1 (de) Landmaschine, insbesondere mähdrescher, mit multiprozessor-leitvorrichtung
DE102018111077A1 (de) Mähdrescher sowie Verfahren zum Betreiben eines Mähdreschers
DE19528663A1 (de) Verfahren zur Einstellung einer mobilen Arbeitsmaschine
EP3494771B1 (de) Schnitthöhenautomatik
DE102006015203A1 (de) Verfahren zur Steuerung von landwirtschaftlichen Maschinensystemen
EP0812530A1 (de) Erntemaschine mit einem in seiner Arbeitslage gegenüber dem Boden höhenverstellbaren Vorsatzbearbeitungsgerät
EP1795986A2 (de) Routenplanungssystem für landwirtschaftliche Arbeitsmaschinen
EP1902609B1 (de) Verfahren zur Steuerung einer Anzeigeeinrichtung in einer Erntemaschine
EP3395137A1 (de) Verfahren zum betrieb eines landwirtschaftlichen arbeitsgeräts und landwirtschaftliches gerät
EP3552472B1 (de) Landwirtschaftliche arbeitsmaschine
DE102020202396A1 (de) Verfahren zur Automatisierung einer landwirtschaftlichen Arbeitsaufgabe
EP1321024B2 (de) Verfahren und Vorrichtung zur Optimierung des Betriebs eines landwirtschaftlichen Fahrzeugs
EP4056008A1 (de) Landwirtschaftliche maschinenanordnung
EP3403496B1 (de) Verfahren zur ermittlung einer benötigten aufwandmenge für landwirtschaftliches gut
DE102018107406A1 (de) Erntevorsatzgerät
EP4056009A1 (de) Landwirtschaftliche maschinenanordnung
EP4056010A1 (de) Verfahren zum betreiben einer landwirtschaftlichen maschinenanordnung
EP4331344A1 (de) Verfahren zum bestimmen eines verschleisszustands einer selbstfahrenden landwirtschaftlichen erntemaschine
DE102022107016A1 (de) Landwirtschaftliche Erntemaschine sowie Verfahren zur Steuerung einer landwirtschaftlichen Erntemaschine

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: CLAAS KGAA MBH, 33428 HARSEWINKEL, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140401