DE4423778A1 - Four-quadrant photodetector sensor detecting light source direction - Google Patents

Four-quadrant photodetector sensor detecting light source direction

Info

Publication number
DE4423778A1
DE4423778A1 DE19944423778 DE4423778A DE4423778A1 DE 4423778 A1 DE4423778 A1 DE 4423778A1 DE 19944423778 DE19944423778 DE 19944423778 DE 4423778 A DE4423778 A DE 4423778A DE 4423778 A1 DE4423778 A1 DE 4423778A1
Authority
DE
Germany
Prior art keywords
light source
sensor
sensors
source direction
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19944423778
Other languages
German (de)
Inventor
Christian Steinbrucker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19944423778 priority Critical patent/DE4423778A1/en
Publication of DE4423778A1 publication Critical patent/DE4423778A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/02Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
    • G01C21/025Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means with the use of startrackers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The light source direction sensor consists of four identical photosensitive sensors (1-4) mounted concentrically on a hemisphere equidistant from each other and at the same inclination to the surface normal. The sensors may also be mounted on a pyramid structure. The sensors are connected to a tracking system for solar generator arrays, also may be used in a navigation system. The sensors are covered by glass filters to protect against overheating.

Description

Die Erfindung bezieht sich auf ein Meßsystem mit vier photo­ sensitiven Komponenten zur Erfassung des Fehlwinkels einer punktförmigen Lichtquelle bezogen auf eine Flächennormale.The invention relates to a measuring system with four photo sensitive components for detecting the misalignment of a punctiform light source based on a surface normal.

Das Haupteinsatzgebiet eines solchen Meßsystems liegt in der Nachführung eines Solargenerators (z. B. Silicium Solar Panel) nach dem Stand der Sonne. Weitere Anwendungen liegen in der Lokalisierung und Bewertung verschiedener Punktlichtquellen, die auch diskontinuierlich strahlen können und damit identi­ fizierbar sind.The main area of application of such a measuring system is in Tracking a solar generator (e.g. silicon solar panel) according to the position of the sun. Other applications are in the Localization and evaluation of different point light sources, which can also emit discontinuously and thus identi are fitable.

Der Stand der Technik, von dem die Erfindung ausgeht, ist be­ kannt aus der Firmenschrift: "Dornier Solar Tracking System, 7990 Friedrichshaven, Dornier System GmbH". Der dort beschrie­ bene Crossed-Slit Sensor hat bei hoher Auflösung einen Er­ fassungsbereich von ± 60°.The prior art from which the invention is based is knows from the company script: "Dornier Solar Tracking System, 7990 Friedrichshaven, Dornier System GmbH ". The one described there bene Crossed-Slit Sensor has an Er at high resolution range of ± 60 °.

Das technische Problem, mit dem sich die Erfindung befaßt, besteht darin nicht nur eine diskrete Strahlungsquelle, ins­ besondere die Sonne mit der ohnehin ja kalendarisch bekannten Position lokalisieren zu können, sondern z. B. die mit größter Energie strahlenden Bereiche im Himmel zu bestimmen. Es zeigt sich, daß bei verdeckter Sonne oder diffuser Sonneneinstrah­ lung eine Ausrichtung auf den hellsten erfaßten Raumpunkt er­ folgt. Die Abschattungen können auch durch Gebäude oder natür­ liche Hindernisse entstehen. Mit der vorliegenden Erfindung des räumlichen - nicht ebenen - Vierquadrantensensors wird also eine von dem Tagesdatum, der Tageszeit und der genauen Kenntnis der geographischen Lage unabhängige Ausrichtung des Solargenerators möglich:
Der Wirkungsgrad der Generatoranlage wird verbessert.
The technical problem with which the invention is concerned is not only to be able to localize a discrete radiation source, in particular to locate the sun with the position that is already known in the calendar, but z. B. to determine the areas with the greatest energy in the sky. It can be seen that when the sun is hidden or diffuse sunshine, it is aligned to the brightest point in the room. The shadowing can also be caused by buildings or natural obstacles. With the present invention of the spatial - not flat - four-quadrant sensor, an orientation of the solar generator that is independent of the date, the time of day and the exact knowledge of the geographic location is possible:
The efficiency of the generator system is improved.

Weitere Vorzüge der Erfindung werden im Zusammenhang mit der Erläuterung der Zeichnungen, sowie der Ausführungsformen der Erfindung, deren Merkmale in den Unteransprüchen angegeben sind, beschrieben.Further advantages of the invention are in connection with the Explanation of the drawings, as well as the embodiments of the Invention, the features of which are specified in the subclaims  are described.

Es zeigen:Show it:

Fig. 1 schematische Anordnung des Sensors im Querschnitt und in Draufsicht. Fig. 1 shows a schematic arrangement of the sensor in cross section and in plan view.

Fig. 2 perspektivische Ansicht und Draufsicht in der Ausführungsform als Pyramidenstumpf. Fig. 2 perspective view and top view in the embodiment as a truncated pyramid.

Fig. 3 Bockschaltbild einer Anwendung zur Generatornachführung. Fig. 3 block diagram of an application for generator tracking.

Die in Fig. 1 gezeigte Anordnung zeigt zwei der vier Senso­ ren, deren Oberfläche jeweils gegenüber der Grundfläche in einem Winkel geneigt sind. Eine weit entfernte Lichtquelle liefert auf den Sensor 1 eine hohe Strahlungsdichte, auf den Sensor 2 hingegen eine kleine Strahlungsdichte. Daraus folgt eine Differenz dieser gegenüberliegenden Sensorsignale, die ein Maß ist für den Winkel, unter dem die Lichtquelle gegen­ über der Grundflächennormalen strahlt. Befindet sich die Lichtquelle in der Zeichenebene, so sind die Strahlungsdichten in den Sensoren 3 und 4 gleich groß. Deren Differenzsignal ist also gleich null. Die Lage der Sensoren 3 und 4 ist in der Draufsicht zu erkennen.The arrangement shown in Fig. 1 shows two of the four sensors Ren, the surface of which is inclined at an angle relative to the base. A distant light source supplies to the sensor 1 is a high radiation density at the sensor 2, however, a small radiation density. This results in a difference between these opposite sensor signals, which is a measure of the angle at which the light source shines in relation to the surface normal. If the light source is in the plane of the drawing, the radiation densities in sensors 3 and 4 are the same. Their difference signal is therefore zero. The position of the sensors 3 and 4 can be seen in the top view.

Die in der Fig. 2 dargestellte Variante der Konstruktion auf einem Pyramidenstumpf hat den Vorteil, daß die Grundflächen, auf denen die Sensoren zu montieren sind, eben sind. Die zu­ grundeliegende Pyramide ist gleichseitig. Es liegt eine ein­ fache Gewährleistung der Präzision der zueinander geneigten Richtungen vor.The variant of the construction on a truncated pyramid shown in FIG. 2 has the advantage that the base surfaces on which the sensors are to be mounted are flat. The underlying pyramid is equilateral. There is a simple guarantee of the precision of the inclined directions.

In der Fig. 3 ist die an sich bekannte Schaltungsanordnung enthalten. Weiterhin sind sowohl Verzögerungsglieder für die Stellglieder als auch Bezugsberechnungen der Differenzsignale zu den mittleren eingestrahlten Energieniveaus vorzusehen. In FIG. 3, the per se known circuit arrangement is included. Furthermore, both delay elements for the actuators and reference calculations of the difference signals to the mean radiated energy levels are to be provided.

Verglichen mit dem bisherigen Sensorprinzip (Stand der Tech­ nik, Dornier) entsteht das Differenzsignal durch die geneig­ ten Flächen und nicht durch optische Blenden.Compared to the previous sensor principle (state of tech nik, Dornier) the difference signal is generated by the incline surfaces and not through optical blinds.

Die vier Komponenten werden in jedem Fall durch geeignetes Filterglas gegen thermische Überlastung zu schützen sein.The four components are in any case appropriate Protect filter glass against thermal overload.

Nach der beschriebenen Erfindung wurde von mir ein Sensor nach Anspruch 2 gefertigt und in einer Versuchseinrichtung zur Solargeneratornachführung im Jahr 1993 in Betrieb genom­ men (Standort: Oberstufenzentrum Energietechnik 1, 13599 Berlin, Goldbeckweg 8-14).According to the invention described, I created a sensor manufactured according to claim 2 and in a test facility for solar generator tracking in 1993 genom in operation men (Location: Oberstufenzentrum Energietechnik 1, 13599 Berlin, Goldbeckweg 8-14).

Claims (5)

1. Sensor mit vier photosensitiven Komponenten zur Erfassung des Fehlwinkels einer punktförmigen Lichtquelle bezogen auf eine Flächennormale, dadurch gekennzeichnet, daß die vier in ihrem Aufbau und ihren Eigenschaften identischen photosen­ sitiven Komponenten (1 . . . 4) paarweise und mit identischem Neigungswinkel zur Flächennormalen fest angeordnet sind.1. Sensor with four photosensitive components for detecting the misalignment of a point light source based on a surface normal, characterized in that the four photosensitive components ( 1 ... 4 ) which are identical in structure and properties are fixed in pairs and with an identical angle of inclination to the surface normal are arranged. 2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die vier Komponenten (1 . . . 4) auf einer Kugelschale mit gleicher Wirkung angeordnet sind, wie nach Anspruch 1.2. Sensor according to claim 1, characterized in that the four components ( 1 ... 4 ) are arranged on a spherical shell with the same effect as according to claim 1. 3. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die vier Komponenten (1 . . . 4) auf einem Pyramidenstumpf mit gleicher Wirkung angeordnet sind, wie nach Anspruch 1.3. Sensor according to claim 1, characterized in that the four components ( 1 ... 4 ) are arranged on a truncated pyramid with the same effect as according to claim 1. 4. Meßsystem zur Ausrichtung eines Solargenerators mit einem Sensor nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Sensor­ anordnung in einem an sich bekannten Nachführsystem inte­ griert ist.4. Measuring system for aligning a solar generator with a Sensor according to claim 1 to 3, characterized in that the sensor arrangement in a known tracking system inte is free. 5. Navigationssystem mit einem Sensor nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Sensor­ signale wie bei dem bekannten Sixtanten den Azimut- und Ele­ vationswinkel bestimmen.5. navigation system with a sensor according to claim 1 to 3, characterized in that the sensor signals like the well-known sixtant the azimuth and ele Determine the angle of vation.
DE19944423778 1994-06-30 1994-06-30 Four-quadrant photodetector sensor detecting light source direction Withdrawn DE4423778A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19944423778 DE4423778A1 (en) 1994-06-30 1994-06-30 Four-quadrant photodetector sensor detecting light source direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19944423778 DE4423778A1 (en) 1994-06-30 1994-06-30 Four-quadrant photodetector sensor detecting light source direction

Publications (1)

Publication Number Publication Date
DE4423778A1 true DE4423778A1 (en) 1996-01-04

Family

ID=6522443

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19944423778 Withdrawn DE4423778A1 (en) 1994-06-30 1994-06-30 Four-quadrant photodetector sensor detecting light source direction

Country Status (1)

Country Link
DE (1) DE4423778A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2126507A1 (en) * 1997-01-03 1999-03-16 Garcia Ramon Ferreiro Direction sensor based on photovoltaic effect
ES2134730A1 (en) * 1997-07-22 1999-10-01 Univ De A Coruna System for guiding autonomous vehicles by a photovoltaic offset sensor
WO2000071942A1 (en) * 1999-05-19 2000-11-30 Yaoming Zhang Solar tracing sensor and application thereof in solar auto-tracing device
AT504338B1 (en) * 2006-11-30 2008-05-15 Hannes Dr Hassler METHOD AND DEVICE FOR ALIGNING AT LEAST ONE HELIOSTAT
JP2008516352A (en) * 2004-10-13 2008-05-15 シーメンス アクチエンゲゼルシヤフト Apparatus and method for lighting simulation and shadow simulation in augmented reality system
WO2010123399A1 (en) * 2009-04-24 2010-10-28 Ermakov Oleg Ivanovich Measurement of the angular coordinates of a luminous reference point
US7893391B2 (en) * 2007-01-08 2011-02-22 Edtek, Inc. Positional sensor for solar energy conversion device
CN101997449A (en) * 2009-08-13 2011-03-30 无锡昊阳新能源科技有限公司 Sun-tracking detector having wide-angle capturing and precise tracking functions
CN102818508A (en) * 2012-08-09 2012-12-12 嘉兴优太太阳能有限公司 Free-angle spiral measuring device for accuracy degree of photovoltaic tracking system
CN104391511A (en) * 2014-11-21 2015-03-04 广西智通节能环保科技有限公司 Solar tracking sensor and mounting method thereof
DE102013109506A1 (en) 2013-08-30 2015-03-05 CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH Directionally sensitive photosensor for detecting the direction of incidence of light
CN104852677A (en) * 2015-03-19 2015-08-19 华南理工大学 Micro-lens light-absorbing and micro-spherical silicon light-condensing combined solar cell
CN105259930A (en) * 2015-11-25 2016-01-20 佛山科学技术学院 All-weather solar azimuth tracking method and device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2126507A1 (en) * 1997-01-03 1999-03-16 Garcia Ramon Ferreiro Direction sensor based on photovoltaic effect
ES2134730A1 (en) * 1997-07-22 1999-10-01 Univ De A Coruna System for guiding autonomous vehicles by a photovoltaic offset sensor
WO2000071942A1 (en) * 1999-05-19 2000-11-30 Yaoming Zhang Solar tracing sensor and application thereof in solar auto-tracing device
JP2008516352A (en) * 2004-10-13 2008-05-15 シーメンス アクチエンゲゼルシヤフト Apparatus and method for lighting simulation and shadow simulation in augmented reality system
EP2057445A1 (en) * 2004-10-13 2009-05-13 Siemens Aktiengesellschaft Device and method for light and shade simulation in an augmented-reality system
AT504338B1 (en) * 2006-11-30 2008-05-15 Hannes Dr Hassler METHOD AND DEVICE FOR ALIGNING AT LEAST ONE HELIOSTAT
US7893391B2 (en) * 2007-01-08 2011-02-22 Edtek, Inc. Positional sensor for solar energy conversion device
WO2010123399A1 (en) * 2009-04-24 2010-10-28 Ermakov Oleg Ivanovich Measurement of the angular coordinates of a luminous reference point
CN101997449A (en) * 2009-08-13 2011-03-30 无锡昊阳新能源科技有限公司 Sun-tracking detector having wide-angle capturing and precise tracking functions
CN102818508A (en) * 2012-08-09 2012-12-12 嘉兴优太太阳能有限公司 Free-angle spiral measuring device for accuracy degree of photovoltaic tracking system
CN102818508B (en) * 2012-08-09 2015-12-02 嘉兴优太太阳能有限公司 The photovoltaic tracking system accuracy screw type measurement mechanism of free angle
DE102013109506A1 (en) 2013-08-30 2015-03-05 CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH Directionally sensitive photosensor for detecting the direction of incidence of light
CN104391511A (en) * 2014-11-21 2015-03-04 广西智通节能环保科技有限公司 Solar tracking sensor and mounting method thereof
CN104852677A (en) * 2015-03-19 2015-08-19 华南理工大学 Micro-lens light-absorbing and micro-spherical silicon light-condensing combined solar cell
CN104852677B (en) * 2015-03-19 2017-04-19 华南理工大学 Micro-lens light-absorbing and micro-spherical silicon light-condensing combined solar cell
CN105259930A (en) * 2015-11-25 2016-01-20 佛山科学技术学院 All-weather solar azimuth tracking method and device
CN105259930B (en) * 2015-11-25 2018-02-23 佛山科学技术学院 Round-the-clock solar azimuth tracking and device

Similar Documents

Publication Publication Date Title
DE4423778A1 (en) Four-quadrant photodetector sensor detecting light source direction
US4355896A (en) Cloud cover sensor
Rao et al. Asymptotic cones of acceptance and their use in the study of the daily variation of cosmic radiation
Epstein et al. Post-post-Newtonian deflection of light by the Sun
Roach et al. On the diurnal variation of [OI] 5577 in the nightglow
WO1994017427A1 (en) Sensor for detecting the intensity and angle of incidence of solar radiation
LaBonte et al. An improved search for large-scale convection cells in the solar atmosphere
Hardy et al. Precipitating electron and ion detectors (SSJ/4) for the block 5D/Flights 6-10 DMSP (Defense Meteorological Satellite Program) satellites: Calibration and data presentation
McCuskey The Galactic Structure in Taurus.
EP0626061B1 (en) Measuring instrument
Ingham et al. Observations of the polarization of the night sky and a model of the zodiacal cloud normal to the eliptical plane
Dopita et al. An automated DIMM telescope for Antarctica
DE3733764A1 (en) Device for measuring electromagnetic radiation
RU2298214C1 (en) Device for remote getting of images within wide angle of view (versions)
Muzzio et al. Faint blue stars beyond the Perseus arm
Burbidge et al. The log N-log S curve for 3CR radio galaxies and the problem of identifying faint radio galaxies
Critten The transmissivity of E− W aligned models of a conventional and clerestory greenhouse under natural winter irradiance
Kellogg On:“Fields of view of airborne gamma-ray detectors” by RL Grasty, RS Foote, and KL Kosanke (Geophysics, August 1979, p. 1447–1457) and “Design parameters for aerial gamma-ray surveys” by JA Pitkin and JS Duval (Geophysics, September 1980, p. 1427–1439).
Kühne A new automatic meridian circle PMC 190
Wilson et al. High resolution spectroscopy of the disk chromosphere: II. Time sequence observations of Ca ii H and K emissions
Nechaev et al. Neutron Betta-Decay Contribution to Soft-Electron Intensity in the Atmosphere
Dyer et al. Observation and explanation of a 0.3% sunward radial streaming of 1 to 5 GV cosmic radiation
Hall et al. Statistical analyses of earthquake response spectra
DE102010064140A1 (en) Radiation direction sensor and method for determining the angle of incidence of a radiation source
DE2852465A1 (en) Solar collector tracking device - uses two adjacent solar cells receiving light rays via slit in screen perpendicular to azimuth direction

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee