DE4302281A1 - Thermal energy absorbing and releasing device - Google Patents

Thermal energy absorbing and releasing device

Info

Publication number
DE4302281A1
DE4302281A1 DE4302281A DE4302281A DE4302281A1 DE 4302281 A1 DE4302281 A1 DE 4302281A1 DE 4302281 A DE4302281 A DE 4302281A DE 4302281 A DE4302281 A DE 4302281A DE 4302281 A1 DE4302281 A1 DE 4302281A1
Authority
DE
Germany
Prior art keywords
heat
vacuum
container
vessel
thermal energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4302281A
Other languages
German (de)
Inventor
Hans-Juergen Dr Bachert
Helmut Prof Dr Stach
Original Assignee
AUF ADLERSHOFER UMWELTSCHUTZTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AUF ADLERSHOFER UMWELTSCHUTZTE filed Critical AUF ADLERSHOFER UMWELTSCHUTZTE
Priority to DE4302281A priority Critical patent/DE4302281A1/en
Publication of DE4302281A1 publication Critical patent/DE4302281A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/10Arrangements for storing heat collected by solar heat collectors using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

A vacuum flask (3) with inlet and outlet valves is connected to a cooling device (13) around the wall. The chamber inside (1) contains a medium (2) for storing heat, made from microporous zeolites, acting as a heat absorber. There is a photovoltaic cell (7) as part of the chamber wall and used to control the device. The flask has a window (5) to receive solar energy.The device can be connected (15) to a conventional cooling plant with a condenser (16) and evaporator (17).

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zur Aufnahme und Abgabe von Wärmeenergie. Diese Vorrichtung kann wahlweise mit einer Wärmequelle niedriger Temperatur, wie warmem Wasser aus Solarkollektoren oder Industrieabwärme und/oder direkter Sonneneinstrahlung und/oder Wärmequellen hoher Temperatur wie Dampf, Elektroenergie betrieben werden.The present invention relates to a device for recording and delivery of thermal energy. This device can optionally with a low temperature heat source such as warm water from solar collectors or industrial waste heat and / or direct Sun exposure and / or high temperature heat sources such as Steam, electrical energy can be operated.

Es ist allgemein bekannt, daß bestimmte mikroporöse Festkörper wie Zeolithe, Aktivkohle u. a., Stoffe unter Abgabe von Wärme­ energie adsorbieren und bei Aufnahme von Wärmeenergie desorbie­ ren können, wodurch die Möglichkeit der Energiespeicherung über größere Zeiträume gegeben ist. Ähnliche Prozesse laufen auch bei der Absorption und der Chemisorption sowie physikalischen Zu­ standsänderungen (z. B. Eis-Wasser-Dampf) ab. Zur Verringerung der unerwünschten Wärmeabgabe während des Desorptionsprozesses, d. h. der Wärmeaufnahme, sind die bekannten Wärmeenergie-Aufneh­ mer und -speicher möglichst optimal wärmeisoliert aufgebaut, wo­ bei das Einbringen in Vakuum besonders effizient ist.It is well known that certain microporous solids such as zeolites, activated carbon u. a., fabrics releasing heat adsorb energy and desorbie when absorbing thermal energy ren, which means the possibility of energy storage over longer periods are given. Similar processes are also running absorption and chemisorption as well as physical properties changes (e.g. ice-water-steam). To reduce unwanted heat emission during the desorption process, d. H. the heat absorption, are the known heat energy absorption mer and storage optimally insulated where possible when inserting in a vacuum is particularly efficient.

Problematisch ist jedoch der Adsorptions- (bzw. Absorptions- oder Chemisorptions-)vorgang, wenn die entstehende Wärmemenge entweder nicht benötigt (Kältetechnik) oder nicht im entstehen­ den Umfang benötigt (Sommer) wird.However, the problem of adsorption (or absorption) or chemisorption) process when the amount of heat generated either not required (refrigeration technology) or not being created the scope is needed (summer).

Der Stand der Technik ist gekennzeichnet durch eine Reihe von Veröffentlichungen zur Speicherung von Sonnenenergie unter Ver­ wendung von Zeolithen und anderen mikroporösen Festkörpern (vgl. DE-OS-27 20 561 oder DE-OS-35 12 805). In einigen Firmenschriften (vgl. Dornier-Prinz Solartechnik "Sonnenenergie optimal nutzen mit dem Vakuum-Röhren-Kollektor LUX 2000", Klöckner Wärmetechnik "Klöckner Solar-Heizsystem Astron" oder THERMOSOLAR Energie­ technik "Vakuum-Flachkollektor HVL") werden die Eigenschaften ausführlich dargestellt. Darüber hinaus liegt umfangreiche wis­ senschaftliche Literatur vor, wie z. B. Passos u. a.: "Simulation of an Intermittent Adsorptive Solar Cooling System", Solar Ener­ gy, 42(2), 103 (1989) oder Kose: "Solaranlage, Beispiel mit Schichtenladung", Sonnenenergie, 17(2), 44 (1992). Allen Syste­ men gemeinsam liegt das Bemühen um eine möglichst optimierte Wärmeaufnahme durch Vermeidung von Wärmeleitungs- und Strah­ lungsverlusten.The prior art is characterized by a number of Publications on storing solar energy under Ver use of zeolites and other microporous solids (cf. DE-OS-27 20 561 or DE-OS-35 12 805). In some company publications (see Dornier-Prinz Solartechnik "Optimal use of solar energy with the vacuum tube collector LUX 2000 ", Klöckner Wärmetechnik "Klöckner Solar Heating System Astron" or THERMOSOLAR Energie technology "vacuum flat collector HVL") are the properties detailed. In addition, there is extensive wis scientific literature, such as. B. Passos u. a .: "Simulation of an Intermittent Adsorptive Solar Cooling System ", Solar Ener gy, 42 (2), 103 (1989) or Kose: "Solar system, example with Stratified Charge ", Solar Energy, 17 (2), 44 (1992). Allen Syste  What they all have in common is the effort to optimize them Heat absorption by avoiding heat conduction and radiation losses.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Aufnahme und Abgabe von Wärmeenergie zur Verfügung zu stellen, die alternierend eine Adsorptions- und Desorptionsphase eines fluiden Mediums an einem Speichermedium ermöglicht und eine weitestgehend effektive Wärmeenergieabgabe anstrebt.The invention has for its object a device for To provide absorption and dissipation of thermal energy, which alternate between an adsorption and desorption phase allows fluid medium on a storage medium and a strives for the most effective heat energy release.

Erfindungsgemäß besteht die Vorrichtung zur Aufnahme und Abgabe von Wärmeenergie aus einem vakuumdichten Gefäß 3 mit Ein- und Auslaßventilen 8; 9; 10; 14 und mit einer Kühlvorrichtung 13 an der Gefäßwand, in dem ein vakuumdichter Behälter 1 angeordnet ist, der eine oder mehrere Flächen 4; 12 zur Wärmeaufnahme und/ oder Wärmeabgabe besitzt und seinerseits ein Medium 2 zur Wärme­ speicherung enthält.According to the invention, the device for receiving and delivering thermal energy consists of a vacuum-tight vessel 3 with inlet and outlet valves 8 ; 9 ; 10 ; 14 and with a cooling device 13 on the vessel wall, in which a vacuum-tight container 1 is arranged, which has one or more surfaces 4 ; 12 for heat absorption and / or heat emission and in turn contains a medium 2 for heat storage.

Als Medium zur Wärmespeicherung werden vorzugsweise mikroporöse Festkörper, insbesondere Zeolithe, eingesetzt, wobei jedoch auch andere bekannte, geeignete Medien verwendet werden können.Microporous are preferably used as heat storage medium Solids, in particular zeolites, are used, but also other known, suitable media can be used.

Zur Steuerung der Vorrichtung kann eine photovoltaische Zelle 7 verwendet werden, die beispielsweise, wenn sie aus Material mit hoher thermischer Belastbarkeit wie Galliumarsenid gefertigt ist, als Bestandteil der Fläche 4 des Behälters 1 ausgebildet werden kann.To control the device, a photovoltaic cell 7 can be used which, for example, if it is made of material with high thermal load capacity, such as gallium arsenide, can be formed as a component of the surface 4 of the container 1 .

Die erfindungsgemäße Vorrichtung ist vorzugsweise zur Nutzung von Sonnenenergie vorgesehen. Zu diesem Zweck weist das vakuum­ dichte Gefäß 3 ein Fenster 5 auf, durch das das Sonnenlicht hindurchtreten kann und dem Behälter 1 auf diese Weise die Energieaufnahme ermöglicht wird. Dieses Fenster 5 kann wellen­ längen-selektiv beschichtet sein.The device according to the invention is preferably provided for the use of solar energy. For this purpose, the vacuum-tight vessel 3 has a window 5 through which the sunlight can pass and in this way the container 1 is able to absorb energy. This window 5 can be coated in a wavelength-selective manner.

Wie bereits erwähnt, erfolgen Wärmeaufnahme und -abgabe alter­ nierend durch eine Adsorptions- und Desorptionsphase eines flui­ den Mediums an einem Speichermedium, vorzugsweise einem mikropo­ rösen Festkörper. In der Desorptionsphase wird der erfindungsge­ mäßen Vorrichtung Wärmeenergie, z. B. in Form von Sonnenenergie, zugeführt. Das umgebende Vakuum verhindert dabei im Zusammenhang mit einer an sich bekannten Beschichtung reflektierender Ober­ flächen die Ableitung von Wärmeenergie an die Umgebung über das Gefäß 3. Die Erzeugung des Vakuums erfolgt dabei, zeitlich an die Desorptionsphase gekoppelt, mit Hilfe einer Vakuumpumpe 6 geringer Leistung, die ihre elektrische Energie z. B. aus der in das Gehäuse integrierten photovoltaischen Zelle 7 bezieht. Über Ventile 8; 9; 10; 14 und Vorrichtungen zur Wärmeableitung 12; 13 ist eine Veränderung des Vakuums möglich.As already mentioned, heat absorption and dissipation take place alternately through an adsorption and desorption phase of a fluid medium on a storage medium, preferably a microporous solid. In the desorption phase, the device according to the invention is thermal energy, for. B. in the form of solar energy. The surrounding vacuum prevents the dissipation of thermal energy to the surroundings via the vessel 3 in connection with a known reflecting upper surface. The vacuum is generated, temporally coupled to the desorption phase, with the help of a vacuum pump 6 of low power, which z. B. from the integrated in the housing photovoltaic cell 7 . Via valves 8 ; 9 ; 10 ; 14 and heat dissipation devices 12 ; 13 a change in the vacuum is possible.

Der erfindungsgemäßen Vorrichtung liegt weiterhin die folgende Funktionsweise zugrunde:The device according to the invention is also the following How it works:

Während der Adsorptionsphase und demzufolge Unterbrechung der äußeren Energiezufuhr wird eine möglichst effektive Wärmeener­ gieabgabe angestrebt. Dazu schaltet sich die Vakuumpumpe 6 - beispielsweise zeitlich an diese Phase gekoppelt - ab, wobei entweder automatisch oder durch Ventile 8; 9; 10 (abhängig vom Wirkungsprinzip der Pumpe) ein geeignetes Gas aus einem Behälter 11 oder die Umgebungsluft in das Gefäß 3 eingelassen werden. Zur Verbesserung des Wirkungsgrades der Wärmeenergie­ ableitung in der Adsorptionsphase kann das genannte Gas eine er­ höhte Wärmeleitfähigkeit aufweisen, wie beispielsweise Helium, und Energie über die am Behälter 1 angebrachten inneren Kühl­ rippen 12 aufnehmen. Dieses Gas kann komprimiert in einem ent­ sprechenden Behälter bis zu seiner Verwendung aufbewahrt werden. Luft kann auch durch eine entsprechende Vorrichtung bewegt wer­ den und dadurch ebenfalls eine größere Wärmemenge pro Zeit­ einheit an die mit der Kühlvorrichtung 13 versehenen Außenseiten des Gefäßes 3 abgeben.During the adsorption phase and consequently interruption of the external energy supply, the most effective heat energy release is sought. For this purpose, the vacuum pump 6 switches off - for example, temporally coupled to this phase - either automatically or through valves 8 ; 9 ; 10 (depending on the principle of operation of the pump) a suitable gas from a container 11 or the ambient air can be let into the vessel 3 . To improve the efficiency of the heat energy dissipation in the adsorption phase, the gas can have an increased thermal conductivity, such as helium, and absorb energy via the inner cooling ribs 12 attached to the container 1 . This gas can be stored in a compressed container until it is used. Air can also be moved by a corresponding device and thus also deliver a larger amount of heat per unit time to the outside of the vessel 3 provided with the cooling device 13 .

Im Gefäß 3 kann die Luft vom Einlaßventil 8 entweder über das Absperrventil 9 infolge einer Schornsteinwirkung zum Auslaßven­ til 14 gelangen oder aber über die beispielsweise als Ventila­ tor genutzte Vakuumpumpe 6 und deren Ventil 10.In the vessel 3 , the air from the inlet valve 8 can either pass through the shut-off valve 9 as a result of a chimney effect to the Auslaßven valve 14 or via the vacuum pump 6 used for example as a ventila tor and its valve 10 .

Zur beispielhaften Nutzung in Verbindung mit einem Kühlaggregat ist die erfindungsgemäße Vorrichtung mit einem bekannten System (vgl. DE-OS 35 12 805) über eine Leitung 15 verbunden. In einem Kondensator 16 kondensiert in der Desorptionsphase das ausge­ triebene dampfförmige fluide Medium und gelangt in den Verdamp­ fer 17, der einen geringeren Innendruck aufweist als die Vor­ richtung 1. Dies wird dadurch ermöglicht, daß das in der An­ fangsphase des Desorptionsprozesses ausgetriebene fluide Medium durch Sperrung des direkten Weges durch Ventil 19 zwischen Vor­ richtung 1 und Verdampfer 17 über den Kondensator 16 geführt wird, der über eine Leitung 20 mit dem Verdampfer 17 verbunden ist. In der auf die Desorptionsphase nach Abkühlung der absor­ bierenden oder adsorbierenden Medien 2 folgenden Adsorptions­ phase entsteht im Verdampfer ein Unterdruck, infolgedessen die Verdampfungswärme des fluiden Mediums dem Kühlbehälter 21 ent­ zogen wird. Dadurch wird durch Schließen des Ventils 18 das im Verdampfer 17 befindliche gasförmige Medium in das in der Vor­ richtung 1 befindliche absorbierende oder adsorbierende Medium 2 transportiert. Dieser Prozeß entzieht dem Kühlbehälter 21 die nutzbare Wärmemenge.For exemplary use in connection with a cooling unit, the device according to the invention is connected to a known system (cf. DE-OS 35 12 805) via a line 15 . In a condenser 16, the expelled vaporous fluid medium condenses in the desorption phase and passes into the evaporator 17 , which has a lower internal pressure than the device 1 . This is made possible by the fact that the fluid medium expelled in the initial phase of the desorption process is blocked by blocking the direct path through valve 19 between device 1 and evaporator 17 via the condenser 16 , which is connected via a line 20 to the evaporator 17 . In the adsorption phase following the desorption phase after cooling of the absorbing or adsorbing media 2, a negative pressure is created in the evaporator, as a result of which the heat of vaporization of the fluid medium is removed from the cooling container 21 . As a result, by closing the valve 18, the gaseous medium located in the evaporator 17 is transported into the absorbing or adsorbing medium 2 located in the device 1 . This process extracts the usable amount of heat from the cooling container 21 .

BezugszeichenlisteReference list

 1 Behälter
 2 Medium
 3 Gefäß
 4 Fläche
 5 Fenster
 6 Vakuumpumpe
 7 photovoltaische Zelle
 8 Ventil
 9 Ventil
10 Ventil
11 Behälter
12 Kühlrippen-Fläche
13 Kühlvorrichtung
14 Ventil
15 Leitung
16 Kondensator
17 Verdampf er
18 Ventil
19 Ventil
20 Leitung
21 Kühlbehälter
1 container
2 medium
3 vessel
4 area
5 windows
6 vacuum pump
7 photovoltaic cell
8 valve
9 valve
10 valve
11 containers
12 cooling fin surface
13 cooling device
14 valve
15 line
16 capacitor
17 Evaporation
18 valve
19 valve
20 line
21 cooling containers

Claims (4)

1. Vorrichtung zur Aufnahme und Abgabe von Wärmeenergie, dadurch gekennzeichnet, daß sie aus einem vakuumdichten Gefäß (3) mit Ein- und Auslaßventilen (8; 9; 10; 14) und mit einer Kühlvor­ richtung (13) an der Gefäßwand besteht, in dem ein vakuumdichter Behälter (1) angeordnet ist, der eine oder mehrere Flächen (4; 12) zur Wärmeaufnahme und/oder Wärmeabgabe besitzt und seiner­ seits ein Medium (2) zur Wärmespeicherung enthält.1. Device for receiving and delivering thermal energy, characterized in that it consists of a vacuum-tight vessel ( 3 ) with inlet and outlet valves ( 8 ; 9 ; 10 ; 14 ) and with a cooling device ( 13 ) on the vessel wall, in a vacuum-tight container ( 1 ) is arranged, which has one or more surfaces ( 4 ; 12 ) for heat absorption and / or heat emission and on the other hand contains a medium ( 2 ) for heat storage. 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Medium (2) zur Wärmespeicherung aus mikroporösen Festkörpern, insbesondere einem oder mehreren Zeolithen, besteht.2. Device according to claim 1, characterized in that the medium ( 2 ) for heat storage consists of microporous solids, in particular one or more zeolites. 3. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß in dem Gefäß (3) eine photovoltaische Zelle (7) zur Steue­ rung der Vorrichtung angeordnet ist, vorzugsweise ausgebildet als Bestandteil der Fläche (4) des Behälters (1).3. Apparatus according to claim 1 and 2, characterized in that in the vessel ( 3 ) a photovoltaic cell ( 7 ) is arranged for control of the device, preferably formed as part of the surface ( 4 ) of the container ( 1 ). 4. Vorrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das vakuumdichte Gefäß (3) ein Fenster (5) für die Aufnahme von Sonnenenergie durch den Behälter (1) aufweist.4. The device according to claim 1 to 3, characterized in that the vacuum-tight vessel ( 3 ) has a window ( 5 ) for receiving solar energy through the container ( 1 ).
DE4302281A 1993-01-25 1993-01-25 Thermal energy absorbing and releasing device Withdrawn DE4302281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4302281A DE4302281A1 (en) 1993-01-25 1993-01-25 Thermal energy absorbing and releasing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4302281A DE4302281A1 (en) 1993-01-25 1993-01-25 Thermal energy absorbing and releasing device

Publications (1)

Publication Number Publication Date
DE4302281A1 true DE4302281A1 (en) 1994-07-28

Family

ID=6479069

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4302281A Withdrawn DE4302281A1 (en) 1993-01-25 1993-01-25 Thermal energy absorbing and releasing device

Country Status (1)

Country Link
DE (1) DE4302281A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1013802C2 (en) * 1999-12-09 2001-06-12 Legerlede Holding B V Method for cooling gas-form, liquid or solid medium using solar energy employs absorption cooling system and properties of absorption fluid, drive gas as cooling gas and auxiliary gas to improve evaporation properties of drive gas
WO2003071197A2 (en) * 2002-02-19 2003-08-28 The Indian Institute Of Technology, Bombay Energy efficient adsorption system
WO2008034561A2 (en) * 2006-09-18 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adsorption heat pump with heat accumulator
CN103968597A (en) * 2014-04-29 2014-08-06 北京理工大学 Double-circulation adsorption type solar energy cold-hot combined supply vacuum tube
WO2016026352A1 (en) * 2014-08-22 2016-02-25 中盈长江国际新能源投资有限公司 Solar heat collection adsorption composite tube, solar heat collection adsorption composite bed composed of solar heat collection adsorption composite tubes, and cooling and heating system formed of solar heat collection adsorption composite bed

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1013802C2 (en) * 1999-12-09 2001-06-12 Legerlede Holding B V Method for cooling gas-form, liquid or solid medium using solar energy employs absorption cooling system and properties of absorption fluid, drive gas as cooling gas and auxiliary gas to improve evaporation properties of drive gas
WO2003071197A2 (en) * 2002-02-19 2003-08-28 The Indian Institute Of Technology, Bombay Energy efficient adsorption system
WO2003071197A3 (en) * 2002-02-19 2003-09-25 Indian Inst Technology Bombay Energy efficient adsorption system
WO2008034561A2 (en) * 2006-09-18 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adsorption heat pump with heat accumulator
WO2008034561A3 (en) * 2006-09-18 2008-05-08 Fraunhofer Ges Forschung Adsorption heat pump with heat accumulator
JP2010503823A (en) * 2006-09-18 2010-02-04 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Adsorption heat pump
US8631667B2 (en) 2006-09-18 2014-01-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Adsorption heat pump with heat accumulator
CN103968597A (en) * 2014-04-29 2014-08-06 北京理工大学 Double-circulation adsorption type solar energy cold-hot combined supply vacuum tube
CN103968597B (en) * 2014-04-29 2016-04-27 北京理工大学 Two-way Cycle adsorbed solar cold and heat combined supply vacuum tube
WO2016026352A1 (en) * 2014-08-22 2016-02-25 中盈长江国际新能源投资有限公司 Solar heat collection adsorption composite tube, solar heat collection adsorption composite bed composed of solar heat collection adsorption composite tubes, and cooling and heating system formed of solar heat collection adsorption composite bed

Similar Documents

Publication Publication Date Title
DE3610332C2 (en)
EP0026257B1 (en) Plant comprising an absorption heat pump
EP0158326B1 (en) Adsorption apparatus
CH647590A5 (en) Process and equipment for producing useful energy from low-grade heat sources
EP2643645B1 (en) Adsorption chiller with a vacuum container for removing foreign gases
DE3408192A1 (en) METHOD FOR HIGH TRANSFORMING THE TEMPERATURE OF WARM AND HEAT TRANSFORMER
AT394200B (en) METHOD FOR THE USE AND / OR STORAGE OF ENERGY FROM THE ENVIRONMENT
DE19811302A1 (en) Long-term heat storage system
DE4333829A1 (en) Method and system for storing thermal energy (heat energy)
DE10310748B3 (en) Foreign gas removal method for vacuum sorption device using intermediate phase in which overpressure is obtained by application of heat and blocking heat output of condenser
DE4302281A1 (en) Thermal energy absorbing and releasing device
DE2720561C2 (en)
DE102012009696A1 (en) Stationary or non stationary system for generating and/or storing of hot or cold water, installed in e.g. house, has heat exchanger that is operated as condenser during desorbent mode, and operated as evaporator during adsorbent mode
DE19834696A1 (en) Chemical heat pump or reverse cycle heating system for covering heating and air-conditioning in buildings uses a minimum of two sorption reactors with internal circuitry
DE2622699A1 (en) STORAGE ELEMENT FOR A SORPTIONAL HEAT STORAGE SYSTEM
EP2637883B1 (en) Adsorption refrigeration machine operated by exhaust gas
DE10033972B4 (en) heat exchangers
DE102014223058A1 (en) Thermally driven condenser set and an adsorption heat or refrigeration system
EP1004001B1 (en) Sorption trap arrangement and method for storing heat
DE3212608A1 (en) STORAGE HEATING SYSTEM WITH SORPTION STORAGE
DE4431388C2 (en) Device for receiving and delivering thermal energy
EP0019124A1 (en) Heat pump and process for operating the same
DE102006055280A1 (en) An adsorption cooling system has two vacuum chambers each housing an adsorption material and heat exchanger and a system of valves directing the flow a water cooling medium
AT409668B (en) Device for producing cold and/or heat
WO2014041034A1 (en) Collecting reservoir and method for recovering working medium in sorption devices

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee
8127 New person/name/address of the applicant

Owner name: STACH, HELMUT, PROF. DR., 12439 BERLIN, DE BACHERT