DE4225842A1 - Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung - Google Patents

Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung

Info

Publication number
DE4225842A1
DE4225842A1 DE4225842A DE4225842A DE4225842A1 DE 4225842 A1 DE4225842 A1 DE 4225842A1 DE 4225842 A DE4225842 A DE 4225842A DE 4225842 A DE4225842 A DE 4225842A DE 4225842 A1 DE4225842 A1 DE 4225842A1
Authority
DE
Germany
Prior art keywords
signal
sensor
speed
thread
correlator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4225842A
Other languages
English (en)
Inventor
Ferdinand-Josef Hermanns
Andreas Krueger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
W Schlafhorst AG and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by W Schlafhorst AG and Co filed Critical W Schlafhorst AG and Co
Priority to DE4225842A priority Critical patent/DE4225842A1/de
Priority to EP93111342A priority patent/EP0582112B1/de
Priority to DE59307420T priority patent/DE59307420D1/de
Priority to JP19472393A priority patent/JP3442431B2/ja
Publication of DE4225842A1 publication Critical patent/DE4225842A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/80Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • G01P3/803Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means in devices of the type to be classified in G01P3/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H61/00Applications of devices for metering predetermined lengths of running material
    • B65H61/005Applications of devices for metering predetermined lengths of running material for measuring speed of running yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung.
Die Erfindung betrifft eine Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung mit den Merkmalen des Oberbegriffs des ersten Anspruches.
Textilmaschinen, an denen Textilfäden in Richtung ihrer Längsachse bewegt und anschließend aufgewickelt werden, benötigen in vielen Fällen auch eine Überwachungseinrichtung für die Geschwindigkeit beziehungsweise die Länge des transportierten und dann aufgewickelten Textilfadens. Das Ergebnis wird beispielsweise verwendet, um Abweichungen der Geschwindigkeit zu korrigieren oder auch möglichst genaue Kenntnis über die Länge des aufgewickelten Fadens zu erlangen.
Zum Beispiel an Spulmaschinen, die Kreuzspulen herstellen, besteht oft die Forderung, daß alle fertiggestellten Kreuzspulen möglichst exakt die gleiche Fadenlänge aufweisen. Das ist vor allem dann erforderlich, wenn diese Kreuzspulen später auf ein Gatter aufgesteckt, gemeinsam abgezogen und geschärt oder gezettelt werden. Unterschiedliche Fadenlängen führen in einem solchen Fall zum Verbleib unterschiedlich großer Fadenreste auf den Kreuzspulhülsen. Das führt bei hochwertigem Fadenmaterial zu nicht hinnehmbaren Verlusten.
Weit verbreitet zur Bestimmung der Fadenlänge an derartigen Kreuzspulmaschinen ist es, die Umdrehungen der Kreuzspule oder auch der Antriebswalze für die Kreuzspule zu zählen und über den Umfang der Kreuzspule beziehungsweise der Antriebswalze die aufgespulte Fadenlänge zu bestimmen. Da der Umfang der Antriebswalze konstant ist, ist die Ermittlung der Umfangsgeschwindigkeit unproblematisch. Allerdings ist der auftretende Schlupf zwischen Antriebswalze und Kreuzspule eine erhebliche Fehlergröße. Diese kann zwar reduziert werden, indem ein Korrekturfaktor eingeführt wird, jedoch ist auch der verbleibende Fehler noch relativ groß.
Die Messung der Spulenumdrehungen ist ebenfalls unproblematisch. Problematisch jedoch ist die genaue Bestimmung des sich während der Spulenreise ändernden Durchmessers und damit Umfang der Kreuzspule. Wird als Maß für den Spulenradius der Drehwinkel des Spulenrahmens verwendet, treten durch Abweichungen im Auflagedruck der Spule auf der Antriebswalze auch dabei erhebliche Fehler auf.
Es sind auch eine Vielzahl von Verfahren bekannt, die durch Kontakt mit dem Faden die Fadengeschwindigkeit ermitteln. Ein solches Verfahren erhöht die Fadenspannung und ist aufgrund der Trägheit des mitbewegten Teiles für höhere Umspulgeschwindigkeiten ungeeignet.
Um die genannten Nachteile zu vermeiden, wurde in der EP 0 000 721 A1 vorgeschlagen, die Fadengeschwindigkeit über zwei in festem Abstand zueinander angeordnete, berührungslos arbeitende Sensoren zu ermitteln. Dafür kommen zum Beispiel optisch oder kapazitiv arbeitende Sensoren in Frage. Diese Sensoren ermitteln stochastische Fadensignale in Form analoger Rauschsignale, die sich aus Unregelmäßigkeiten der Fadenoberfläche oder Fadenmasse in Längsrichtung des Fadens ergeben. Das stromauf zur Fadenlaufrichtung ermittelte stochastische Signal wird zeitlich so weit verschoben, bis es maximale Ähnlichkeit mit dem am stromab angeordneten Sensor ermittelten stochastischen Signal hat. Die dabei ermittelte Verzögerung des ersten Signals entspricht der Zeitspanne, die der Faden vom ersten zum zweiten Sensor benötigt. Da der Abstand der beiden Sensoren bekannt ist, läßt sich auf diese Weise ohne weiteres die Fadengeschwindigkeit ermitteln. Jedoch sind die mathematischen Operationen, die üblicherweise als Kreuzkorrelationsverfahren bezeichnet werden, mit einem gewissen Zeitaufwand verbunden. Das ist unproblematisch, wenn der Faden keine oder nur sehr geringe Beschleunigungen erfährt. Schnelle Geschwindigkeitsänderungen, wie sie beim Spulprozeß zum Beispiel nach Fadenbruch oder Kopswechsel auftreten, lassen sich auf diese Weise nicht mehr so beherrschen, daß eine genaue Messung erfolgen kann.
Die Kreuzkorrelationsfunktion besitzt neben dem Hauptmaximum jedoch noch weitere Maxima. Steht nun nicht genügend Auswertungszeit zur Verfügung, kann als Wert für die Zeitverzögerung aufgrund des Einrastens in einem Nebenmaximum ein falscher Wert ermittelt werden. Das ließe sich nur vermeiden, wenn eine längere Auswertungszeit zur Verfügung stehen würde, was jedoch bei sich derart ändernden Fadengeschwindigkeiten nicht der Fall ist.
Es ist deshalb Aufgabe der Erfindung, ein derartiges Verfahren so weiterzuentwickeln, daß eine hohe Meßgenauigkeit auch bei Geschwindigkeitsänderungen des Fadens erhalten bleibt.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des ersten Anspruches gelöst.
Durch die Erfindung werden die Vorteile von zwei verschiedenen Verfahren zur Ermittlung der Geschwindigkeit insbesondere eines Textilfadens vereinigt, wobei im wesentlichen deren Nachteile eliminiert werden. Während die Verwendung eines Signalgebers, der der Fadengeschwindigkeit angenähert proportionale Signale abgibt und zum Beispiel die Drehzahl der Antriebstrommel oder der Kreuzspule erfaßt, den eingangs bereits erläuterten Nachteil unzureichender Meßgenauigkeit besitzt, haben Korrelationsverfahren den Nachteil, daß sie nicht flexibel auf Geschwindigkeitsänderungen, das heißt, insbesondere nicht schnell genug, reagieren können. Die Erfindung macht sich nun die Meßgenauigkeit eines Korrelationsverfahrens mit Hilfe eines Laufzeitkorrelators in vollem Umfang zunutze. Durch die Bereichsvorgabe für eine Modellaufzeit mit Hilfe der vom Signalgeber kommenden Signale wird erreicht, daß der Regelkreis des Laufzeitkorrelators sehr schnell auf das richtige Totzeitmaximum der Kreuzkorrelationsfunktion einrastet. Es ist demzufolge kein hoher Rechenaufwand mit daraus folgender hoher Rechenzeit erforderlich, um das richtige Maximum der Kreuzkorrelationsfunktion und damit die der tatsächlichen Laufzeit T entsprechende Modellaufzeit zu ermitteln. Geschwindigkeitsabweichungen, die bei Spulunterbrechung oder auch schon im Rahmen der sogenannten Bildstörung auftreten, führen zur sofortigen und exakten Nachregelung der Modellaufzeit oder sogenannten Modelltotzeit τ und damit dem exakten Erfassen der Momentangeschwindigkeit zu jedem Zeitpunkt. Die Ermittlung der Geschwindigkeit erfolgt dabei mit Hilfe eines Dividiergliedes, in dem der feste Abstand L zwischen den beiden Sensoren gespeichert beziehungsweise eingestellt ist.
Die Erfindung ist durch die Merkmale der Ansprüche 2 bis 10 vorteilhaft weitergebildet.
Als Signalgeber zur Erzeugung von der Fadengeschwindigkeit angenähert proportionalen Signalen kann ein üblicherweise an zum Beispiel modernen Kreuzspulmaschinen vorhandener Impulsaufnehmer dienen, der magnetische Impulse eines mit der Antriebstrommel fest verbundenen Polrades aufnimmt. Ebenso ist ein entsprechender Drehimpulsaufnehmer direkt an der Kreuzspule denkbar, dessen Impulse beispielsweise mit der Winkelstellung des Spulenrahmens gekoppelt werden, um den die Umfangsgeschwindigkeit der Kreuzspule im Verhältnis zu deren Drehzahl beeinflussenden Durchmesser derselben berücksichtigen zu können. In beiden Fällen wird eine flexible Anpassung der Meßergebnisse an sich ändernde Spulgeschwindigkeiten erreicht. Die unzureichende Meßgenauigkeit ist ohne Einfluß, da die dem Laufzeitkorrelator zugeführten Signale, wie bereits erläutert, nur der Bereichsvorgabe dienen.
Vorteilhaft ist der Impulsaufnehmer ausgangsseitig mit einem Frequenz-/Spannungsumwandler verbunden, mit dessen Ausgangssignalen die Bereichsvorgabe für das Einrasten des Regelkreises des Laufzeitkorrelators erfolgt. Er ist dazu mit einem Rückkopplungsintegrator des Regelkreises des Laufzeitkorrelators verbunden.
Statt der Verarbeitung analoger Signale kann auch eine digitale Signalverarbeitung vorgesehen werden, die mit geringerem Aufwand und hoher Genauigkeit realisiert werden kann. Dazu sind den Sensoren Trigger nachgeschaltet und ist das analoge Verzögerungsglied für die Zeitverzögerung um die Modelltotzeit τ durch ein Schieberegister ersetzt.
Zur Verbesserung der Signalausbeute können den Triggern Differenzierer vorgeschaltet werden. Auf diese Weise werden nicht nur die Null-Durchgänge der Signale, sondern alle Extremwerte erfaßt.
Für die Ermittlung der Lauflänge des Textilfadens ist dem Dividierglied, welches die Momentanwerte der Fadengeschwindigkeit ermittelt, ein Integrator nachgeschaltet, der die Lauflänge des Textilfadens kumulativ ermittelt. Das Ergebnis kann dann angezeigt werden und bei Erreichen eines Grenzwertes, inbesondere der SOLL-Fadenlänge der Kreuzspule, kann die Spulstelle für den Kreuzspulenwechsel angehalten werden. Dabei ist gewährleistet, daß die SOLL-Fadenlänge sehr exakt erreicht ist.
Der Regelkreis des Laufzeitkorrelators kann auf unterschiedliche Weise gestaltet werden. Dem Rückkopplungsintegrator, der ein Verzögerungsglied beziehungsweise ein Schieberegister verstellt, kann eingangsseitig mit einem Multiplikator oder mit einem Phasendetektor verbunden sein. In beiden Fällen werden dem Rückkopplungsintegrator Signale zugeführt, die der Abweichung vom Abgleichpunkt des Regelkreises proportional sind. Bei Verwendung eines Phasendetektors läßt sich die Schaltung mit relativ einfachen Mitteln realisieren, wobei die daraus resultierende Messgenauigkeit des Laufzeitkorrelators gleich ist.
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen näher erläutert werden. In den zugehörigen Zeichnungen zeigen:
Fig. 1 eine schematische Darstellung einer Schaltung zur Bestimmung der Fadengeschwindigkeit beziehungsweise Lauflänge mit Analogbauteilen,
Fig. 2 eine der Fig. 1 entsprechende Darstellung, jedoch mit digitaler Signalverarbeitung,
Fig. 3a die Analogdarstellung des zeitlichen Verlaufes stochastischer Fadensignale,
Fig. 3b die Signumfunktion zu Fig. 3a,
Fig. 3c die Signumfunktion nach vorheriger Differentiation der Signale und
Fig. 4 eine im wesentlichen der Fig. 2 entsprechende Darstellung, jedoch mit in den Regelkreis des Laufzeitkorrelators eingebautem Phasendetektor.
Zunächst soll an dieser Stelle nochmals festgestellt werden, daß es sich bei vorliegendem Verfahren in erster Linie um die Ermittlung der Geschwindigkeit eines Textilfadens auf Basis der Korrelationsrechnung handelt. Der dafür eingesetzte Laufzeitkorrelator 7 (Fig. 1) beziehungsweise 18 (Fig. 2) ist ein in wesentlichen Merkmalen bekannter Closed-Loop-Korrelator, bei dem mit Hilfe des Regelkreises eine Zeitverzögerung des Signals eines ersten Sensors 6 beziehungsweise 17 so eingestellt wird, daß eine maximale Korrelation des zeitverzögerten ersten Signales mit dem Signal des zweiten Sensors 6′ beziehungsweise 17′ erreicht wird. Dazu muß der Regelkreis auf dem Nulldurchgang der differenzierten Kreuzkorrelationsfunktion einrasten. Für das richtige Einrasten wird einem Rückkopplungsintegrator 11 beziehungsweise 25 ein Bereich vorgegeben, in dem das zutreffende Maximum der Modelltotzeit τ liegt.
Im Zusammenhang mit Fig. 1 sollen ganz kurz zusammengefaßt auch die an sich bekannten mathematischen Zusammenhänge erläutert werden.
Ein Textilfaden 1 wird auf eine als Auflaufspule dienende Kreuzspule 2 aufgewunden, die in einer Spulenhalterung 3 drehbar gelagert ist. Diese Kreuzspule 2 wird mit Hilfe einer Antriebswalze 4 an ihrem Umfang angetrieben, während der Faden dabei mit Hilfe einer in der Antriebswalze 4 vorhandenen Kehrgewindenut changiert wird. Auf die übrigen Details einer Spulmaschine wurde verzichtet, da sie bekannt sind und im Rahmen vorliegender Erfindung keine weitere Bedeutung haben.
In einem Meßkopf 5 sind mit einem gegenseitigen Abstand L zwei Sensoren 6 und 6′ in Fadenlaufrichtung hintereinander angeordnet. Bei diesen Sensoren 6 beziehungsweise 6′ handelt es sich um berührungsfrei arbeitende Sensoren, die zum Beispiel auf optischer oder kapazitiver Basis arbeiten. Sie erfassen eine stochastische Funktion des Textilfadens 1, die insbesondere durch Masse- beziehungsweise Volumenschwankungen des Textilfadens 1 gebildet wird.
Da davon ausgegangen werden kann, daß die genannten Charakteristika des Textilfadens 1 sich zwischen den beiden berührungsfrei arbeitenden Sensoren 6, 6′ nicht ändern, kann darauf geschlossen werden, daß die vom Sensor 6 ermittelten Charakteristika um eine Laufzeit T verzögert auch am Sensor 6′ meßbar sind. Damit ergibt sich eine sehr gute Korrelation der beiden Signale. Grob gesagt muß die Modelltotzeit τ so lange verändert werden, bis sich maximale Korrelation ergibt. In diesem Fall ist die Modelltotzeit τ gleich der tatsächlichen Laufzeit T.
Werden die vom Sensor 6 ermittelten Signale mit der Funktion x(t) bezeichnet und die Signale vom Sensor 6′ mit y(t) ist im Idealfall davon auszugehen, das y(t) = x(t-T). Um nun T zu ermitteln, muß x(t) künstlich so lange um die Modelltotzeit τ verzögert werden, bis die Abweichungen e(t) im quadratischen Sinne minimal werden, das heißt, daß der mathematische Erwartungswert E gegen O geht. Daraus ergibt sich nachfolgende Bedingung für den Erwartungswert E:
E{[y(t)-(t-τ)]·x(t-τ)}0.
Da der Erwartungswert E, der ein Mittelwert ist, rechts und links vom Abgleichpunkt τ = T verschiedene Vorzeichen hat, ergibt sich eine Regelabweichung eines normalen Regelkreises. Mathematisch handelt es sich dabei um ein Gradientenverfahren.
Zur Realisierung dieser Regelfunktion beziehungsweise Erfüllung der oben genannten Gleichung ist der Laufzeitkorrelator 7 in Fig. 1 gut geeignet. Die Signalfolge x(t) wird einem Verzögerungsglied 12 zugeführt, welches diese Signalfolge um die Modelltotzeit τ verschiebt. Daraus ergibt sich eine Signalfolge des Modells yM = x(t-τ), die zum einen einem Differenzierer 13 und zum anderen einem Abgleichpunkt 12′ zugeführt werden. Dem Abgleichpunkt 12′ wird aber auch die nicht zeitverzögerte Signalfolge y(t) des Sensors 6′ zugeführt. Die Abweichung e(t), die demzufolge der Differenz y(t)-x(t-τ) entspricht, wird einem Multiplizierer 14 als ein Faktor zugeführt. Der andere Faktor gemäß obiger Gleichung wird im Differenzierer 13 durch Differentiation der zeitverzögerten Signalfolge x(t-τ) gebildet. Das im Multiplizierer 14 gebildete Produkt wird dann in den Rückkopplungsintegrator 11 eingespeist, der seinerseits eine Verbindung zum Verzögerungsglied 12 besitzt und dort bei Abweichungen zwischen τ und T die Modelltotzeit nachregelt.
Ist die Abweichung e(t) null, was dem stabilen Zustand des Systemes entspricht, gibt auch der Rückkopplungsintegrator 11 keine Impulse an das Verzögerungsglied 12, so daß am Modell, das heißt, der Einstellung-der Modelltotzeit τ keine Änderung vorgenommen wird. Die Modelltotzeit τ ist dann identisch mit der Fadenlaufzeit im Sensor, was dem Korrelationsmaximum entspricht.
Wie bereits erläutert, besteht bei diesem Verfahren die Gefahr, daß zunächst der Laufzeitkorrelator auf einem Nebenmaximum, das heißt, einem falschen Abgleichpunkt, einrastet, wodurch, je nach Dauer bis zum Einrasten im richtigen Maximum über eine bestimmte Zeit eine von der tatsächlichen Laufzeit T abweichende Größe der Geschwindigkeitsermittlung zugrundegelegt wird.
Um das zu vermeiden, werden von einem Sensor beziehungsweise Impulsaufnehmer 8, zum Beispiel einem Hallsensor, magnetische Impulse von einem mit der Antriebstrommel 4 verbundenen Polrad aufgenommen. Die Dichte der Impulsfolge ist dabei ein Maß für die Umfangsgeschwindigkeit der in ihrem Durchmesser bekannten Antriebstrommel und damit auch annähernd für die Geschwindigkeit des laufenden Textilfadens 1. Der Impulsaufnehmer 8 dient demzufolge als Signalgeber von der Fadengeschwindigkeit proportionalen Signalen im Sinne vorliegender Erfindung. Die Signalfolge von Rechtecksignalen wird über einen in Fig. 1 allerdings geöffneten Schalter 9 einem Frequenz-/Spannungswandler 10 zugeführt. Dieser Frequenz-/Spannungswandler 11 ist ausgangsseitig mit dem Rückkopplungsintegrator 11 verbunden. Die Spannungssignale, die der Fadengeschwindigkeit proportional sind, geben dem Rückkopplungsintegrator 11 den Bereich vor, in dem das richtige Totzeitmaximum der Modelltotzeit τ liegt. Dabei kommt es lediglich darauf an, daß der Bereich so eng gewählt ist, daß Nebenmaxima außerhalb dieses Bereiches liegen. Die Breite des Bereiches wird über ein Offset, in Fig. 1 durch den Pfeil 10′ symbolisiert, fest vorgegeben. Demzufolge wird der in der Breite festgelegte Bereich mittels der Spannungssignale, die ausgangsseitig am Frequenz-/Spannungswandler anliegen, lediglich verschoben.
Der Rückkopplungsintegrator 11 enthält, was hier jedoch nicht im einzelnen dargestellt ist, noch einen Bereichsvergleicher, dem neben der zugeführten Bereichsbreite und der Lage des Bereiches aufgrund der Signale des Frequenz-/Spannungswandlers 10 auch die ausgangsseitig am eigentlichen Integrator anliegenden Regelsignale zugeführt werden. Dieser Bereichsvergleicher korrigiert bei Über- oder Unterschreiten der Bereichsgrenzen am Ausgang des Integrators den Abgleichpunkt im Integrator. Dadurch wird auf extreme Geschwindigkeitsänderungen reagiert und gleichzeitig verhindert, daß das Hauptmaximum in Richtung auf ein Nebenmaximum verlassen wird, auf dem ohne Korrektur der Regelkreis gegebenenfalls sogar für längere Zeit einrasten könnte.
Derart extreme Geschwindigkeitsänderungen treten normalerweise nur auf, wenn nach der Unterbrechung des Wickelprozesses innerhalb sehr kurzer Zeit die Fadengeschwindigkeit von null auf die Betriebsgeschwindigkeit gebracht wird. Wird jedoch während des normalen Wickelvorganges eine Korrektur aufgrund des Überschreitens der Bereichsgrenzen erforderlich, deutet das auf eine Betriebsstörung. Diese kann beispielsweise darin bestehen, daß zwischen Antriebstrommel und Kreuzspule ein extrem hoher Schlupfauftritt. Wird also während des normalen Fadenlaufes eine derartige Korrektur vorgenommen, was vom Spulstellenrechner registriert wird, besteht die Möglichkeit, ein entsprechendes Störsignal auszugeben, um zum Beispiel die Bedienperson herbeizurufen.
Um zu dieser zusätzlichen Aussage zu kommen, muß die Schaltung für die Störmeldung für die Zeit blockiert werden, in der die Wickeleinrichtung "hochläuft".
Im Normalbetrieb, das heißt, während des Wickelvorganges mit geringfügigen Geschwindigkeitsschwankungen, werden sich die Bereichsgrenzen in etwa genauso verschieben wie das Totzeitmaximum, so daß sich während dieser Zeit ohne Vorliegen einer Störung keine Korrekturen erforderlich machen.
Der Ausgang des Rückkopplungsintegrators 11 ist neben der bereits beschriebenen Verbindung mit dem Verzögerungsglied 12 noch mit einem Dividierglied 15 verbunden. In diesem Dividierglied 15 ist der feststehende Abstand L zwischen den Sensoren 6 und 6′ gespeichert, der zur Bildung des jeweiligen Momentanwertes der Geschwindigkeit durch die vom Rückkopplungsintegrator 11 ausgegebenen Werte von τ, die der tatsächlichen Laufzeit T entsprechen, geteilt wird. Die Geschwindigkeit kann angezeigt, aufgezeichnet und/oder zur Weiterverarbeitung an einen Integrator 16 gegeben werden. Im Integrator 16 wird kumulativ von Beginn der Bewicklung einer Kreuzspule an die auf die Spulenhülse aufgewickelte Fadenlänge ermittelt.
Bei der in Fig. 2 dargestellten Realisierungsform der Erfindung wird eine digitale Signalverarbeitung vorgenommen. Der Fadenlauf des Textilfadens 1 entspricht dem in Fig. 1. Des weiteren sind Sensoren 17 und 17′ ebenfalls in einem Abstand L innerhalb eines Meßkopfes 5′ untergebracht und erzeugen Signalfolgen x(t) und y(t).
In den im Laufzeitkorrelator 18 angeordneten Triggern 21 und 30 wird die jeweilige Signumfunktion durch Quantisierung auf 1 Bit (Vorzeichenbewertung) der stetigen Funktion (Signalfolgen x(t) und y(t)) gebildet.
In Fig. 3a ist die stetige Funktion x (t) für einen laufenden Textilfaden 1 beispielhaft dargestellt. In Fig. 3b ist die entsprechende Signumfunktion FS1 dargestellt, die sich bei einem direkt nachgeschalteten Trigger ergibt. Diese Signumfunktion besitzt ganz offensichtlich gegenüber der stetigen Funktion einen wesentlich geringeren Informationsgehalt. Das resultiert daraus, daß der Trigger jeweils nur den Durchgang durch einen Grenzwert, hier den Null-Durchgang, erfassen kann.
Aus diesem Grunde wurden zwischen die Sensoren 17 und 17′ und die Trigger 21 und 30 Differenzierer 19 und 20 geschaltet. Durch die Differentiation der stetigen Funktion (Fig. 3a) werden sämtliche Extrempunkte (Minima und Maxima) als Null-Durchgänge dargestellt. Diese Null-Durchgänge werden von den nachgeschalteten Triggern erfaßt und ergeben eine wesentlich aussagefähigere Signumfunktion FS2, die in Fig. 3c dargestellt ist.
Abweichend vom Aufbau des Laufzeitkorrelators 7 nach Fig. 1 ist zusätzlich im Laufzeitkorrelator 18 hinter dem Differenzierer 22 ein weiterer Trigger 23 zur Digitalisierung nachgeschaltet. Multiplizierer 24 und Rückkopplungsintegrator 25 arbeiten statt auf analoger auf digitaler Basis. Das Verzögerungsglied 12 in Fig. 1 ist hier durch ein Schieberegister 29 ersetzt. Dieses Schieberegister besitzt eine konstante Länge n und wird mit einer variablen Frequenz f getaktet. Die Taktfrequenzvorgabe kann durch einen Oszillator 33 oder einen Mikrorechner erfolgen. Die Modelltotzeit kann durch das Schieberegister 29 mit der Länge n dargestellt werden, wobei dessen Laufzeit von der Taktfrequenz f abhängt das heißt τ = n/f.
Die Signalfolge des Impulsaufnehmers 8 wird mit hoher Taktfrequenz abgefragt und von einem Counter 26 erfaßt. Dabei wird die jeweilige Periodenlänge der Rechtecksignale durch Abzählen erfaßt, wobei, in Abhängigkeit von der Taktfrequenz, eine hohe Genauigkeit erzielt wird. Die der Periodenlänge entsprechende Taktzahl wird über eine Leitung 26′ einem digitalen Bereichsvergleicher 27 zugeführt. Über ein durch Pfeil 29 symbolisiertes Offset wird auch hier die Breite des Bereiches fest vorgegeben. Mit 28 ist eine Rückkopplung vom Ausgang des Rückkopplungsintegrators 25 in den digitalen Bereichsvergleicher 27 dargestellt. Wie bereits im Zusammenhang mit Fig. 1 erläutert, wird hier, jedoch auf digitaler Basis, über eine Leitung 27′ die Korrektur des Abgleichpunktes im Rückkopplungsintegrator 25 vorgenommen, was einem Verschieben des Bereiches, in dem der Abgleichpunkt liegen muß, gleich­ kommt. Die ausgangsseitig vom Rückkopplungsintegrator 25 abgehenden Signale werden über eine Leitung 25′ einem Oszillator 33 zugeführt, der die Taktfrequenz des Schieberegisters 29 beeinflußt. Auf diese Weise wird im Schieberegister die Modelltotzeit verändert und letztlich der Regelkreis ständig wieder angeglichen.
Ausgangsseitig an den Rückkopplungsintegrator 25 sind auch hier ein auf digitaler Basis arbeitendes Dividierglied 31 und ein Integrierer 32 nachgeschaltet, um die Momentanwerte der Fadengeschwindigkeit und der kumulativ ermittelten Lauflänge zu erfassen.
Eine weitere Variante der Erfindung ist in Fig. 4 dargestellt. Während auch hier in einem Meßkopf 5′ zwei Sensoren 17 und 17′ in festem Abstand L zur Erfassung stochastischer Signale des laufenden Fadens 1 angeordnet sind, der mittels der Antriebstrommel 4 auf eine Kreuzspule 2 aufgewunden wird, ist der Regelkreis des Laufzeitkorrelators 18′ gegenüber der Darstellung in Fig. 2 verändert.
Die von den Sensoren 17 und 17′ aufgenommenen analogen Signalfunktionen x(t) und y(t) werden zur Digitalisierung Triggern 34 und 35 zugeleitet. Die ausgangsseitig des Triggers 35 anliegende Signumfunktion wird direkt in einen Phasendetektor 37 eingespeist. Die ausgangsseitig am Trigger 34 anliegende Signumfunktion wird über das Schieberegister 36 geleitet, wodurch die bereits beschriebene Verzögerung um die Modelltotzeit τ erfolgt. Das zeitverzögerte Signal wird ebenfalls dem Phasendetektor 37 zugeführt. Dieser Phasendetektor 37 liefert dann ein von der Phasenlage der Eingangssignale abhängiges Ausgangssignal ei. Dieses Signal ei wird dem Rückkopplungsintegrator 38 zugeführt, um erforderlichenfalls die Modelltotzeit τ nachzuregeln. Stimmt die Phasenlage der Eingangsspannungen am Phasendetektor maximal überein, so ist ei null und die Zeitverzögerung des Modells wird nicht weiter geändert. Die Modellaufzeit ist dann identisch mit der Fadenlaufzeit im Meßkopf.
Die Bereichsvorgabe erfolgt im wesentlichen analog dem anhand der Fig. 2 bereits erläuterten Beispiel. So ist dem Impulsaufnehmer 8 ein Counter 39 nachgeordnet, der an einen digitalen Bereichsvergleicher 40 angeschlossen ist. Der Pfeil 41 symbolisiert wieder die Offset-Eingabe der Breite des Bereiches. 40′ symbolisiert die Korrektur des Abgleichpunktes und damit Lage des vorgegebenen Bereiches, in dem dieser Abgleichpunkt liegt. 42′ steht für die Rückkopplung der Signale am Ausgang des Rückkopplungsintegrators 38, die im digitalen Bereichsvergleicher 40 mit den vom Counter 39 einspeisten Informationen verglichen werden.
Die in Fig. 4 dargestellte Schaltung eines Laufzeitkorrelators 18′ ist gegenüber der in Fig. 2 dargestellten des Laufzeitkorrelators 18 vereinfacht. Darüber hinaus ist gegenüber dem vorangehend beschriebenen Ausführungsbeispiel auf die den Triggern 34 und 35 vorschaltbaren Differenzierer verzichtet worden. Damit soll lediglich demonstriert werden, daß auch auf diese Weise die Funktionsfähigkeit des Laufzeitkorrelators gegeben ist. So besteht selbstverständlich auch bei diesem Beispiel die Möglichkeit der Vorschaltung von Differenzierern.

Claims (10)

1. Vorrichtung zum Messen der Geschwindigkeit von Textilfäden (1) an einer Wickeleinrichtung, bei der zwei Sensoren (6, 6′; 17, 17′) in festem Abstand L in Bewegungsrichtung des Textilfadens hintereinander angeordnet sind und die Meßwerte über einen Laufzeitkorrelator (7; 18) ausgewertet werden, dessen Regelkreis sich auf das Totzeitmaximum einer Modelltotzeit τ abgleicht, wobei τ = T die tatsächliche Laufzeit zwischen den beiden Sensoren (6, 6′; 17, 17′) und die Geschwindigkeit v der Quotient von L und τ ist, dadurch gekennzeichnet, daß ein Signalgeber (8), der Signale angenähert proportional der Fadengeschwindigkeit abgibt, vorhanden ist, daß die Signale dem Laufzeitkorrelator (7; 18) zur Bereichsvorgabe für das Einrasten des Regelkreises des Laufzeitkorrelators auf das richtige Totzeitmaximum der Modelltotzeit τ zuleitbar sind, und daß an den Regelkreis des Laufzeitkorrelators ein Dividierglied (15; 31) angeschlossen ist, das den festen Abstand L zwischen den beiden Sensoren durch den jeweiligen Momentanwert der Modelltotzeit τ teilt.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Signalgeber einen Sensor (8) für die Aufnahme der Umfangsgeschwindigkeit einer Antriebstrommel (4) für eine Auflaufspule (2) besitzt.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Sensor (8) ein Impulsaufnehmer für magnetische Impulse eines mit der Antriebstrommel (4) fest verbundenen Polrades ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Sensor (8) ausgangsseitig mit einem Frequenz-/Spannungsumwandler (10; 26) verbunden ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Signalgeber mit einem Rückkopplungsintegrator (11; 25) des Regelkreises des Laufzeitkorrelators (7; 18) verbunden ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zur digitalen Signalverarbeitung den Sensoren (17, 17′), Trigger (21, 30) nachgeschaltet sind und daß das Verzögerungsglied des Regelkreises als Schieberegister (29) ausgebildet ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß zwischen die Sensoren und die Trigger Differenzierer (19, 20) geschaltet sind.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß dem Dividierglied (15, 31) ein Integrator (16, 32) nachgeschaltet ist, der die Lauflänge des Textilfadens (1) kumulativ ermittelt.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß im Regelkreis des Laufzeitkorrelators (7; 18) zur Speisung des Rückkopplungsintegrators (11; 25) ein Multiplizierer (14; 24) vorgesehen ist, dem das um die Modelltotzeit verschobene und differenzierte Signal des ersten Sensors (6; 17) und das Differenzsignal zwischen dem um die Modelltotzeit τ verschobenen Signal des ersten Sensors und dem Signal des zweiten Sensors zur Bildung des Produktes zuführbar sind.
10. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß im Regelkreis des Laufzeitkorrelators (18′) zur Speisung des Rückkopplungsintegrators (38) ein Phasendetektor (37) vorgesehen ist, dem das um die Modelltotzeit τ verschobene Signal des ersten Sensors (6; 17) und das Signal des zweiten Sensors (6′; 17′) zum Vergleich und zur Ausgabe eines durch eine unterschiedliche Phasenlage der Eingangssignale gebildeten Differenzsignales zuführbar sind.
DE4225842A 1992-08-05 1992-08-05 Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung Withdrawn DE4225842A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE4225842A DE4225842A1 (de) 1992-08-05 1992-08-05 Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung
EP93111342A EP0582112B1 (de) 1992-08-05 1993-07-15 Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung
DE59307420T DE59307420D1 (de) 1992-08-05 1993-07-15 Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung
JP19472393A JP3442431B2 (ja) 1992-08-05 1993-08-05 巻回装置の繊維糸速度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4225842A DE4225842A1 (de) 1992-08-05 1992-08-05 Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung

Publications (1)

Publication Number Publication Date
DE4225842A1 true DE4225842A1 (de) 1994-02-10

Family

ID=6464870

Family Applications (2)

Application Number Title Priority Date Filing Date
DE4225842A Withdrawn DE4225842A1 (de) 1992-08-05 1992-08-05 Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung
DE59307420T Expired - Fee Related DE59307420D1 (de) 1992-08-05 1993-07-15 Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59307420T Expired - Fee Related DE59307420D1 (de) 1992-08-05 1993-07-15 Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung

Country Status (3)

Country Link
EP (1) EP0582112B1 (de)
JP (1) JP3442431B2 (de)
DE (2) DE4225842A1 (de)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639524A1 (de) * 1993-08-17 1995-02-22 W. SCHLAFHORST AG & CO. Verfahren zur Ermittlung der Produktionsleistung einer Kreuzspulen herstellenden Textilmaschine
DE4434234A1 (de) * 1994-09-24 1996-03-28 Schlafhorst & Co W Vorrichtung zum Bestimmen der Geschwindigkeit eines in Richtung seiner Längsausdehnung bewegten Textilgutes, insbesondere eines Textilfadens
EP0816806A1 (de) * 1996-06-26 1998-01-07 W. SCHLAFHORST AG & CO. Verfahren und Vorrichtung zum Bestimmen des Durchmessers einer Kreuzspule
GR1003145B (el) * 1998-01-16 1999-06-02 Μεθοδος και συσκευη μετρησης μηκους και ταχυτητας παραδοσεως νηματος με χρηση χωρητικων αισθητηρων
GR1003684B (el) * 2000-11-09 2001-10-03 Νικολαος Καλαιτζης Μεθοδος και συσκευη μετρησης μηκους και ταχυτητας παραδοσεως νηματος με χρηση ζευγους οπτικων αισθητηρων και προσαρμοστικου ψηφιακου ετεροσυσχετιστη σηματων.
DE10013512A1 (de) * 2000-03-20 2001-10-11 Igl Ingenieur Gemeinschaft Luf Einrichtung zur Geschwindigkeitsmessung
EP1249422A2 (de) * 2001-04-14 2002-10-16 W. SCHLAFHORST AG & CO. Garnreinigungseinrichtung an der Spulstelle einer Textilmaschine
DE10118659A1 (de) * 2001-04-14 2002-10-17 Schlafhorst & Co W Spulstelle einer Textilmaschine
DE10310178A1 (de) * 2003-03-08 2004-09-16 Saurer Gmbh & Co. Kg Verfahren und Vorrichtung zum Messen der Garngeschwindigkeit
DE10342391A1 (de) * 2003-09-13 2005-04-07 Saurer Gmbh & Co. Kg Verfahren und Vorrichtung zum Messen der Garngeschwindigkeit
DE10342383A1 (de) * 2003-09-13 2005-05-25 Saurer Gmbh & Co. Kg Verfahren und Vorrichtung zum berührungslosen Bestimmen der Geschwindigkeit eines laufenden Fadens
WO2008012093A3 (de) * 2006-07-26 2008-03-27 Niederrhein Hochschule Verfahren und anordnung zur bestimmung der garnqualität und/oder spulenqualität eines laufenden fadens auf basis der laser-doppler-anemometrie
DE102007011499B3 (de) * 2007-03-07 2008-07-03 Vienco Gmbh Verfahren und Anordnung zur Überwachung und Optimierung eines Spulprozesses
WO2008128363A1 (de) * 2007-04-18 2008-10-30 Uster Technologies Ag Vorrichtung und verfahren zur kapazitiven untersuchung eines bewegten länglichen prüfgutes
WO2009127662A1 (de) * 2008-04-15 2009-10-22 Vienco Gmbh Verfahren und anordnung zur hochgenauen bestimmung der momentanen aufwickelgeschwindigkeit eines laufenden fadens
ITUD20100017A1 (it) * 2010-02-02 2011-08-03 Danieli Automation Spa Dispositivo per la misura di velocita', in particolare prodotti laminati metallici in una linea di laminazione, e relativo procedimento
DE102012007467A1 (de) 2012-04-13 2013-10-17 Oerlikon Textile Gmbh & Co. Kg Verfahren zum Herstellen einer Kreuzspule
WO2014020119A1 (de) * 2012-08-03 2014-02-06 Maschinenfabrik Rieter Ag Auswerteverfahren und garnsensor
DE102006015170B4 (de) * 2006-03-30 2016-09-22 Vienco Gmbh Verfahren und Anordnung zur Erzeugung eines vergrößerten Messvolumens zur Bestimmung der Struktur und/oder Spulgeschwindigkeit textiler Fasern auf Basis der Laser-Doppler-Anemometrie
WO2019155324A1 (en) * 2018-02-09 2019-08-15 Kaunas University Of Technology Method for fast determining of vehicle movement speed and device with amr sensors implementing it
DE102020130887A1 (de) 2020-11-23 2022-05-25 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren zur Ermittlung des Gewichts einer Kreuzspule
EP4001193A1 (de) 2020-11-23 2022-05-25 Saurer Spinning Solutions GmbH & Co. KG Verfahren zur ermittlung des gewichts einer kreuzspule
DE102022106747A1 (de) 2022-03-23 2023-09-28 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren und Vorrichtung zum Betreiben eines Kreuzspulautomaten, auf dessen Arbeitsstellen großvolumige Kreuzspulen gewickelt werden

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19549003C1 (de) * 1995-12-28 1997-02-13 Motzko Friedrich Dipl Ing Fh Verfahren zur Geschwindigkeitsmessung
DE19607608C2 (de) * 1996-02-29 2003-04-03 Abb Patent Gmbh Bewegungsmelder mit mindestens einem Dualsensor zur Detektion von Wärmestrahlung
DE19607607A1 (de) * 1996-02-29 1997-09-04 Abb Patent Gmbh Verfahren zur Bewegungsmeldung mit mindestens einem Infrarotsensor und Bewegungsmelder zur Durchführung des Verfahrens
FR2774467B1 (fr) * 1998-02-03 2000-03-31 Fil Control Capteur sans contact pour mesurer la longueur d'un fil, procede de mesure utilisant ce capteur et dispositif pour la mise en oeuvre du procede
DE19812070C1 (de) * 1998-03-19 1999-08-19 Siemens Ag Verfahren und Vorrichtung zur näherungsweisen Geschwindigkeitsbestimmung bei einem spurgeführten Fahrzeug
JP4045444B2 (ja) * 2004-01-06 2008-02-13 村田機械株式会社 紡績糸の巻取装置
JP5614534B2 (ja) 2010-08-31 2014-10-29 村田機械株式会社 糸走行情報取得装置及び糸巻取機
JP5846000B2 (ja) * 2012-03-28 2016-01-20 村田機械株式会社 糸走行情報取得装置
CN102618982B (zh) * 2012-05-02 2014-02-26 慈溪迈思特电子科技有限公司 基于红外光电二极管的纱线检测装置
DE102020100968B4 (de) * 2020-01-16 2021-12-09 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren und Vorrichtung zur Auswertung von im praktischen Fahrbetrieb eines Fahrzeuges ermittelten Messwerten

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3529663A1 (de) * 1984-10-12 1986-04-24 Gebrüder Loepfe AG, Wetzikon Verfahren und vorrichtung zur fadenlaengenmessung
CH663402A5 (de) * 1981-12-04 1987-12-15 Loepfe Ag Geb Verfahren zum bestimmen der auf eine kreuzspule mit reibantrieb durch eine nutentrommel aufgewickelten garnlaenge.
CH669777A5 (en) * 1986-02-28 1989-04-14 Richard Allemann Contactless thread length measuring circuit - scans speed proportional signals to derive part length and sums all part lengths to obtain overall length
EP0409318A2 (de) * 1989-07-19 1991-01-23 ENIRICERCHE S.p.A. Verfahren zur Erfassung der Geschwindigkeit eines Fadens

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA680331A (en) * 1960-08-04 1964-02-18 H. Butterfield Michael Measurement of time intervals
SE334254B (de) * 1968-12-10 1971-04-19 I Andermo
DE2133942C3 (de) * 1971-07-02 1973-11-29 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Anordnung zur beruhrungslosen Messung der Geschwindigkeit eines Objektes
BE790341A (de) * 1971-10-29 1973-04-20 Siderurgie Fse Inst Rech
DE2544821C2 (de) * 1975-10-03 1985-07-25 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Korrelator zur berührungslosen Messung der Geschwindigkeit mit mehreren Meßfühlern
NL7708149A (nl) * 1977-07-22 1979-01-24 Akzo Nv Inrichting voor het opwikkelen van een garen.
CH654931A5 (en) * 1981-12-21 1986-03-14 Hasler Ag Controllable oscillator for a correlation tachometer
CH675132A5 (de) * 1987-09-01 1990-08-31 Zellweger Uster Ag
JP3056904B2 (ja) * 1992-05-21 2000-06-26 株式会社豊田中央研究所 ジェットルームにおける緯糸速度計測装置及び緯入れ状態監視装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH663402A5 (de) * 1981-12-04 1987-12-15 Loepfe Ag Geb Verfahren zum bestimmen der auf eine kreuzspule mit reibantrieb durch eine nutentrommel aufgewickelten garnlaenge.
DE3529663A1 (de) * 1984-10-12 1986-04-24 Gebrüder Loepfe AG, Wetzikon Verfahren und vorrichtung zur fadenlaengenmessung
CH669777A5 (en) * 1986-02-28 1989-04-14 Richard Allemann Contactless thread length measuring circuit - scans speed proportional signals to derive part length and sums all part lengths to obtain overall length
EP0409318A2 (de) * 1989-07-19 1991-01-23 ENIRICERCHE S.p.A. Verfahren zur Erfassung der Geschwindigkeit eines Fadens

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FRITSCHE,R. *
JP 3-272469 A. In: Patents Abstracts of Japan, P-1321, March 6,1992,Vol.16,No.92 *
MESCH,F.: Fehlereinflüsse bei der berührungslosen Geschwindigkeitsmessung mit Korre-lationsverfahren. In: msr 15,1972,H.6, S.225-229 *
MESCH,F.: Geschwindigkeits- und Durchflußmessung mit Korrelationsverfahren. In: Regeltechnische Praxis, 24.Jg.,1982,H.3, S.73-82 *
RINGENS,Werner *
u.a.: Optoelektronischer Sensor zur berührungslosen Geschwindigkeitsmessung an textilen Oberflächen. In: textil praxis inter- national, Juni, 1988, S.640-643 *
u.a.: Sensoren für die Ge- schwindigkeitsmessung an Garnen und Flächenge- bilden. In: textil praxis international, Juni 1990, S.591-596 *
WULFHORST, Burkhard *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639524A1 (de) * 1993-08-17 1995-02-22 W. SCHLAFHORST AG & CO. Verfahren zur Ermittlung der Produktionsleistung einer Kreuzspulen herstellenden Textilmaschine
DE4434234C2 (de) * 1994-09-24 2003-06-26 Schlafhorst & Co W Vorrichtung zum Bestimmen der Geschwindigkeit eines in Richtung seiner Längsausdehnung bewegten Textilgutes, insbesondere eines Textilfadens
DE4434234A1 (de) * 1994-09-24 1996-03-28 Schlafhorst & Co W Vorrichtung zum Bestimmen der Geschwindigkeit eines in Richtung seiner Längsausdehnung bewegten Textilgutes, insbesondere eines Textilfadens
US5652509A (en) * 1994-09-24 1997-07-29 W. Schlafhorst Ag & Co. Device for determining the velocity of a longitudinally traveling elongate textile material, especially a yarn, using electronic sensors
EP0816806A1 (de) * 1996-06-26 1998-01-07 W. SCHLAFHORST AG & CO. Verfahren und Vorrichtung zum Bestimmen des Durchmessers einer Kreuzspule
DE19625512A1 (de) * 1996-06-26 1998-01-15 Schlafhorst & Co W Verfahren und Vorrichtung zum Bestimmen des Durchmessers einer Kreuzspule
US5823460A (en) * 1996-06-26 1998-10-20 W. Schlafhorst Ag & Co. Method and device for determining the diameter of a textile yarn cheese
GR1003145B (el) * 1998-01-16 1999-06-02 Μεθοδος και συσκευη μετρησης μηκους και ταχυτητας παραδοσεως νηματος με χρηση χωρητικων αισθητηρων
DE10013512A1 (de) * 2000-03-20 2001-10-11 Igl Ingenieur Gemeinschaft Luf Einrichtung zur Geschwindigkeitsmessung
GR1003684B (el) * 2000-11-09 2001-10-03 Νικολαος Καλαιτζης Μεθοδος και συσκευη μετρησης μηκους και ταχυτητας παραδοσεως νηματος με χρηση ζευγους οπτικων αισθητηρων και προσαρμοστικου ψηφιακου ετεροσυσχετιστη σηματων.
DE10118660A1 (de) * 2001-04-14 2002-10-17 Schlafhorst & Co W Garnreinigungseinrichtung an der Spulstelle einer Textilmaschine
DE10118659A1 (de) * 2001-04-14 2002-10-17 Schlafhorst & Co W Spulstelle einer Textilmaschine
EP1249422A3 (de) * 2001-04-14 2003-01-02 W. SCHLAFHORST AG & CO. Garnreinigungseinrichtung an der Spulstelle einer Textilmaschine
EP1249422B2 (de) 2001-04-14 2010-07-28 Oerlikon Textile GmbH & Co. KG Garnreinigungseinrichtung an der Spulstelle einer Textilmaschine
US6702223B2 (en) 2001-04-14 2004-03-09 W. Schlafhorst Ag & Co. Winding head of a textile machine
EP1249422A2 (de) * 2001-04-14 2002-10-16 W. SCHLAFHORST AG & CO. Garnreinigungseinrichtung an der Spulstelle einer Textilmaschine
CZ304556B6 (cs) * 2001-04-14 2014-07-09 W. Schlafhorst Ag & Co. Soukací místo textilního stroje
DE10310178A1 (de) * 2003-03-08 2004-09-16 Saurer Gmbh & Co. Kg Verfahren und Vorrichtung zum Messen der Garngeschwindigkeit
DE10342391A1 (de) * 2003-09-13 2005-04-07 Saurer Gmbh & Co. Kg Verfahren und Vorrichtung zum Messen der Garngeschwindigkeit
DE10342383A1 (de) * 2003-09-13 2005-05-25 Saurer Gmbh & Co. Kg Verfahren und Vorrichtung zum berührungslosen Bestimmen der Geschwindigkeit eines laufenden Fadens
DE102006015170B4 (de) * 2006-03-30 2016-09-22 Vienco Gmbh Verfahren und Anordnung zur Erzeugung eines vergrößerten Messvolumens zur Bestimmung der Struktur und/oder Spulgeschwindigkeit textiler Fasern auf Basis der Laser-Doppler-Anemometrie
WO2008012093A3 (de) * 2006-07-26 2008-03-27 Niederrhein Hochschule Verfahren und anordnung zur bestimmung der garnqualität und/oder spulenqualität eines laufenden fadens auf basis der laser-doppler-anemometrie
CN101501490B (zh) * 2006-07-26 2013-12-04 威克股份有限公司 基于激光多普勒测速法确定运行线的纱线质量和/或卷轴质量的方法和装置
DE102007011499B3 (de) * 2007-03-07 2008-07-03 Vienco Gmbh Verfahren und Anordnung zur Überwachung und Optimierung eines Spulprozesses
WO2008107170A1 (de) * 2007-03-07 2008-09-12 Vienco Gmbh Verfahren und anordnung zur überwachung und optimierung eines spulprozesses
WO2008128363A1 (de) * 2007-04-18 2008-10-30 Uster Technologies Ag Vorrichtung und verfahren zur kapazitiven untersuchung eines bewegten länglichen prüfgutes
DE102008019012A1 (de) 2008-04-15 2009-10-22 Ferdinand Josef Prof. Dr. Hermanns Verfahren und Anordnung zur hochgenauen Bestimmung der momentanen Aufwickelgeschwindigkeit eines laufenden Fadens
WO2009127662A1 (de) * 2008-04-15 2009-10-22 Vienco Gmbh Verfahren und anordnung zur hochgenauen bestimmung der momentanen aufwickelgeschwindigkeit eines laufenden fadens
ITUD20100017A1 (it) * 2010-02-02 2011-08-03 Danieli Automation Spa Dispositivo per la misura di velocita', in particolare prodotti laminati metallici in una linea di laminazione, e relativo procedimento
WO2011095870A2 (en) 2010-02-02 2011-08-11 Danieli Automation Spa Device for measuring the speed of products in movement, in particular metal rolled products in a rolling line, and relative method
WO2011095870A3 (en) * 2010-02-02 2011-09-29 Danieli Automation Spa Device for measuring the speed of products in movement, in particular metal rolled products in a rolling line, and relative method
US9201087B2 (en) 2010-02-02 2015-12-01 Danieli Automation Spa Device for measuring the speed of products in movement, in particular metal rolled products in a rolling line, and relative method
DE102012007467A1 (de) 2012-04-13 2013-10-17 Oerlikon Textile Gmbh & Co. Kg Verfahren zum Herstellen einer Kreuzspule
WO2014020119A1 (de) * 2012-08-03 2014-02-06 Maschinenfabrik Rieter Ag Auswerteverfahren und garnsensor
WO2019155324A1 (en) * 2018-02-09 2019-08-15 Kaunas University Of Technology Method for fast determining of vehicle movement speed and device with amr sensors implementing it
DE102020130887A1 (de) 2020-11-23 2022-05-25 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren zur Ermittlung des Gewichts einer Kreuzspule
EP4001193A1 (de) 2020-11-23 2022-05-25 Saurer Spinning Solutions GmbH & Co. KG Verfahren zur ermittlung des gewichts einer kreuzspule
DE102022106747A1 (de) 2022-03-23 2023-09-28 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren und Vorrichtung zum Betreiben eines Kreuzspulautomaten, auf dessen Arbeitsstellen großvolumige Kreuzspulen gewickelt werden

Also Published As

Publication number Publication date
JP3442431B2 (ja) 2003-09-02
EP0582112A1 (de) 1994-02-09
DE59307420D1 (de) 1997-10-30
JPH06186242A (ja) 1994-07-08
EP0582112B1 (de) 1997-09-24

Similar Documents

Publication Publication Date Title
EP0582112B1 (de) Vorrichtung zum Messen der Geschwindigkeit von Textilfäden an einer Wickeleinrichtung
DE2936573C2 (de)
DE3219555C2 (de)
DE3922000C2 (de) Verfahren zur Steuerung des Aufwickelns eines Bandes, insbesondere Magnetbandes
CH663402A5 (de) Verfahren zum bestimmen der auf eine kreuzspule mit reibantrieb durch eine nutentrommel aufgewickelten garnlaenge.
DE3932184C2 (de) Schußfadenzuführvorrichtung für das Schußfadenmagazin einer Kettenwirkmaschine
EP0335080A2 (de) Verfahren und Vorrichtung zum Ermitteln des Spulenumfangs von Kreuzspulen und zum Verwerten des Ergebnisses
EP0561188B1 (de) Verfahren zum Aufspulen von einer Spuleinrichtung zugeführtem, band- oder fadenförmigem Spulgut in Kreuzspulung mit Präzisionswicklung
DE2536082C3 (de) Einrichtung zum kontinuierlichen Messen der Länge von linearem Material wahrend dessen Aufwickeins auf einen sich drehenden Kern
EP1249422B1 (de) Garnreinigungseinrichtung an der Spulstelle einer Textilmaschine
DE3143451C2 (de) Vorrichtung zum Messen der Länge eines auf einem Wickel aufgespulten endlosen Materials
EP0124475A2 (de) Längenmessvorrichtung für einen Faden
DE2907202C2 (de) Einrichtung zum Feststellen des Anhaltens eines Magnetbandes
DE3241362C2 (de) Fadenspannungsregler
DE4434234C2 (de) Vorrichtung zum Bestimmen der Geschwindigkeit eines in Richtung seiner Längsausdehnung bewegten Textilgutes, insbesondere eines Textilfadens
DE19808879A1 (de) Verfahren und Vorrichtung zur Detektion der Spannung eines Garnes und Verfahren zum Wickeln von Garn
DE102011015802A1 (de) Verfahren und Vorrichtung zum Bewickeln einer Randscheibenhülse
DE3116683C2 (de) Verfahren und Vorrichtung zur Längenmessung textiler Fäden
DE3527424C2 (de)
CH397499A (de) Vorrichtung zur Fadenlängenmessung an Kreuzspulmaschinen
EP0294674B1 (de) Verfahren und Vorrichtung zur Überwachung von Tangentialriemen bei einer Maschine zum Herstellen gedrehter oder gezwirnter Fäden
DE3904807A1 (de) Vorrichtung zur lieferung eines fadens an eine textilmaschine
DE102013016644A1 (de) Verfahren zum Betreiben einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine
EP0584304B1 (de) Verfahren zum steuern eines bewegungsablaufs in einer spulmaschine sowie eine spulmaschine zur durchführung des verfahrens
DE2932579A1 (de) Schaltungsanordnung zur positionserfassung eines bewegten maschinenteils

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8141 Disposal/no request for examination