DE4222088A1 - Cooling system for IC engine - has system of high temp. and part load regulation with revised system element connection - Google Patents

Cooling system for IC engine - has system of high temp. and part load regulation with revised system element connection

Info

Publication number
DE4222088A1
DE4222088A1 DE4222088A DE4222088A DE4222088A1 DE 4222088 A1 DE4222088 A1 DE 4222088A1 DE 4222088 A DE4222088 A DE 4222088A DE 4222088 A DE4222088 A DE 4222088A DE 4222088 A1 DE4222088 A1 DE 4222088A1
Authority
DE
Germany
Prior art keywords
controller
cooling system
load
charge air
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE4222088A
Other languages
German (de)
Other versions
DE4222088C2 (en
Inventor
Hansjochen Dipl Ing Schwaar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutz AG
Original Assignee
Motoren Werke Mannheim AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motoren Werke Mannheim AG filed Critical Motoren Werke Mannheim AG
Priority to DE4222088A priority Critical patent/DE4222088C2/en
Publication of DE4222088A1 publication Critical patent/DE4222088A1/en
Application granted granted Critical
Publication of DE4222088C2 publication Critical patent/DE4222088C2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/143Controlling of coolant flow the coolant being liquid using restrictions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/50Temperature using two or more temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

A cooling system for an IC engine comprises a cooling medium circuit with a pump (7), oil cooler (8), air intercooler (6), heat exchanger (3) and high temp. (HT) regulator (2). The heat exchanger is located in a first supply (12) of the HT regulator, and a second supply (13) leads to a part load regulator (4). The input to the HT regulator is connected directly to the cooling medium output of the IC engine. The second switching connection of the part load regulator and the output of the intercooler are connected to the pump inlet. The oil cooler is located between engine and pump. USE/ADVANTAGE - Under part load operation cooling system for IC engine ensures adequate air charge temp. and avoids cooling system sludge build up.

Description

Die Erfindung betrifft ein Kühlsystem für eine Brennkraft­ maschine nach dem Oberbegriff des Anspruchs 1.The invention relates to a cooling system for an internal combustion engine machine according to the preamble of claim 1.

Die DE-AS 12 11 862 beschreibt ein Kühlsystem für eine Brennkraftmaschine in dem ein äußerer Kreislauf für das Kühlmittel durch Hintereinanderschaltung von Pumpe, Ölküh­ ler, Ladeluftkühler, Wärmetauscher und Hochtemperatur-Reg­ ler (HT-Regler) gebildet ist, wobei der Wärmetauscher in einer ersten Absteuerleitung des HT-Reglers angeordnet ist und die zweite Absteuerleitung zu einem Teillastregler führt, dessen erste Umschaltleitung mit dem Ausgang des Wärmetauschers und dem Eingang des Ladeluftkühlers verbun­ den ist und die zweite Umschaltleitung in Strömungsrichtung hinter dem Ladeluftkühler in den Kreislauf einmündet.DE-AS 12 11 862 describes a cooling system for a Internal combustion engine in which an external circuit for the Coolant through series connection of pump, oil cooler ler, charge air cooler, heat exchanger and high temperature reg ler (HT controller) is formed, the heat exchanger in a first control line of the HT controller is arranged and the second control line to a partial load controller leads, the first switching line with the output of the Heat exchanger and the inlet of the charge air cooler connected is and the second switching line in the flow direction flows into the circuit behind the charge air cooler.

Der Erfindung liegt die Aufgabe zugrunde, mit einfachen Re­ gelorganen ein Kühlsystem gemäß dem Stand der Technik da­ hingehend zu verbessern, das neben einem günstigen Anfahr­ verhalten im Teillastbetrieb die Anhebung der Ladelufttem­ peratur sichert und ein nennenswertes Absinken der Schmieröltemperatur zur Vermeidung von Kaltschlammbildung verhindert. The invention has for its object with simple Re gelorganen a cooling system according to the prior art to improve, in addition to a cheap start behave the increase of the charge air temperature in part load operation ensures temperature and a significant drop in the Lube oil temperature to avoid cold sludge formation prevented.  

Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß ein HT-Regler in bekannter Weise am Kühlmittelaustritt der Brennkraftmaschine angeordnet ist und als Regelgröße die Motoraustrittstemperatur benutzt, und ein zusätzlicher Teillastregler in die zweite Absteuerleitung des HT-Reglers (Bypass-Leitung zum Wärmetauscher) geschaltet ist. Die im unteren Regelbereich offene erste Umschaltleitung des Teil­ lastreglers mündet in den Kreislauf zwischen Wärmetauscher und Ladeluftkühler ein, während die im oberen Regelbereich offene zweite Umschaltleitung nach dem Ladeluftkühler in den Kreislauf einmündet. Der Teillastregler hat keine Re­ gelfunktion, sondern arbeitet lediglich als temperaturge­ steuerter Umschalter.According to the invention the object is achieved in that a HT controller in a known manner at the coolant outlet Internal combustion engine is arranged and as a controlled variable Engine outlet temperature used, and an additional Partial load controller in the second control line of the HT controller (Bypass line to the heat exchanger) is switched. The in lower control range open first switching line of the part load regulator opens into the circuit between the heat exchanger and intercooler, while those in the upper control range open second switching line after the charge air cooler in enters the cycle. The partial load controller has no Re gel function, but only works as a temperature controlled switch.

Die Regel-Nenntemperaturen der beiden Temperaturregler wer­ den dabei so gestuft gewählt, daß unter Ausnutzung des Pro­ portionalitätsbereiches der Regler der Bypass-Strom zum Wärmetauscher bei Vollast nach Ladeluftkühler und im Teil­ lastgebiet zunehmend vor Ladeluftkühler eingespeist wird. Damit wird erreicht, daß bei voller Ausnutzung der Wärme­ tauscherleistung im Vollastpunkt, bei Teillast ein zuneh­ mender Temperaturanstieg der Ladeluft unter Ausnutzung der Motorkühlmittelwärme erfolgt. Beim Anfahren der kalten Ma­ schine wird bei überbrücktem Wärmetauscher der gesamte Kühlmitteldurchsatz des Motors über den Ladeluftkühler ge­ führt, so daß die im Ladeluftkühler abgeführte Wärme voll­ ständig zur Aufwärmung des Kreislaufes nutzbar ist. Die Einbindung des Ölkühlers erfolgt vorteilhaft in den Haupt­ strom vor Motor. Dadurch steht dem Ölkühler der gesamte Kühlmitteldurchsatz des Motors zur Verfügung. Das Tempera­ turniveau des Kühlmittels an dieser Stelle bleibt nahezu konstant, da die dem P-Bereich des ersten Temperaturreglers (HT-Regler) entsprechende Temperaturabsenkung der Motoraus­ trittstemperatur im Teillastgebiet nahezu durch die gerin­ gere Temperaturdifferenz über Motor kompensiert wird. Somit kann der Ölkühler in allen Lastzuständen auf einem Tempera­ turniveau gehalten werden, das Kaltschlammbildung mit Si­ cherheit ausschließt.The control nominal temperatures of the two temperature controllers the chosen so graded that using the Pro proportionality range of the bypass flow controller Heat exchanger at full load after the charge air cooler and in the part load area is increasingly fed in before the intercooler. This ensures that the heat is fully utilized Exchanger performance at full load, an increase at part load mender temperature rise of the charge air using the Engine coolant heat occurs. When starting the cold Ma If the heat exchanger is bridged, the entire machine becomes Coolant throughput of the engine via the charge air cooler leads, so that the heat dissipated in the charge air cooler fully is constantly usable for warming up the circuit. The Integration of the oil cooler is advantageous in the main electricity before engine. As a result, the entire oil cooler Engine coolant flow rate available. The tempera The level of coolant at this point remains almost constant because of the P range of the first temperature controller (HT controller) corresponding temperature reduction of the engine tread temperature in the partial load area almost by the gerin temperature difference over the motor is compensated. Consequently the oil cooler can be tempered in all load conditions level, the cold sludge formation with Si excludes security.

Das Kühlsystem wird anhand der Ausführungsform nach der einzigen Figur erläutert. Das die Brennkraftmaschine 1 ver­ lassende Motorkühlmittel, hier Wasser, wird zum HT-Tempera­ turregler 2 des HT-Kreises geführt und von dort zum Wärme­ tauscher 3 und/oder zum Teillasttemperaturregler 4 gelei­ tet. Dabei ist die Auslegung des Wärmetauschers 3 so ge­ wählt, daß auch bei Vollast nur ein Teilstrom des Motor­ kühlwassers über den Wärmetauscher 3 läuft, damit die er­ forderliche Temperaturdifferenz über Wärmetauscher zur Realisierung des im NT-Kreis gewünschten niedrigen Tempera­ turniveaus erreicht wird.The cooling system is explained using the embodiment according to the single figure. The engine coolant ver leaving engine 1 , here water, is led to the HT temperature controller 2 of the HT circuit and from there to the heat exchanger 3 and / or the partial load temperature controller 4 is supplied. The design of the heat exchanger 3 is selected so that even at full load, only a partial flow of the engine cooling water runs through the heat exchanger 3 so that the temperature difference required via heat exchanger to achieve the desired low temperature turnaround in the NT circuit is achieved.

Der dem Teillast-Temperaturregler 4 zufließende Kühlwasser­ strom wird bei hoher Kühlwassertemperatur (oberer Lastbe­ reich) im Kurzschluß zum Ladeluftkühler 6 vor Pumpe 7 und bei niedriger Kühlwassertemperatur (Anfahrzustand, Teil­ lastbereich) über die erste Umschaltleitung 5 vor Ladeluft­ kühler 6 eingespeist. Damit wird im Anfahrzustand die ge­ samte Wärme des Ladeluftkühlers 6 für eine schnelle Erwär­ mung des Motorkühlwassers nutzbar, und im Teillastbereich erfolgt durch Einspeisung von Wasser aus dem HT-Kreis vor Ladeluftkühler eine Temperaturanhebung der Ladeluft.The cooling water flow flowing into the part-load temperature controller 4 is fed in at a high cooling water temperature (upper load range) in a short circuit to the charge air cooler 6 in front of pump 7 and at low cooling water temperature (start-up state, partial load range) via the first switching line 5 before charge air cooler 6 . Thus, the entire heat of the charge air cooler 6 can be used for a quick heating of the engine cooling water in the start-up state, and in the part-load range there is a rise in temperature of the charge air by feeding water from the HT circuit before the charge air cooler.

Für die Funktion des Regelkreises ist der Einsatz von Reg­ lern mit Proportionalcharakteristik erforderlich, wie sie mit kostengünstigen Dehnstoff-Reglern erreicht wird. Der Umschaltpunkt des Teillast-Temperaturreglers 4 und damit die Temperaturcharakteristik im NT-Kreis kann durch ent­ sprechend gestufte Wahl der Regel-Nenntemperaturen des HT- Temperaturreglers 2 und Teillast-Temperaturreglers 4 in weiten Grenzen verändert werden. Die Abstimmung zwischen HT-Temperaturregler 2 und Teillast-Temperaturregler 4 ist so vorzunehmen, daß im Vollastbetrieb mit maximaler Rohwas­ ser-Eintrittstemperatur die Motoraustrittstemperatur größer/gleich der oberen Regeltemperatur des Teillast-Tem­ peraturreglers 4 ist, so daß der gesamte Absteuerstrom des HT-Temperaturreglers 2 am Ladeluftkühler 6 vorbei direkt vor Pumpe 7 eingespeist wird. Dadurch wird die Austritts­ temperatur aus dem Wärmetauscher 3 gleich der Eintrittstem­ peratur in den Ladeluftkühler 6, was einer bestmöglichen Ausnutzung der Wärmetauscherleistung entspricht. Bei abge­ senkter Rohwassertemperatur fällt entsprechend dem P-Be­ reich des HT-Temperaturreglers 2 die Motoraustrittstempera­ tur etwas ab, wodurch der Teillast-Temperaturregler 4 eine Stellung einnimmt, die einen Teilstrom der Absteuermenge vor Ladeluftkühler 6 einspeist und somit zur Anhebung der Eintrittstemperatur in den Ladeluftkühler führt. Durch die­ ses Verhalten ergibt sich als zusätzlicher Vorteil eine Un­ empfindlichkeit des Kreislaufes gegenüber Schwankungen der Rohwassertemperatur.For the function of the control loop, the use of controllers with proportional characteristics is required, as can be achieved with low-cost expansion material controllers. The switchover point of the part-load temperature controller 4 and thus the temperature characteristic in the NT circuit can be varied within wide limits by selecting the nominal control temperatures of the HT temperature controller 2 and part-load temperature controller 4 accordingly. The coordination between HT-temperature controller 2 and part-load temperature regulator 4 must be made such that in full load operation at maximum Rohwas ser-inlet temperature, the engine outlet temperature is larger / equal to the upper control temperature of the part load Tem peraturreglers 4, so that the entire Absteuerstrom of HT-temperature controller 2 past the charge air cooler 6 directly in front of pump 7 . As a result, the outlet temperature from the heat exchanger 3 is equal to the entry temperature into the charge air cooler 6 , which corresponds to the best possible use of the heat exchanger performance. At abge lowered raw water temperature corresponding to the P-Be range of the HT temperature controller 2, the engine outlet tempera ture slightly, whereby the part-load temperature controller 4 assumes a position that feeds a partial flow of the exhaust gas quantity before the charge air cooler 6 and thus to raise the inlet temperature into the charge air cooler leads. As a result of this behavior, there is an additional advantage that the circuit is not sensitive to fluctuations in the raw water temperature.

Der gesamte Wasserstrom von HT- und NT-Kreislauf wird über die Pumpe 7 dem Ölkühler 8 und anschließend der Brennkraft­ maschine 1 zugeführt. Für den Ölkühler ergeben sich daraus günstige Verhältnisse, da er die volle Wassermenge bei we­ nig veränderlichem Temperaturniveau erhält.The entire water flow from HT and NT circuit is supplied to the oil cooler 8 and then the internal combustion engine 1 via the pump 7 . This results in favorable conditions for the oil cooler, since it receives the full amount of water at a slightly variable temperature level.

Mit den Drosseln 9, 10 und 11 kann eine Abstimmung des Kreislaufes vorgenommen werden. Die Funktion des Systems ist jedoch nicht entscheidend von der Einstellung der Drosseln abhängig. Drossel 9 dient zum Abgleich der Umlauf­ wassermenge und damit zum Einregulieren der Temperaturdif­ ferenz über Motor, Drossel 10 ist ein Ersatzwiderstand für den Wärmetauscher 3, Drossel 11 ein Ersatzwiderstand für den Ladeluftkühler 6.With the throttles 9 , 10 and 11 , a tuning of the circuit can be carried out. However, the function of the system is not critically dependent on the setting of the chokes. Throttle 9 is used to balance the amount of water in circulation and thus to regulate the temperature difference over the engine, throttle 10 is an equivalent resistor for the heat exchanger 3 , throttle 11 is an equivalent resistor for the charge air cooler 6 .

Claims (8)

1. Kühlsystem für eine Brennkraftmaschine, in dem ein äußerer Kreislauf für das Kühlmittel durch Hintereinander­ schaltung von Pumpe (7), Ölkühler (8), Ladeluftkühler (6), Wärmetauscher (3) und Hochtemperatur-Regler (HT-Regler) (2) gebildet ist, wobei der Wärmetauscher (3) in einer ersten Absteuerleitung (12) des HT-Reglers (2) angeordnet ist und die zweite Absteuerleitung (13) zu einem Teillastregler (4) führt, dessen erste Umschaltleitung (5) mit dem Ausgang des Wärmetauschers (3) und dem Eingang des Ladeluftkühlers (6) verbunden ist und die zweite Umschaltleitung (14) in Strö­ mungsrichtung hinter dem Ladeluftkühler (6) in den Kreis­ lauf einmündet, dadurch gekennzeichnet,
  • a) daß der Eintritt des HT-Reglers (2) direkt mit dem Kühlmittelaustritt der Brennkraftmaschine verbunden ist,
  • b) daß die zweite Umschaltleitung (14) des Teillastreg­ lers (4) und der Austritt des Ladeluftkühlers (6) mit dem Eintritt der Pumpe (7) verbunden sind, und
  • c) daß der Ölkühler (8) zwischen Brennkraftmaschine (1) und Pumpe (7) angeordnet ist.
1. Cooling system for an internal combustion engine, in which an external circuit for the coolant by series connection of pump ( 7 ), oil cooler ( 8 ), charge air cooler ( 6 ), heat exchanger ( 3 ) and high-temperature controller (HT controller) ( 2 ) is formed, the heat exchanger ( 3 ) being arranged in a first control line ( 12 ) of the HT controller ( 2 ) and the second control line ( 13 ) leading to a part-load controller ( 4 ), the first switch line ( 5 ) of which connects to the output of the Heat exchanger ( 3 ) and the input of the charge air cooler ( 6 ) is connected and the second switching line ( 14 ) flows into the circuit behind the charge air cooler ( 6 ) in the flow direction, characterized in that
  • a) that the inlet of the HT controller ( 2 ) is connected directly to the coolant outlet of the internal combustion engine,
  • b) that the second switching line ( 14 ) of the partial load regulator ( 4 ) and the outlet of the charge air cooler ( 6 ) are connected to the inlet of the pump ( 7 ), and
  • c) that the oil cooler ( 8 ) between the internal combustion engine ( 1 ) and pump ( 7 ) is arranged.
2. Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, daß HT-Regler (2) und Teillastreg­ ler (4) ein Temperatur-Meßglied am Reglereintritt haben und eine Proportionalcharakteristik besitzen.2. Cooling system according to claim 1, characterized in that HT controller ( 2 ) and part load controller ( 4 ) have a temperature measuring element at the controller inlet and have a proportional characteristic. 3. Kühlsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der HT-Regler (2) und der Teil­ lastregler (4) Dehnstoff-Regler sind.3. Cooling system according to claim 1 or 2, characterized in that the HT controller ( 2 ) and the part load controller ( 4 ) are expansion controller. 4. Kühlsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen Kühlmittelaustritt der Brennkraftmaschine und Eingang HT-Regler (2) eine Drossel (9) angeordnet ist.4. Cooling system according to one of the preceding claims, characterized in that a throttle ( 9 ) is arranged between the coolant outlet of the internal combustion engine and the input HT controller ( 2 ). 5. Kühlsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der zweiten Absteuerleitung (13) eine Drossel (10) angeordnet ist.5. Cooling system according to one of the preceding claims, characterized in that a throttle ( 10 ) is arranged in the second control line ( 13 ). 6. Kühlsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der zweiten Umschaltleitung (14) eine Drossel (11) angeordnet ist.6. Cooling system according to one of the preceding claims, characterized in that a throttle ( 11 ) is arranged in the second switching line ( 14 ). 7. Verfahren zur Einstellung des Kühlsystems nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im kalten Zustand der Brenn­ kraftmaschine die erste Absteuerleitung (12) und die zweite Umschaltleitung (14) geschlossen sind, so daß der gesamte Kühlmitteldurchsatz über den Ladeluftkühler (6) geführt ist.7. The method for adjusting the cooling system according to one of the preceding claims, characterized in that in the cold state of the internal combustion engine, the first control line ( 12 ) and the second switchover line ( 14 ) are closed, so that the total coolant throughput via the charge air cooler ( 6 ) is led. 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der HT-Regler (2) und der Teil­ lastregler (4) in ihrem Regelverhalten so aufeinander abge­ stimmt sind, daß bei Vollast und maximaler Rohwasser-Ein­ trittstemperatur die erste Umschaltleitung (5) des Teil­ lastreglers (4) zu ist, während sie im Teillastgebiet und/oder bei abgesenkter Rohwassertemperatur stetig geöff­ net wird.8. The method according to claim 7, characterized in that the HT controller ( 2 ) and the part of the load controller ( 4 ) are mutually coordinated in their control behavior so that at full load and maximum raw water inlet temperature occurs the first switching line ( 5 ) Part of the load controller ( 4 ) is closed while it is being opened continuously in the partial load area and / or when the raw water temperature is reduced.
DE4222088A 1992-07-04 1992-07-04 Cooling system for an internal combustion engine Expired - Lifetime DE4222088C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4222088A DE4222088C2 (en) 1992-07-04 1992-07-04 Cooling system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4222088A DE4222088C2 (en) 1992-07-04 1992-07-04 Cooling system for an internal combustion engine

Publications (2)

Publication Number Publication Date
DE4222088A1 true DE4222088A1 (en) 1994-01-05
DE4222088C2 DE4222088C2 (en) 2002-06-20

Family

ID=6462545

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4222088A Expired - Lifetime DE4222088C2 (en) 1992-07-04 1992-07-04 Cooling system for an internal combustion engine

Country Status (1)

Country Link
DE (1) DE4222088C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540591A1 (en) * 1995-10-31 1997-05-07 Behr Gmbh & Co Volume flow regulating process for vehicle coolant circuit
FR2921110A1 (en) * 2007-09-19 2009-03-20 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING THE TEMPERATURE OF A THERMAL MOTOR WITH A TURBOCHARGER AND COOLING OF SUPER-AIR AIR
FR2945482A1 (en) * 2009-05-18 2010-11-19 Peugeot Citroen Automobiles Sa Adjustable restrictor for creating pressure drop inside pipeline of car, has membrane equipped with opening, where restrictor is positioned in thixotropic or anti-thixotropic material whose viscosity varies according to time
DE102014008859A1 (en) * 2014-06-16 2015-12-17 Mtu Friedrichshafen Gmbh Single-circuit cooling system for increasing the performance of supercharged internal combustion engines and method
DE102017213664A1 (en) * 2017-08-07 2019-02-07 Audi Ag Drive device for a motor vehicle
DE102021206117A1 (en) 2021-06-16 2022-12-22 Zf Friedrichshafen Ag Traction drive with a cooling system with two cooling circuits

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3047672A1 (en) * 1980-12-18 1982-07-22 Aktiengesellschaft Adolph Saurer, 9320 Arbon COOLING DEVICE FOR COOLING AN INTERNAL COMBUSTION ENGINE AND THE CHARGING AIR
DE2751201C2 (en) * 1977-11-16 1986-04-24 Klöckner-Humboldt-Deutz AG, 5000 Köln Liquid cooling system for an internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2751201C2 (en) * 1977-11-16 1986-04-24 Klöckner-Humboldt-Deutz AG, 5000 Köln Liquid cooling system for an internal combustion engine
DE3047672A1 (en) * 1980-12-18 1982-07-22 Aktiengesellschaft Adolph Saurer, 9320 Arbon COOLING DEVICE FOR COOLING AN INTERNAL COMBUSTION ENGINE AND THE CHARGING AIR

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540591A1 (en) * 1995-10-31 1997-05-07 Behr Gmbh & Co Volume flow regulating process for vehicle coolant circuit
US5794575A (en) * 1995-10-31 1998-08-18 Behr Gmbh & Co. Coolant circuit for motor vehicles
DE19540591C2 (en) * 1995-10-31 1999-05-20 Behr Gmbh & Co Method for regulating the volume flow distribution in a coolant circuit for motor vehicles with an engine and device for carrying out the method
FR2921110A1 (en) * 2007-09-19 2009-03-20 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING THE TEMPERATURE OF A THERMAL MOTOR WITH A TURBOCHARGER AND COOLING OF SUPER-AIR AIR
EP2039906A1 (en) * 2007-09-19 2009-03-25 Peugeot Citroën Automobiles Sa Method of controlling the temperature of an internal combustion engine with turbo charger and intercooler
FR2945482A1 (en) * 2009-05-18 2010-11-19 Peugeot Citroen Automobiles Sa Adjustable restrictor for creating pressure drop inside pipeline of car, has membrane equipped with opening, where restrictor is positioned in thixotropic or anti-thixotropic material whose viscosity varies according to time
DE102014008859A1 (en) * 2014-06-16 2015-12-17 Mtu Friedrichshafen Gmbh Single-circuit cooling system for increasing the performance of supercharged internal combustion engines and method
DE102017213664A1 (en) * 2017-08-07 2019-02-07 Audi Ag Drive device for a motor vehicle
DE102017213664B4 (en) 2017-08-07 2022-06-23 Audi Ag Cooling system with a central setting device for a drive device for a motor vehicle
DE102021206117A1 (en) 2021-06-16 2022-12-22 Zf Friedrichshafen Ag Traction drive with a cooling system with two cooling circuits

Also Published As

Publication number Publication date
DE4222088C2 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
DE69030461T2 (en) Control system for the heat flow in an aircraft engine
DE10061546B4 (en) Cooling system for a liquid coolant cooled internal combustion engine of a motor vehicle
DE19618868C2 (en) Internal combustion engine with an exhaust gas recirculation system
EP0499071B1 (en) Cooling system for an intenal combustion engine of a motor vehicle
DE10224063A1 (en) Method for heat regulation of an internal combustion engine for vehicles
DE19812388A1 (en) Pressure and temperature control for a fuel delivery system
DE102006008826B4 (en) Thermal de-throttling in supercharged combustion engines
DE4222088A1 (en) Cooling system for IC engine - has system of high temp. and part load regulation with revised system element connection
DE69725343T2 (en) INDEPENDENT COOLING SYSTEM FOR INTERNAL COMBUSTION ENGINE
EP0032676A2 (en) Heating arrangement for a vehicle cabin
DE4121379A1 (en) Thermostatically controlled cooling system - is for IC engine and uses additional thermostat in vehicle heating circuit
DE2826373A1 (en) CHARGED DIESEL ENGINE
DE102014018729A1 (en) Cooling device for cooling an internal combustion engine
DE3824412C1 (en)
EP3760848A1 (en) Arrangement and method for controlling the temperature of an internal combustion engine and electric drive components of a hybrid vehicle
EP0246441B1 (en) Cooling arrangement for internal-combustion engines
DE2523436A1 (en) Cooling system for IC engine - has bypass between engine and oil cooler on pump suction side
DE10154091A1 (en) Method and device for controlling a cooling system of an internal combustion engine
DE102015222735A1 (en) Charge gas cooling circuit and method for tempering charge gas
DE10143109B4 (en) Method and device for setting defined coolant flows in cooling systems of internal combustion engines in motor vehicles
DE3801910C2 (en) Heater for a motor vehicle with a driving diesel internal combustion engine
EP1523612B1 (en) Method and device for regulating the temperature of a coolant in an internal combustion engine
DE19537798A1 (en) Heater for road vehicle with IC engine
DE3608294A1 (en) Liquid cooling system for an internal combustion engine
DE4112497C2 (en)

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8125 Change of the main classification

Ipc: F01P 7/16

8127 New person/name/address of the applicant

Owner name: DEUTZ AG, 51063 KOELN, DE

D2 Grant after examination
8364 No opposition during term of opposition
R071 Expiry of right
R071 Expiry of right