DE3741671A1 - CVD process for the edge passivation of semiconductor components - Google Patents

CVD process for the edge passivation of semiconductor components

Info

Publication number
DE3741671A1
DE3741671A1 DE19873741671 DE3741671A DE3741671A1 DE 3741671 A1 DE3741671 A1 DE 3741671A1 DE 19873741671 DE19873741671 DE 19873741671 DE 3741671 A DE3741671 A DE 3741671A DE 3741671 A1 DE3741671 A1 DE 3741671A1
Authority
DE
Germany
Prior art keywords
cvd process
deposition
semiconductor components
edge passivation
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19873741671
Other languages
German (de)
Inventor
Hilmar Dipl Phys Dr Esrom
Franz Dipl Ing Schmaderer
Georg Dipl Phys Dr Wahl
Robert Dipl Phys Dr Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AB
Original Assignee
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri AB filed Critical Asea Brown Boveri AB
Priority to DE19873741671 priority Critical patent/DE3741671A1/en
Publication of DE3741671A1 publication Critical patent/DE3741671A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

The invention is based on the object of specifying a CVD process for the edge passivation of semiconductor components by which a coating limited to predetermined surface areas is possible. This object is achieved by use of a laser CVD process. The process can be used in the production of semiconductor components. <IMAGE>

Description

Die Erfindung bezieht sich auf ein CVD-Verfahren zur Randpassivierung nach dem Oberbegriff des Anspruchs 1.The invention relates to a CVD method for Edge passivation according to the preamble of claim 1.

Bekannte Verfahren zur Passivierung von Halbleiterbau­ elementen durch Materialabscheidung aus der Dampfphase (CVD-Verfahren) erfordern eine Aufheizung des gesamten Bauelements. In Thin Solid Films, 75 (1981), S. 125, Aufsatz von D. Josif et al. ist z.B. eine Aufheizung auf eine Temperatur im Bereich von 500° bis 650°C angegeben. Bei einem solchen bekannten Verfahren wird die gesamte Oberfläche eines Halbleiterbauelements beschichtet. Das bedeutet, daß an den Stellen, an denen keine Passivie­ rungsschicht erwünscht ist, diese nachträglich, z.B. durch Ätzen wieder entfernt werden muß.Known methods for passivating semiconductor devices elements through material separation from the vapor phase (CVD process) require heating of the whole Component. In Thin Solid Films, 75 (1981), p. 125, Review by D. Josif et al. is e.g. a heating up specified a temperature in the range of 500 ° to 650 ° C. In such a known method, the entire Surface of a semiconductor device coated. The means that in places where there is no passive layer is subsequently desired, e.g. must be removed again by etching.

Davon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren anzugeben, das diesen Nachteil nicht aufweist.Based on this, the present invention is the Task to specify a method that this Disadvantage does not have.

Diese Aufgabe wird bei einem Verfahren zur Herstellung einer Passivierungsschicht gemäß dem Oberbegriff des Anspruchs 1 durch dessen kennzeichnende Merkmale gelöst. Ausgestaltungen der Erfindung sind in Unteransprüchen angegeben.This task is done in a manufacturing process a passivation layer according to the preamble of Claim 1 solved by its characteristic features. Embodiments of the invention are in the subclaims specified.

Die im Kennzeichen angegebene Methode zur Materialab­ scheidung ist an sich seit Jahren als Laser-CVD-Verfah­ ren bekannt. Jedoch ist in keiner der hierzu bekanntge­ wordenen Veröffentlichungen eine Anregung zur Anwendung für die Randpassivierung gegeben.The method of material specified in the indicator Divorce has been a laser CVD process for years ren known. However, none of these are known publications a suggestion for the application given for edge passivation.

Bei der vorgeschlagenen Art der Materialabscheidung bleibt das Halbleiterbauelement kalt. Es tritt lediglich im Gasgemisch über der zu beschichtenden Oberfläche und direkt an der beschichteten Oberfläche eine lokale Tem­ peraturerhöhung ein. Dadurch unterbleibt auf vorteilhaf­ te Weise eine thermische Beeinflussung des Halbleiter­ bauelements während der Passivierungsbeschichtung.With the proposed type of material separation the semiconductor device remains cold. It just occurs in the gas mixture over the surface to be coated and a local temperature directly on the coated surface increase in temperature. This avoids advantageous te thermal influence of the semiconductor component during the passivation coating.

Das Verfahren wird nachstehend anhand eines in der Zeichnung schematisch dargestellten Anordnungsbeispiels zur Durchführung des Verfahrens näher erläutert.The procedure is described below using one of the Drawing schematically illustrated arrangement example to carry out the method explained in more detail.

Die nicht maßstäbliche Zeichnung zeigt eine Reaktions­ kammer 1 mit einem Quarzfenster 2 und Öffnungen für ei­ nen Gaseinlaß 3 und einen Gasauslaß 4. In der Kammer 1 ist auf einem beweglichen Träger 5 ein Halbleiterbauele­ ment 6 angeordnet, dessen Rand 7 beschichtet werden soll durch Abscheidung von isolierendem Material aus einem Gasgemisch 8. Die Abscheidung wird ausgelöst durch Be­ strahlung mit Laserlicht 9 aus einer Laserlichtquelle 10. Das Laserlicht ist jeweils auf einen Punkt kurz über der Oberfläche fokusiert. Die Steuerung der Laserlicht­ quelle 10 und der Bewegung des Trägers 5 kann mit einem Steuer- und Regelgerät erfolgen, das einen Mikrocomputer enthält.The not to scale drawing shows a reaction chamber 1 with a quartz window 2 and openings for egg NEN gas inlet 3 and a gas outlet 4th In the chamber 1 , a semiconductor component 6 is arranged on a movable support 5 , the edge 7 of which is to be coated by deposition of insulating material from a gas mixture 8 . The deposition is triggered by radiation with laser light 9 from a laser light source 10 . The laser light is focused on a point just above the surface. The control of the laser light source 10 and the movement of the carrier 5 can be done with a control device that contains a microcomputer.

In die Reaktionskammer 1 wird ein Gasgemisch 8 aus z.B. SiH4+x × N2O gegeben. Das zu beschichtende Bauelement 6 ist nicht aufgeheizt. Durch Bestrahlung mit dem foku­ sierten Laserstrahl 9 wird das Gas über den zu beschich­ tenden Stellen aufgeheizt und dadurch eine Materialab­ scheidung ausgelöst. Es sind unterschiedliche Laser- CVD-Verfahren bekannt, die zur Randpassivierung benutzt werden können. Aus der bereits oben angegebenen Litera­ turstelle D. Josif et al. ist beispielsweise als Be­ schichtungsmaterial SIPOS (Semi-Insulating Polysilicon) bekannt, das besonders gut zur Randpassivierung geeignet ist. Aber auch Poly-Silizium und amorphes Silizium sind geeignete Materialien.A gas mixture 8 of, for example, SiH 4 + x × N 2 O is introduced into the reaction chamber 1 . The component 6 to be coated is not heated. By irradiation with the focussed laser beam 9 , the gas is heated up over the areas to be coated, thereby triggering a material separation. Different laser CVD methods are known which can be used for edge passivation. From the literature point D. Josif et al. is known for example as coating material SIPOS (Semi-Insulating Polysilicon), which is particularly well suited for edge passivation. However, polysilicon and amorphous silicon are also suitable materials.

Für die Abscheidung von amorphem Silizium aus SiH4+x × N₂O in der Dampfphase ist aus M. Hanabusa, A. Namiki and K. Yoshihara, "Laser-induced Vapor Dispo­ sition of Silicon", Appl. Phys. Lett. 35 (1979), Seite 626ff. ein Verfahren bekannt, bei dem eine Laserstrahl­ einwirkung senkrecht zum Halbleiterbauelement erfolgt. Aus R. Bilenchi, I. Gianinoni and M. Musci, "Hydrogenated amorphous silicon growth by CO2 laser photodissociation of silane", J. Appl. Phas. 53 (1982), Seite 6479ff. und M. Meunier, T. R. Gattuso, D. Adler and J. S. Haggerty, "Hydrogenated amorphous produced by laser induced chemi­ cal vapor deposition of silane", Appl. Phys. Lett. 43 (1983), Seite 273ff. sind ähnliche Verfahren bekannt, bei denen die Bestrahlung parallel zum Halbleiterbauele­ ment, d.h. parallel zu der zu beschichtenden Fläche er­ folgt. Einzelheiten zur Durchführung dieser Verfahren sind der jeweils angegebenen Literatur zu entnehmen. In der Zeichnung sind beide Möglichkeiten der Bestrahlung angegeben, indem zwei Laserlichtquellen 10 dargestellt sind, wovon jedoch nur eine zur Durchführung des Verfah­ rens benötigt wird.For the deposition of amorphous silicon from SiH 4 + x × N₂O in the vapor phase, M. Hanabusa, A. Namiki and K. Yoshihara, "Laser-induced Vapor Disposition of Silicon", Appl. Phys. Lett. 35 (1979), page 626ff. a method is known in which a laser beam is applied perpendicular to the semiconductor device. From R. Bilenchi, I. Gianinoni and M. Musci, "Hydrogenated amorphous silicon growth by CO 2 laser photodissociation of silane", J. Appl. Phas. 53 (1982), page 6479ff. and M. Meunier, TR Gattuso, D. Adler and JS Haggerty, "Hydrogenated amorphous produced by laser induced chemical vapor deposition of silane", Appl. Phys. Lett. 43 (1983), page 273ff. Similar methods are known in which the radiation is parallel to the semiconductor component, ie it follows the surface to be coated. Details of the implementation of these processes can be found in the literature given in each case. In the drawing, both possibilities of irradiation are indicated in that two laser light sources 10 are shown, of which only one is required to carry out the method.

Claims (4)

1. Verfahren zur Passivierung von an die Oberfläche tretenden pn-Übergängen an Halbleiterbauelementen (Rand­ passivierung) durch Abscheidung eines elektrisch isolie­ renden oder schwach leitenden Materials aus der Dampf­ phase (CVD-Verfahren), dadurch gekennzeichnet, daß die Materialabscheidung an einem etwa auf Raumtemperatur befindlichen Halbleiterbauelment mit Hilfe eines Laser­ strahls herbeigeführt wird.1. A process for passivating pn junctions on the surface of semiconductor components (edge passivation) by deposition of an electrically insulating or weakly conductive material from the vapor phase (CVD process), characterized in that the material deposition is at an approximately room temperature located semiconductor device is brought about with the help of a laser beam. 2. Verfahren nach Anspruch 1, dadurch gekennzeich­ net, daß das zur Abscheidung verwendete Material ausge­ wählt ist aus SIPOS (Semi-insulating Polysilicon), Poly­ silizium oder amorphem Silizium.2. The method according to claim 1, characterized in net that the material used for deposition out choose from SIPOS (Semi-insulating Polysilicon), Poly silicon or amorphous silicon. 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Laserbestrahlung paral­ lel zur zu beschichtenden Oberfläche des Halbleiterbau­ elements erfolgt.3. The method according to any one of claims 1 or 2, characterized in that the laser radiation paral lel to the surface to be coated of the semiconductor construction elements takes place. 4. Verfahren nach Anspruch 1 oder 2, dadurch ge­ kennzeichnet, daß die Laserbestrahlung senkrecht zur zu beschichtenden Oberfläche des Halbleiterbauelements er­ folgt.4. The method according to claim 1 or 2, characterized ge indicates that the laser radiation is perpendicular to the coating surface of the semiconductor device follows.
DE19873741671 1987-12-09 1987-12-09 CVD process for the edge passivation of semiconductor components Withdrawn DE3741671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19873741671 DE3741671A1 (en) 1987-12-09 1987-12-09 CVD process for the edge passivation of semiconductor components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873741671 DE3741671A1 (en) 1987-12-09 1987-12-09 CVD process for the edge passivation of semiconductor components

Publications (1)

Publication Number Publication Date
DE3741671A1 true DE3741671A1 (en) 1989-06-22

Family

ID=6342179

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873741671 Withdrawn DE3741671A1 (en) 1987-12-09 1987-12-09 CVD process for the edge passivation of semiconductor components

Country Status (1)

Country Link
DE (1) DE3741671A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2944118A1 (en) * 1979-10-30 1981-05-14 Heinrich-Hertz-Institut für Nachrichtentechnik Berlin GmbH, 1000 Berlin Semiconductor selective epitaxial layer forming system - uses laser radiation with mask forming pattern for different crystal growth rates
EP0038178A1 (en) * 1980-04-10 1981-10-21 Fujitsu Limited Method of manufacturing a semiconductor device containing a Schottky barrier, and device
EP0052277A2 (en) * 1980-11-19 1982-05-26 International Business Machines Corporation Semiconductor device and process for producing same
US4431459A (en) * 1981-07-17 1984-02-14 National Semiconductor Corporation Fabrication of MOSFETs by laser annealing through anti-reflective coating
US4565584A (en) * 1982-01-29 1986-01-21 Hitachi, Ltd. Method of producing single crystal film utilizing a two-step heat treatment
US4599133A (en) * 1982-05-07 1986-07-08 Hitachi, Ltd. Method of producing single-crystal silicon film
DE2943153C2 (en) * 1979-10-25 1987-07-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2943153C2 (en) * 1979-10-25 1987-07-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
DE2944118A1 (en) * 1979-10-30 1981-05-14 Heinrich-Hertz-Institut für Nachrichtentechnik Berlin GmbH, 1000 Berlin Semiconductor selective epitaxial layer forming system - uses laser radiation with mask forming pattern for different crystal growth rates
EP0038178A1 (en) * 1980-04-10 1981-10-21 Fujitsu Limited Method of manufacturing a semiconductor device containing a Schottky barrier, and device
EP0052277A2 (en) * 1980-11-19 1982-05-26 International Business Machines Corporation Semiconductor device and process for producing same
US4431459A (en) * 1981-07-17 1984-02-14 National Semiconductor Corporation Fabrication of MOSFETs by laser annealing through anti-reflective coating
US4565584A (en) * 1982-01-29 1986-01-21 Hitachi, Ltd. Method of producing single crystal film utilizing a two-step heat treatment
US4599133A (en) * 1982-05-07 1986-07-08 Hitachi, Ltd. Method of producing single-crystal silicon film

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JP-Japanese Journal of Appl.Phys., Bd.23,Nr.2,1984S.L-91-L93,Growth of Hydrogenated Amorphouse SilicFilms by Arf Excim.Laser Photodissoc. of Disilane *
US-VLSI Fabrication Principels,1983, S.432 *
US-Z: Appl. Phys.Lett. 41, H.1, 1982, S.59-61, Metal-oxide-semiconductor field-effect transistorsfabricated in laterally seeded epitaxial Si layerson SiO 2 *
US-Z: IEEE Transactions on Electron Devices, Vol. ED-30, Nr. 7, 1983, S.737-744, Electrical and Structural Properties of Pulse Laser-Annealed Polycrystalline Silicon Films *
US-Z: J. Appl.Phys. 54, Nr.8, 1983, S.4633-4640, Laser-recrystallized polycrystalline silicon resistors for integrated circiuts applications *
US-Z: Solid State Technology, Juni 1985,S.220-227,Laser-Induced Chemical Vapor Deposition *
US-Z:Appl.Phys.Lett. 42, H.9, 1983, S.809-811, Current-assisted laser annealing of polysilicon films *

Similar Documents

Publication Publication Date Title
DE2140092C3 (en) Process for the production of thin layers on substrates
DE3317349C2 (en)
DE3630393C2 (en) Resistance thermometer
EP0182377A2 (en) Process for making a thin film capacitor
DE102017114249A1 (en) TiSiN coating process
EP0153468A2 (en) Process and apparatus for light-induced photolytic deposition
DE1621394A1 (en) Method and device for heating and / or coating workpieces
DE1290409B (en) Process for producing thin layers from cadmium salts by vapor deposition
DE2052221C3 (en) Method for producing a silicon oxide layer on a silicon substrate and apparatus for carrying out this method
DE1913718A1 (en) Method for manufacturing a semiconductor component
EP0402368B1 (en) Cvd process for depositing a layer on an electrically conductive thin-layer structure
DE1228889B (en) Process for producing thin semiconducting layers from semiconducting compounds by vapor deposition
DE3741671A1 (en) CVD process for the edge passivation of semiconductor components
DE4110653A1 (en) Thermoelectric transducer with several thermoelement pairs - has first junction points with rows of first and second conductive material w.r.t. reference direction
DE1275699B (en) Method of making a thin film magnetic assembly
DE1696607B2 (en) PROCESS FOR PRODUCING AN INSULATING LAYER MAJORLY COMPOSED OF SILICON AND NITROGEN
DE2652449C2 (en) Process for depositing silicon nitride on a variety of substrates
EP0289865A2 (en) Method of producing a thin film solar cell array
DE3612814A1 (en) PHOTOSENSOR
DE3324272A1 (en) THERMISTOR BOLOMETER
DE1251283B (en) Apparatus for the simultaneous production of a multiplicity of single-crystal semiconductor bodies
DE3035933A1 (en) PYROELECTRIC DETECTOR AND METHOD FOR PRODUCING SUCH A DETECTOR
DE112013006955B4 (en) Film formation process
DE2151346C3 (en) Method for producing a semiconductor layer consisting of single crystal layer parts and polycrystal layer parts on a single crystal body
DE102020101066A1 (en) CVD reactor with double flow zone plate

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee