DE3639508A1 - Transparent, electrically conducting film and method of fabricating it - Google Patents

Transparent, electrically conducting film and method of fabricating it

Info

Publication number
DE3639508A1
DE3639508A1 DE19863639508 DE3639508A DE3639508A1 DE 3639508 A1 DE3639508 A1 DE 3639508A1 DE 19863639508 DE19863639508 DE 19863639508 DE 3639508 A DE3639508 A DE 3639508A DE 3639508 A1 DE3639508 A1 DE 3639508A1
Authority
DE
Germany
Prior art keywords
transparent
zno
film
electrically conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19863639508
Other languages
German (de)
Inventor
Yujiro Kaneko
Yasuo Sawada
Fumiya Ohmi
Hajime Machida
Atsuyuki Watada
Hitoshi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of DE3639508A1 publication Critical patent/DE3639508A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

A transparent, electrically conducting film contains zinc oxide (ZnO) doped with aluminium and is oriented in the C axis.

Description

Die Erfindung betrifft einen transparenten, elektrisch leitenden Film und ein Verfahren zu seiner Herstellung.The invention relates to a transparent, electrical conductive film and a process for its manufacture.

Transparente, elektrisch leitende Filme besitzen hohe elektrische Leitfähigkeit und Transparenz im sichtbaren Bereich und werden z.B. als transparente Elektroden für EL (Elektrolumineszenz)-Anzeigevorrichtungen sowie Flüssigkristall-Anzeigevorrichtungen, als Elektrodenfilme für Solarzellen und alle Arten von Licht empfangenden Elementen verwendet. Herkömmliche transparente, elektrisch leitende Dünnfilme bestehen z.B. aus Au, SnO2, In2O3,CaO, ZnS oder ZnO. Die meisten dieser Filme haben jedoch den Nachteil einer unzureichenden elektrischen Leitfähigkeit und schlechter mechanischer Eigenschaften (Härte, Schließkontakt) und chemischer Stabilität, so daß derzeit nur In2O3, SnO2 und ITO (Indium-Zinn-Oxid) in größerem Umfang verwendet werden.Transparent, electrically conductive films have high electrical conductivity and transparency in the visible range and are used, for example, as transparent electrodes for EL (electroluminescence) display devices and liquid crystal display devices, as electrode films for solar cells and all types of light-receiving elements. Conventional transparent, electrically conductive thin films consist, for example, of Au, SnO 2 , In 2 O 3 , CaO, ZnS or ZnO. Most of these films, however, have the disadvantage of insufficient electrical conductivity and poor mechanical properties (hardness, make contact) and chemical stability, so that currently only In 2 O 3 , SnO 2 and ITO (indium tin oxide) are used to a greater extent .

Selbst In2O3, SnO2 und ITO weisen jedoch die folgenden Nachteile auf und sind deshalb verbesserungswürdig:Even In 2 O 3 , SnO 2 and ITO, however, have the following disadvantages and are therefore in need of improvement:

  • 1. Die thermische Stabilität ist schlecht. Bei der Verwendung in EL-Vorrichtungen erhöht sich der Widerstand bei Wärmeeinwirkung und das In und Sn diffundieren in die Lumineszenzschicht, wodurch der Betrieb der EL-Vorrichtungen beeinträchtigt wird;1. The thermal stability is poor. In the Use in EL devices increases the Resistance to heat and the In and Sn diffuse into the luminescent layer, causing the Operation of the EL devices is impaired;
  • 2. Um den Widerstand zu senken, ist während oder nach dem Abscheiden des Films eine Wärmebehandlung bei einer Temperatur über 300°C erforderlich;2. To reduce resistance is during or after Depositing the film at a heat treatment Temperature above 300 ° C required;
  • 3. Die Materialien sind extrem kostspielig.3. The materials are extremely expensive.

Im Vergleich zu In2O3 und SnO2 sind die Kosten für Zinkoxid (ZnO) sehr niedrig, so daß es aus wirtschaftlicher Sicht für transparente, elektrisch leitende Filme attraktiv ist. Allerdings ist seine elektrische Leitfähigkeit ungenügend, obwohl seine Transparenz im sichtbaren Bereich recht hoch ist.Compared to In 2 O 3 and SnO 2 , the costs for zinc oxide (ZnO) are very low, so that it is economically attractive for transparent, electrically conductive films. However, its electrical conductivity is insufficient, although its transparency in the visible range is quite high.

Ziel der Erfindung ist es daher, einen transparenten, elektrisch leitenden Film bereitzustellen, der aus einem billigen, hitzebeständigen Material mit hoher elektrischer Leitfähigkeit hergestellt werden kann.The aim of the invention is therefore to provide a transparent, to provide electrically conductive film consisting of a cheap, heat-resistant material with high electrical Conductivity can be established.

Gegenstand der Erfindung ist ein transparenter, elektrisch leitender Film, der in der C-Achse orientiert ist und als Hauptkomponenten Zinkoxid und Aluminium enthält.The invention relates to a transparent, electrical conductive film that is oriented in the C axis and as Main components contain zinc oxide and aluminum.

Der erfindungsgemäße Film wird vorzugsweise durch Gleichstrom- Magnetron-Sputtern unter Verwendung eines Targets abgeschieden, das Zinkoxid als Hauptkomponente, vermischt mit Aluminiumoxid enthält.The film according to the invention is preferably Magnetron sputtering using a target deposited, the zinc oxide as the main component, mixed with aluminum oxide.

In der Zeichnung zeigen:The drawing shows:

Fig. 1 ein Diagramm der Beziehung zwischen der dem Target zugesetzten Aluminiummenge und dem spezifischen Widerstand (p) eines unter Verwendung des Targets hergestellten transparenten, elektrisch leitenden Films; Fig. 1 is a graph showing the relationship between the (p) of a transparent prepared by using the target of the target added amount of aluminum and the specific resistance, the electrically conductive film;

Fig. 2 ein Diagramm der Beziehung zwischen ΔR₅₀ und dem spezifischen Widerstand des transparenten, elektrisch leitenden Films; Fig. 2 is a graph showing the relationship between ΔR ₅₀ and resistivity of the transparent electrically conductive film;

Fig. 3 ein schematisches Diagramm des Aufbaus einer Gleichstrom-Magnetron-Sputtervorrichtung; Fig. 3 is a schematic diagram showing the construction of a DC magnetron sputtering apparatus;

Fig. 4 ein Diagramm der Beziehung zwischen der Substrattemperatur und dem spezifischen Widerstand (p) des transparenten, elektrisch leitenden Films; Fig. 4 is a graph showing the relationship between the substrate temperature and the resistivity (p) of the transparent electroconductive film;

Fig. 5 ein Diagramm der Beziehung zwischen dem Argon- Gasdruck (p Ar ) und dem spezifischen Widerstand (p) des transparenten, elektrisch leitenden Films; Fig. 5 is a graph showing the relationship between the argon gas pressure (p Ar ) and the resistivity (p) of the transparent electroconductive film;

Fig. 6 und 7 Diagramme, aus denen die Abhängigkeit der Filmdicke eines mit Al dotierten ZnO-Films von dem spezifischen Widerstand (p), der Trägerkonzentration (n) und der Hall-Beweglichkeit (µH) bei einem wassergekühlten Substrat (bis zu 100°C) (Fig. 6) bzw. bei einer Substrattemperatur von 300°C (Fig. 7. hervorgeht; FIGS. 6 and 7 are diagrams of which the dependence of the film thickness of an Al-doped ZnO film of the resistivity (p) of the carrier concentration (n) and the Hall mobility (.mu.H) in a water-cooled substrate (up to 100 ° C) ( Fig. 6) or at a substrate temperature of 300 ° C (Fig. 7);

Fig. 8 und 9 die Röntgenbeugungsspektren bei einem wassergekühlten Substrat (bis zu 100°C) (Fig. 8) bzw. einem Substrat von 300°C (Fig. 9). Fig. 8 and 9, the X-ray diffraction spectra at a water-cooled substrate (up to 100 ° C) (Fig. 8) or a substrate of 300 ° C (Fig. 9).

Zinkoxid hat von Haus aus hohe elektrische Leitfähigkeit und auch hohe Transparenz im sichtbaren Bereich. Überraschenderweise wurde nun gefunden, daß der spezifische Widerstand von ZnO durch Zusatz von Aluminium noch weiter gesenkt werden kann und daß ein transparenter, elektrisch leitender Film aus mit Al dotiertem ZnO von überlegener thermischer Stabilität herstellbar ist.Zinc oxide has inherently high electrical conductivity and also high transparency in the visible area. Surprisingly, it has now been found that the specific Resistance of ZnO by adding aluminum even further can be lowered and that a transparent, electric conductive film made of Al doped ZnO of superior thermal stability can be produced.

In Fig. 1 ist die Beziehung zwischen der Zusatzmenge an Aluminium und dem spezifischen Widerstand des transparenten, elektrisch leitenden Films graphisch dargestellt. Die hierbei verwendeten Proben wurden folgendermaßen hergestellt: Eine Mischung aus Al2O3-Pulver und ZnO-Pulver wird gesintert, um ein Target-Material herzustellen. Unter Verwendung dieses Targets werden durch Gleichstrom-Magnetron-Sputtern bei einer Substrattemperatur von 300°C Filmproben mit einer Dicke von 2000 Å hergestellt. Aus Fig. 1 ist ersichtlich, daß sich der spezifische Widerstand mit der Zusatzmenge an Al2O3 ändert.In Fig. 1, the relationship between the amount of aluminum added and the resistivity of the transparent electrically conductive film is graphically shown. The samples used here were produced as follows: A mixture of Al 2 O 3 powder and ZnO powder is sintered to produce a target material. Using this target, film samples with a thickness of 2000 Å are produced by DC magnetron sputtering at a substrate temperature of 300 ° C. From Fig. 1 it can be seen that the specific resistance changes with the amount of Al 2 O 3 added .

Fig. 2 zeigt die Beziehung zwischen (1)Δ R₅₀, d.h. der Halbwertbreite der Rocking-Kurve einer (002)-Ebene als Charakteristikum der C-Achsenorientierung des transparenten, elektrisch leitenden Films, und (2) dem spezifischen Widerstand (p) des Films. Aus der Figur geht hervor, daß mit kleiner werdendem ΔR₅₀ des transparenten, elektrisch leitenden Films, d.h. mit zunehmender C-Achsenorientierung, der spezifische Widerstand (p) abnimmt. Dementsprechend ist es bevorzugt, daß der ΔR₅₀-Wert des transparenten, elektrisch leitenden Films 8,0° oder weniger, insbesondere 4,0° oder weniger, beträgt. Fig. 2 shows the relationship between (1) Δ R ₅₀, the half width of the rocking curve that is a (002) plane as a characteristic of the C-axis orientation of the transparent, electrically conductive film, and (2) the specific resistance (p) of the film. From the figure it can be seen that as the ΔR ₅₀ of the transparent, electrically conductive film becomes smaller, ie with increasing C-axis orientation, the specific resistance (p) decreases. Accordingly, it is preferable that the ΔR ₅₀ value of the transparent electroconductive film is 8.0 ° or less, especially 4.0 ° or less.

Der in der C-Achse orientierte Film aus mit Aluminium dotiertem ZnO kann auf einem geeigneten Substrat hergestellt werden, z.B. nach einem Sputter-Verfahren wie dem Gleichstrom-Magnetron-Sputtern oder RF-Magnetron-Sputtern, durch Aufdampfen oder Ionenplattieren. Unter diesen Methoden ist das Gleichstrom-Magnetron-Sputtern besonders bevorzugt. Aus diesem Grund wird im folgenden die Herstellung eines transparenten, elektrisch leitenden Films durch Gleichstrom-Magnetron-Sputtern näher erläutert.The film made with aluminum in the C-axis doped ZnO can be produced on a suitable substrate e.g. after a sputtering process like that DC magnetron sputtering or RF magnetron sputtering, by vapor deposition or ion plating. Under these Methods, DC magnetron sputtering is special prefers. For this reason, the following is the Production of a transparent, electrically conductive film explained in more detail by direct current magnetron sputtering.

Fig. 3 zeigt schematisch den Aufbau einer Gleichstrom- Magnetron-Sputtervorrichtung. In einer Vakuumkammer (11) ist eine Sputter-Elektrode (13) vorgesehen. Auf der Oberseite der Sputter-Elektrode (13) befindet sich ein Target (15). Gegenüber dem Target (15) wird in einer Position parallel zur Oberfläche des Targets (15) ein Substrat (17) gehalten. In der Vakuumkammer (11) wird mit Hilfe eines Vakuumsystems (21) ein Hochvakuum von z.B. 10-6 bis 10-7 Torr erzeugt, worauf man ein Sputter-Gas, wie Ar oder Ar + O2, durch ein Gaseinlaßventil (23) einleitet, bis das Vakuum 10-2 bis 10-3 Torr beträgt, um den Sputter- Druck einzustellen. Anschließend legt man an die Elektroden mit Hilfe einer Sputter-Spannungsquelle (25) eine Hochspannung an, wobei aus dem Magnetfeld eines (nicht gezeigten Magneten), der an der Rückseite der Sputter- Elektrode (13) angeordnet ist, eine Magnetronentladung erfolgt und das Target (15) gesputtert wird, so daß auf dem Substrat (17) ein transparenter, elektrisch leitender Film entsteht. In Fig. 3 wird eine Gleichspannungsquelle als Spannungsquelle (25) verwendet, jedoch kann in einem RF- Magnetron-Sputterverfahren auch eine RF-Energiequelle eingesetzt werden. Im Gleichstrom-Magnetron-Sputterverfahren ist die Sputter-Geschwindigkeit hoch und es kommt praktisch zu keiner Hitzeschädigung der Substratoberfläche. In der Figur wird zur Messung der Substrattemperatur ein Thermoelement (19) angewandt. Fig. 3 shows schematically the structure of a direct current magnetron sputtering device. A sputter electrode ( 13 ) is provided in a vacuum chamber ( 11 ). A target ( 15 ) is located on the top of the sputter electrode ( 13 ). A substrate ( 17 ) is held in a position parallel to the surface of the target ( 15 ) opposite the target ( 15 ). In the vacuum chamber (11) of a vacuum system (21) is a high vacuum of for example 10 with the aid - from 6 to 10 - 7 generates Torr, after which a sputtering gas such as Ar or Ar + O 2, initiates through a gas inlet valve (23) until the vacuum 10-2 to 10-3 Torr, in order to adjust the sputtering pressure. A high voltage is then applied to the electrodes with the aid of a sputter voltage source ( 25 ), a magnetron discharge and the target taking place from the magnetic field of a magnet (not shown) which is arranged on the rear of the sputter electrode ( 13 ) ( 15 ) is sputtered, so that a transparent, electrically conductive film is formed on the substrate ( 17 ). In Fig. 3, a DC voltage source is used as the voltage source ( 25 ), but an RF energy source can also be used in an RF magnetron sputtering method. In the direct current magnetron sputtering process, the sputtering speed is high and there is practically no heat damage to the substrate surface. In the figure, a thermocouple ( 19 ) is used to measure the substrate temperature.

Vorzugsweise liegt die Zusammensetzung des Targets im Bereich von 0,5 bis 5 Gewichtsprozent, insbesondere 1,0 bis 4,0 Gewichtsprozent, bezogen auf (Al2O3)/(ZnO + Al2O3).The composition of the target is preferably in the range from 0.5 to 5 percent by weight, in particular 1.0 to 4.0 percent by weight, based on (Al 2 O 3 ) / (ZnO + Al 2 O 3 ).

Das Target kann z.B. dadurch hergestellt werden, daß man ZnO-Pulver und Al2O3-Pulver miteinander vermischt, die Mischung bei etwa 800°C vorsintert, dann pulverisiert und komprimiert, worauf man eine volle Sinterung des komprimierten Gemisches bei etwa 900 bis 1000°C durchführt und das gesinterte Gemisch einer Wärmebehandlung bei hohen Temperaturen, z.B. etwa 1300°C, unterwirft, um den spezifischen Widerstand zu senken.The target can be produced, for example, by mixing ZnO powder and Al 2 O 3 powder with one another, pre-sintering the mixture at about 800 ° C., then pulverizing and compressing, followed by full sintering of the compressed mixture at about 900 to 1000 ° C and the sintered mixture is subjected to a heat treatment at high temperatures, for example about 1300 ° C, in order to reduce the specific resistance.

In Fig. 4 ist die Beziehung zwischen der Substrattemperatur und dem spezifischen Widerstand (p) des transparenten, elektrisch leitenden Films graphisch dargestellt. Es ist ersichtlich, daß der Widerstand (p) abnimmt, wenn sich die Substrattemperatur erhöht. Das Widerstandsminimum beträgt 2 bis 3 × 10-4 Ohm cm, wenn die Substrattemperatur beträgt, und wenn die Substrattemperatur 300°C überschreitet, steigt der Widerstand (p) wieder beträchtlich an. Diese Analyse wird unter Anwendung der Gleichstrom-Magnetron- Sputtermethode bei einem Argon-Gasdruck von 0,5×102 Torr und einer Filmdicke von 2000 Å durchgeführt. Erfindungsgemäß ist es somit möglich, einen transparenten, elektrisch leitenden Film mit kleinem spezifischem Widerstand bei relativ niedriger Temperatur herzustellen. Fig. 4 graphically shows the relationship between the substrate temperature and the resistivity (p) of the transparent electrically conductive film. It can be seen that the resistance (p) decreases as the substrate temperature increases. The resistance minimum is 2 to 3 × 10 -4 ohm cm when the substrate temperature is, and when the substrate temperature exceeds 300 ° C, the resistance (p) increases considerably again. This analysis is carried out using the DC magnetron sputtering method at an argon gas pressure of 0.5 × 10 2 Torr and a film thickness of 2000 Å. According to the invention, it is thus possible to produce a transparent, electrically conductive film with a low specific resistance at a relatively low temperature.

Fig. 5 zeigt die Beziehung zwischen dem Argon-Gasdruck (P Ar ) und dem Widerstand (p) im Falle der Herstellung des transparenten, elektrisch leitenden Films bei einer Substrattemperatur von 300°C und einer Filmdicke von 2000 Å nach dem Magnetron-Sputterverfahren. Je niedriger der Argon-Gasdruck ist, desto niedriger ist der spezifische Widerstand des erhaltenen elektrisch leitenden Films. Fig. 5 shows the relationship between the argon gas pressure (P Ar ) and the resistance (p) in the case of producing the transparent, electrically conductive film at a substrate temperature of 300 ° C and a film thickness of 2000 Å by the magnetron sputtering method. The lower the argon gas pressure, the lower the specific resistance of the electroconductive film obtained.

Fig. 6 und 7 zeigen die Abhängikeit der Filmdicke eines mit Al dotierten ZnO-Films in Bezug auf den spezifischen Widerstand (p), die Trägerkonzentration (n) und die Hall- Mobilität (µH) bei einem wassergekühlten Substrat (bis zu 100°C) (Fig. 6) bzw. bei einer Substrattemperatur von 300°C (Fig. 7). Bei der Substrattemperatur von 300°C ist der Widerstand kleiner, während n und µH größer sind, und die Filmdicken-Abhängigkeit ist stärker verbessert im Vergleich zu dem wassergekühlten Substrat. FIGS. 6 and 7, the Abhängikeit show the film thickness of a doped Al ZnO film in terms of the resistivity (p), the carrier concentration (n) and the Hall mobility (.mu.H) in a water-cooled substrate (up to 100 ° C ) ( Fig. 6) or at a substrate temperature of 300 ° C ( Fig. 7). At the substrate temperature of 300 ° C, the resistance is smaller, while n and µH are larger, and the film thickness dependency is more improved compared to the water-cooled substrate.

Fig. 8 und 9 zeigen Röntgenbeugungsspektren bei einem wassergekühlten Substrat (Fig. 8) bzw. bei einer Substrattemperatur von 300°C (Fig. 9). In beiden Fällen werden Peaks nur in den (002)- und (004)-Ebenen beobachtet und die Filmstruktur ist in der C-Achse orientiert. Die Beugungsstärke ist etwa zwanzig Mal größer bei einer Substrattemperatur von 300°C im Vergleich zu dem wassergekühlten Substrat, so daß für dieses Material eine stärkere C-Achsenorientierung anzunehmen ist. Außerdem weist der durch Gleichstrom-Magnetron-Sputtern hergestellte, mit Al dotierte ZnO-Film eine Durchlässigkeit von mehr als 80% im sichtbaren Bereich auf. FIGS. 8 and 9 show X-ray diffraction spectra at a water-cooled substrate (Fig. 8) or at a substrate temperature of 300 ° C (Fig. 9). In both cases, peaks are only observed in the (002) and (004) planes and the film structure is oriented in the C axis. The diffraction strength is about twenty times greater at a substrate temperature of 300 ° C compared to the water-cooled substrate, so that a stronger C-axis orientation can be assumed for this material. In addition, the Al-doped ZnO film produced by direct current magnetron sputtering has a permeability of more than 80% in the visible range.

Die folgenden Beispiele erläutern die Erfindung. The following examples illustrate the invention.  

Beispiel 1Example 1

ZnO-Pulver und Al2O3-Pulver werden derart miteinander vermischt, daß das Verhältnis (Al2O3)/(ZnO + Al2O3) 2,0 Gewichtsprozent beträgt. Nach dem Vorsintern bei etwa 800°C wird pulverisiert und komprimiert, worauf man das Gemisch bei 900 bis 1000°C sintert und einer Wärmebehandlung bei 1300°C unterzieht. Es wird ein Target-Material mit geringem spezifischem Widerstand erhalten.ZnO powder and Al 2 O 3 powder are mixed together in such a way that the ratio (Al 2 O 3 ) / (ZnO + Al 2 O 3 ) is 2.0 percent by weight. After presintering at about 800 ° C., the mixture is pulverized and compressed, whereupon the mixture is sintered at 900 to 1000 ° C. and subjected to a heat treatment at 1300 ° C. A target material with low resistivity is obtained.

Unter Verwendung dieses Targets wird mit der Vorrichtung von Fig. 3 ein erfindungsgemäßer transparenter, elektrisch leitender Film Nr. 1 auf eine 7059-Glasplatte von der Corning Co. bei einer Substrattemperatur von 300°C durch Gleichstrom-Magnetron-Sputtern hergestellt.Using this target, the device of FIG. 3 is used to produce a transparent, electrically conductive film No. 1 according to the invention on a 7059 glass plate from Corning Co. at a substrate temperature of 300 ° C. by direct current magnetron sputtering.

Die Eigenschaften des erhaltenen transparenten, elektrisch leitenden Films sind in Tabelle 1 genannt zusammen mit den Eigenschaften anderer Beispiele von erfindungsgemäßen transparenten, elektrisch leitenden Filmen.The properties of the obtained transparent, electrical conductive films are listed in Table 1 along with the Properties of other examples of the invention transparent, electrically conductive films.

Beispiel 2Example 2

Beispiel 1 wird wiederholt, jedoch hält man die Substrattemperatur durch Kühlen mit Wasser bei 100°C oder weniger. Es wird ein erfindungsgemäßer transparenter, elektrisch leitender Film Nr. 2 erhalten.Example 1 is repeated, but you keep the Substrate temperature by cooling with water at 100 ° C or fewer. A transparent, obtained electroconductive film No. 2.

Beispiel 3Example 3

Ein transparenter, elektrisch leitender Film wird auf der Glasplatte von Beispiel 1 bei einer Substrattemperatur von 300°C mit einem Verhältnis (Al2O3)/(ZnO + Al2O3) von 2,0 Gewichtsprozent hergestellt, wobei man eine gleichzeitige Ionenplattierung von Al2O3 und ZnO aus getrennten Verdampfungsquellen durchführt. Es wird ein erfindungsgemäßer transparenter, elektrisch leitender Film Nr. 3 erhalten.A transparent, electrically conductive film is produced on the glass plate of Example 1 at a substrate temperature of 300 ° C. with a ratio (Al 2 O 3 ) / (ZnO + Al 2 O 3 ) of 2.0 percent by weight, with simultaneous ion plating of Al 2 O 3 and ZnO from separate evaporation sources. A transparent, electrically conductive film No. 3 is obtained.

Beispiel 4Example 4

Beispiel 1 wird wiederholt, jedoch verwendet man als Substrat eine Polyethylenterephthalatfolie anstelle der Glasplatte und hält die Substrattemperatur durch Kühlen mit Wasser bei 100°C oder weniger. Es wird ein erfindungsgemäßer transparenter, elektrisch leitender Film Nr. 4 erhalten.Example 1 is repeated, but is used as A polyethylene terephthalate film instead of the substrate Glass plate and keeps the substrate temperature by cooling Water at 100 ° C or less. It becomes an inventive one Obtain transparent, electrically conductive film No. 4.

Tabelle 1 Table 1

Erfindungsgemäß wird ein transparenter, elektrisch leitender Film mit guter thermischer Beständigkeit und Stabilität sowie niedrigem spezifischen Widerstand erhalten. Selbst bei Temperaturen unter 100°C kann ein transparenter, elektrisch leitender Film mit niedrigem Widerstand in der Größenordnung von 10-3 bis 10-4 Ohm · cm hergestellt werden. Da ferner keine Wärmebehandlung nach der Filmbildung erforderlich ist, können transparente, elektrisch leitende Filme auf Kunststoffolien mit geringer Wärmebeständigkeit ausgebildet werden. Ein zusätzlicher Vorteil ist darin zu sehen, daß das erfindungsgemäß angewandte ZnO und Al2O3 im Vergleich zu In2O3 und SnO2 einen sehr niedrigen Preis haben.According to the invention, a transparent, electrically conductive film with good thermal resistance and stability and low specific resistance is obtained. Even at temperatures below 100 ° C, a transparent, electrically conductive film with low resistance in the order of 10 - 3 to 10 - 4 Ohm · cm can be produced. Furthermore, since no heat treatment is required after film formation, transparent, electrically conductive films can be formed on plastic films with low heat resistance. An additional advantage can be seen in the fact that the ZnO and Al 2 O 3 used according to the invention have a very low price compared to In 2 O 3 and SnO 2 .

Claims (3)

1. Transparenter, elektrisch leitender Film, der mit Aluminium dotiertes Zinkoxid (ZnO) enthält und in der C-Achse orientiert ist.1. Transparent, electrically conductive film that with Contains aluminum doped zinc oxide (ZnO) and in the C axis is oriented. 2. Verfahren zur Herstellung des Films nach Anspruch 1, dadurch gekennzeichnet, daß er durch Gleichstrom- Magnetron-Sputtern unter Verwendung eines Targets, das Zinkoxid (ZnO) und Aluminiumoxid (Al2O3) als Hauptkomponenten enthält, abgeschieden wird.2. A process for producing the film according to claim 1, characterized in that it is deposited by direct current magnetron sputtering using a target which contains zinc oxide (ZnO) and aluminum oxide (Al 2 O 3 ) as main components. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Menge des in dem Target enthaltenen Aluminiumoxids 0,5 bis 5 Gewichtsprozent, bezogen auf das Verhältnis von Al2O3/ZnO + Al2O3, beträgt.3. The method according to claim 2, characterized in that the amount of aluminum oxide contained in the target 0.5 to 5 weight percent, based on the ratio of Al 2 O 3 / ZnO + Al 2 O 3 .
DE19863639508 1985-11-22 1986-11-20 Transparent, electrically conducting film and method of fabricating it Ceased DE3639508A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262940A JPH0731950B2 (en) 1985-11-22 1985-11-22 Method for producing transparent conductive film

Publications (1)

Publication Number Publication Date
DE3639508A1 true DE3639508A1 (en) 1987-05-27

Family

ID=17382680

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19863639508 Ceased DE3639508A1 (en) 1985-11-22 1986-11-20 Transparent, electrically conducting film and method of fabricating it

Country Status (2)

Country Link
JP (1) JPH0731950B2 (en)
DE (1) DE3639508A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229509A2 (en) * 1985-12-18 1987-07-22 CPFilms, Inc. Stable high resistance transparent coating
EP0354769A2 (en) * 1988-08-09 1990-02-14 Tosoh Corporation Zinc oxide sintered body and preparation process thereof
US4948529A (en) * 1985-12-18 1990-08-14 Andus Corporation Stable high resistance transparent coating
EP0412810A1 (en) * 1989-08-10 1991-02-13 Tosoh Corporation Zinc oxide sintered body, and preparation process and use thereof
EP0486182A1 (en) * 1990-11-15 1992-05-20 Tosoh Corporation Zinc oxide sintered body, and production and application thereof
US5171411A (en) * 1991-05-21 1992-12-15 The Boc Group, Inc. Rotating cylindrical magnetron structure with self supporting zinc alloy target
DE29711973U1 (en) * 1997-07-08 1998-11-05 Glas Platz Fa Electrical device, electrical device or lighting device
DE10306925A1 (en) * 2003-02-19 2004-09-02 GfE Gesellschaft für Elektrometallurgie mbH PVD coating material
EP1944386A1 (en) * 2007-01-10 2008-07-16 Nitto Denko Corporation Transparent conductive film and method for producing the same
WO2008145099A1 (en) 2007-05-28 2008-12-04 Helmholtz Zentrum Berlin Für Materialien Und Energie Gmbh Temperature-resistant tco layer, production method therefor and use thereof
EP2028695A1 (en) * 2007-07-12 2009-02-25 Applied Materials, Inc. Method for creating a transparent conductible oxide coating
EP2166132A2 (en) * 2008-05-13 2010-03-24 Nitto Denko Corporation Transparent conductive film and method for production thereof
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
CN103046013A (en) * 2012-12-30 2013-04-17 青海天誉汇新能源开发有限公司 Method for preparing photovoltaic cell transparent oxide film with flexible substrate

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265495A (en) * 1988-04-15 1989-10-23 Gunze Ltd Electroluminescent element
JP2758660B2 (en) * 1989-07-18 1998-05-28 グンゼ株式会社 Dispersion type electroluminescent device using zinc oxide as transparent electrode
JP2006200016A (en) * 2005-01-21 2006-08-03 Tosoh Corp ZnO:Al TARGET, THIN FILM THEREOF, AND METHOD FOR MANUFACTURING THIN FILM
JP4797712B2 (en) * 2006-03-08 2011-10-19 東ソー株式会社 ZnO-Al2O3-based sintered body, sputtering target, and method for producing transparent conductive film
EP2061041A4 (en) * 2007-02-26 2011-06-29 Murata Manufacturing Co Conductive film and method for production of conductive film
JP4537434B2 (en) * 2007-08-31 2010-09-01 株式会社日立製作所 Zinc oxide thin film, transparent conductive film using the same, and display element
KR101041655B1 (en) * 2007-09-05 2011-06-14 가부시키가이샤 무라타 세이사쿠쇼 Transparent conductive film and method for producing transparent conductive film
JP5352878B2 (en) * 2008-03-31 2013-11-27 公立大学法人高知工科大学 Display substrate, method for manufacturing the same, and display device
KR101146980B1 (en) * 2009-02-17 2012-05-22 삼성모바일디스플레이주식회사 Organic light emitting diode and manufacturing method thereof
JP5348394B2 (en) * 2009-03-13 2013-11-20 三菱マテリアル株式会社 (Zn, Al) O-based transparent electrode layer for solar cell and ZnO-Al2O3-based sputtering target used for forming the same
JP5348399B2 (en) * 2009-03-31 2013-11-20 三菱マテリアル株式会社 (Zn, Ga, Al) O-based transparent electrode layer for solar cell and ZnO-Ga2O3-Al-based sputtering target used for forming the same
JP5333144B2 (en) * 2009-10-14 2013-11-06 住友金属鉱山株式会社 Sintered body target for thin film manufacturing and its manufacturing method
JP5533448B2 (en) 2010-08-30 2014-06-25 住友金属鉱山株式会社 Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
KR20230014891A (en) * 2011-06-08 2023-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sputtering target, method for manufacturing sputtering target, and method for forming thin film
US9057126B2 (en) 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
JP5809952B2 (en) * 2011-12-12 2015-11-11 本田技研工業株式会社 Manufacturing method of solar cell
JP2013144820A (en) * 2012-01-13 2013-07-25 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
EP2904128A1 (en) * 2012-10-08 2015-08-12 Corning Incorporated Sputtered transparent conductive aluminum doped zinc oxide films
JP6141777B2 (en) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP7378938B2 (en) * 2019-02-22 2023-11-14 日東電工株式会社 Light-transparent conductive film
JP7205313B2 (en) * 2019-03-11 2023-01-17 セイコーエプソン株式会社 Cables and ultrasound equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766041A (en) * 1970-09-29 1973-10-16 Matsushita Electric Ind Co Ltd Method of producing piezoelectric thin films by cathodic sputtering
DE2925898A1 (en) * 1978-06-30 1980-01-10 Murata Manufacturing Co THIN FILM DIELECTRIC
DE2929269A1 (en) * 1978-07-21 1980-01-31 Toko Inc METHOD FOR PRODUCING A ZINCOXIDE THIN FILM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPS61214306A (en) * 1985-03-18 1986-09-24 大阪特殊合金株式会社 Method and apparatus for transparent conducting film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766041A (en) * 1970-09-29 1973-10-16 Matsushita Electric Ind Co Ltd Method of producing piezoelectric thin films by cathodic sputtering
DE2925898A1 (en) * 1978-06-30 1980-01-10 Murata Manufacturing Co THIN FILM DIELECTRIC
DE2929269A1 (en) * 1978-07-21 1980-01-31 Toko Inc METHOD FOR PRODUCING A ZINCOXIDE THIN FILM

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229509A2 (en) * 1985-12-18 1987-07-22 CPFilms, Inc. Stable high resistance transparent coating
EP0229509A3 (en) * 1985-12-18 1989-11-29 CPFilms, Inc. Stable high resistance transparent coating
US4948529A (en) * 1985-12-18 1990-08-14 Andus Corporation Stable high resistance transparent coating
EP0354769A2 (en) * 1988-08-09 1990-02-14 Tosoh Corporation Zinc oxide sintered body and preparation process thereof
EP0354769A3 (en) * 1988-08-09 1991-11-21 Tosoh Corporation Zinc oxide sintered body and preparation process thereof
EP0412810A1 (en) * 1989-08-10 1991-02-13 Tosoh Corporation Zinc oxide sintered body, and preparation process and use thereof
EP0486182A1 (en) * 1990-11-15 1992-05-20 Tosoh Corporation Zinc oxide sintered body, and production and application thereof
US5171411A (en) * 1991-05-21 1992-12-15 The Boc Group, Inc. Rotating cylindrical magnetron structure with self supporting zinc alloy target
DE29711973U1 (en) * 1997-07-08 1998-11-05 Glas Platz Fa Electrical device, electrical device or lighting device
DE10306925A1 (en) * 2003-02-19 2004-09-02 GfE Gesellschaft für Elektrometallurgie mbH PVD coating material
WO2004075212A1 (en) * 2003-02-19 2004-09-02 GfE Gesellschaft für Elektrometallurgie mbH Pvd coating material
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
EP1944386A1 (en) * 2007-01-10 2008-07-16 Nitto Denko Corporation Transparent conductive film and method for producing the same
WO2008145099A1 (en) 2007-05-28 2008-12-04 Helmholtz Zentrum Berlin Für Materialien Und Energie Gmbh Temperature-resistant tco layer, production method therefor and use thereof
DE102007024986A1 (en) 2007-05-28 2008-12-04 Forschungszentrum Jülich GmbH Temperature-stable TCO layer, method of manufacture and application
EP2028695A1 (en) * 2007-07-12 2009-02-25 Applied Materials, Inc. Method for creating a transparent conductible oxide coating
EP2166132A2 (en) * 2008-05-13 2010-03-24 Nitto Denko Corporation Transparent conductive film and method for production thereof
EP2166132A3 (en) * 2008-05-13 2010-03-31 Nitto Denko Corporation Transparent conductive film and method for production thereof
CN103046013A (en) * 2012-12-30 2013-04-17 青海天誉汇新能源开发有限公司 Method for preparing photovoltaic cell transparent oxide film with flexible substrate

Also Published As

Publication number Publication date
JPH0731950B2 (en) 1995-04-10
JPS62122011A (en) 1987-06-03

Similar Documents

Publication Publication Date Title
DE3639508A1 (en) Transparent, electrically conducting film and method of fabricating it
DE69909987T2 (en) SPUTTERTARGET, TRANSPARENT LEADING FILM AND METHOD FOR THE PRODUCTION THEREOF
DE60029706T2 (en) TRANSPARENT LIQUID LAMINATE, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE WITH TRANSPARENT CONDUCTIVE LAMINATE
DE2839057C2 (en)
DE2125827C3 (en) Process for dusting an electrically conductive metal oxide coating
EP2984508B1 (en) Light-absorbing layer and layer system containing the layer, process for producing the layer system and sputter target suitable therefor
DE1909910A1 (en) Process for coating substrates with conductive metal oxide films by cathodic sputtering
DE112011100972T5 (en) Transparent conductive film
DE10351674A1 (en) Electronic component and method for its production
DE102011054716A1 (en) Mixed sputtering target of cadmium sulfide and cadmium telluride and method of use
DE102011056639A1 (en) Method for producing a transparent conductive oxide layer and a photovoltaic device
EP1284302A1 (en) Titanium dioxide based sputtering target
DE19632277C2 (en) Dielectric thin film, a thin film electroluminescent device using the same, and methods of manufacturing the electroluminescent device
DE2432503B2 (en) Electroluminescent element
DE19735803B4 (en) Electrode-electrolyte assembly, method for producing an electrode-electrolyte assembly and use of an electrode-electrolyte assembly
EP2028695A1 (en) Method for creating a transparent conductible oxide coating
DE19721649C2 (en) Method for producing a mixed crystal powder with low specific electrical resistance
DE3201783A1 (en) METHOD FOR PRODUCING LARGE COLOR-NEUTRAL, A HIGH INFRARED PART OF THE RADIATION REFLECTIVELY BY LAYOUT AND VIEW FROM RADIATION BY CATODENSION OF TARGETS, AND BY THE METHOD PRODUCED
DE102012104616B4 (en) A method of forming a window layer in a cadmium telluride based thin film photovoltaic device
DE1204738B (en) Electrical sheet resistance
DE2063580A1 (en) Transparent conductor and process for its manufacture
DE102014225862B4 (en) Process for forming a gradient thin film by spray pyrolysis
DE69820639T2 (en) Substrate is coated with a transparent, conductive film and sputtering target to deposit the film
DE102011054794A1 (en) Mixed sputtering targets and their use in cadmium sulfide layers of cadmium telluride thin film photovoltaic devices
DE102011055618A1 (en) Process for producing a cadmium sulfide layer

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection