DE3619354A1 - Transversal angeregter impulsgaslaser - Google Patents

Transversal angeregter impulsgaslaser

Info

Publication number
DE3619354A1
DE3619354A1 DE19863619354 DE3619354A DE3619354A1 DE 3619354 A1 DE3619354 A1 DE 3619354A1 DE 19863619354 DE19863619354 DE 19863619354 DE 3619354 A DE3619354 A DE 3619354A DE 3619354 A1 DE3619354 A1 DE 3619354A1
Authority
DE
Germany
Prior art keywords
electrode
electrodes
laser
pulse gas
gas laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19863619354
Other languages
English (en)
Inventor
Matthias Dipl Phys Dr Scholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCHOLZ, MATTHIAS, DR., O-1199 BERLIN, DE
Original Assignee
Jenoptik Jena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Jena GmbH filed Critical Jenoptik Jena GmbH
Publication of DE3619354A1 publication Critical patent/DE3619354A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

Die Erfindung betrifft einen transversal angeregten Impulsgaslaser, insbesondere TEA-Stickstofflaser. Derartige Laser besitzen ein sehr breites Anwendungsgebiet. Sie werden eingesetzt als Anregungslichtquelle in der zeitaufgelösten Fluoreszenzspektroskopie des Nano- und Subnanosekundenbereiches sowie für intensitätsabhängige Absorptions- und Fluoreszenzuntersuchungen, als Pumplichtquelle für Farbstofflaser, als Werkzeug in der Material- und Mikromaterialbearbeitung sowie als Impulslichtquelle zur Testung elektronischer Elemente und Baugruppen.
Transversal angeregte Impulsgaslaser, insbesondere TEA- Stickstofflaser sind seit Mitte der 70er Jahre bekannt. Der Laserkanal derartiger Laser besteht zumeist aus zwei sich parallel gegenüberstehenden Elektroden mit Baulängen von ca 1 cm (V. Hasson and H.M. von Bergmann, Ultraminiatur high-power gas discharge lasers, Rev.Sci. Instrum., 50 (1) Jan. 1979, S. 59-63) bis einigen 10 cm (H.M. von Bergmann, V. Hasson and D. Preussler, Pulsed corona excitation of high-power UV nitrogen lasers at pressures of 0 - 3 bar, Applied Physics Letters, Vol. 27, No. 10, 15. Nov. 1975, S. 553-555). Kurze Baulängen sind technisch relativ leicht zu realisieren, haben aber eine verhältnismäßig hohe Strahldivergenz zur Folge. Solche Laser sind deshalb als Pumplichtquelle und für die Mikro-Materialbearbeitung ungeeignet. Bekannt sind auch Anordnungen mit zueinander leicht geneigten Elektroden. Diese Maßnahme soll die Laserabstrahlung zugunsten einer Richtung verbessern und die zeitliche Impulshalbwertsbreite verringern (Gary W, Scott, Stanley Gao-Zhi Shen and A.J. Cox, Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser, Rev.Sci.Instrum., 55 (3) March 1984, S.358-364). Hierdurch ergeben sich jedoch bezüglich der Entladung im Laserkanal Vorzugspunkte. Dies wirkt sich negativ auf die Stabilität der Entladung und somit der Laserstrahlung sowie auf die Betriebslebensdauer der Elektroden aus.
Um die Impulsenergie der Laserstrahlung zu erhöhen und gleichzeitig die Strahldivergenz zu verringern, werden auch zwei- bzw. dreistufige Anordnungen verwendet. Zwischen den einzelnen Stufen, zumeist im Winkel von 90° bzw. 180° zueinander angeordnet, wird die Laserstrahlung mit Spiegeln umgelenkt und ihre Strahlgeometrie mit Linsen und Blenden verbessert. Hierdurch wird die Impulsenergie der Sendestufe vor Eintritt in den Verstärker deutlich verringert und somit der Wirkungsgrad der Gesamtanordnung herabgesetzt. Die zeitliche Synchronisation zwischen den einzelnen Stufen erfolgt bei gemeinsamer Triggerung entweder über die Variierung des Elektrodenabstandes (Wei Edwin Wu, Studies of the nitrogen laser and nitrogen-pumped dye lasers, Dissertation 1980, University of Utah, USA, printed 1983 by Univerity Microfilm International, Ann Arbor, Michigan,USA) oder bei konstanten Elektrodenabständen über unterschiedlichen Gasdruck in den Laserkanälen (K. Kagawa, M. Tani, N. Shibata, R. Ueno and M.Usda, A high-power polarised coherent TE N2 laser, J. Phys. E. Sci. Instrum., Vol. 15, 1982, S. 1192-1197). Der Wirkungsgrad dieser baulich sehr aufwendigen Anordnungen liegt bei Verwendung von Stickstoff als aktives Medium zwischen 1 · 10-4 wobei bei größerem Wirkungsgrad auch die Strahldivergenz größer ist.
Ziel der Erfindung ist es, bei einem TE-Impulsgaslaser mit geringem baulichen Aufwand einen hohen Wirkungsgrad zu erreichen.
Der Erfindung liegt die Aufgabe zugrunde, einen TE-Impulsgaslaser zu schaffen, der Laserimpulse großer Energie mit geringer Impulshalbwertsbreite und geringer Strahldivergenz erzeugt. Die Aufgabe wird gelöst durch eine Laseranordnung mit mehreren Elektrodenpaaren, bei der erfindungsgemäß alle Elektrodenpaare eine gemeinsame über die Länge des Laserkanals durchgehend sich erstreckende ortsfeste Elektrode besitzen, der mindestens zwei transversal verstellbare Gegenelektroden zugeordnet sind. Durch Justierung der Elektrodenabstände zur durchgehenden Elektrode kann der Zeitpunkt der Emission bezüglich der Triggerung zwischen den einzelnen Elektrodenpaaren variiert werden. Hierdurch ist es möglich, einzelne Elektrodenpaare so einzustellen, daß sie wahlweise als Sender, Verstärker oder Absorber arbeiten. Da hierbei die Funktionsstufen in einer Achse liegen, sind zusätzliche Umlenkelemente, wie Spiegel und Prisma, nicht erforderlich. Auch ist es möglich, ein Senderelektrodenpaar zwischen zwei Verstärkerelektrodenpaaren so einzustellen, daß die Laserstrahlung in einem ersten Verstärker verstärkt wird und nach Reflexion über einen Spiegel ein zweites Mal den Kanal des Sendeelektrodenpaares durchläuft. Bei geeigneter Justierung wird hier die einfallende Laserstrahlung zeitlich zunehmend absorbiert und führt zu einer Impulsverkürzung. Der so veränderte Laserimpuls durchläuft dann den Kanal eines zweiten Verstärkers. Weiterhin ist es möglich, zwei Elektrodenpaare so einzustellen, daß sie zeitlich nacheinander als Sender arbeiten und anschließend einen gemeinsamen Verstärker durchlaufen. Hierdurch können zeitliche Impulsverbreiterungen erzielt werden. Auch ist es möglich, zwischen einem Sendeelektrodenpaar und einem Verstärkerelektrodenpaar ein Elektrodenpaar so einzustellen, daß ein durchlaufender Laserimpuls zeitlich zunehmend absorbiert und in seinem Strahlquerschnitt eingeengt wird. Dies führt zu einer Impulsverkürzung und zu einer Verringerung der Strahldivergenz. Die einzelnen Einstellungen der Elektrodenpaare lassen sich besonders einfach dadurch realisieren, daß die durchgehende Elektrode fest angeordnet ist und die Gegenelektroden in ihrem Abstand zu derselben von außen, auch während des Betriebes, verstellbar sind. Hierdurch kann ein optimales Betreiben der Elektrodenpaare in ihrer mehrfachen Funktion erreicht werden.
Die Erfindung soll nachstehend an einem Ausführungsbeispiel näher erläutert werden. In den zugehörigen Zeichnungen zeigen
Fig. 1 die schematische Darstellung des Laserkopfes eines TEA-Stickstofflasers nach der Erfindung,
Fig. 2 den Schnitt A-A nach Fig. 1.
Wie aus Fig. 1 ersichtlich, sind auf einer Grundplatte 12 vier Bandleiterkondensatoren 8, 9, 10 und 11 angeordnet. Der Kondensator 8 enthält eine triggerbare Funkenkammer 1. Auf den Kondensatoren sind innenseitig zur Strahlungsachse 7 der Laserkanäle die Elektroden 3, 4, 5 und 6 angeordnet. Während die durchgehende Elektrode 3 fest fixiert ist, können die Gegenelektroden 4, 5 und 6 von außen über die Verstellelemente 13, 14 und 15 bezüglich ihres Abstandes zur Elektrode 3 justiert werden.
Die Kondensatoren, die untereinander induktiv entkoppelt sind, werden über ein Hochspannungsteil auf eine Betriebsspannung von 8.3 kV aufgeladen. Die Gesamtkapazität der Kondensatoren beträgt 8nF. Die durchgehende Elektrode 3 besitzt eine Länge von 39 cm.
Alle Elektroden bestehen auf der Seite zum Laserkanal aus Wolfram und sind hier mit einem Radius von 2,5 mm versehen (Fig. 2). Die Abstände der Gegenelektroden 4, 5 und 6 zur Elektrode 3 sind unterschiedlich und liegen im Bereich zwischen 1,2 mm und 1,5 mm. Zuerst wird die Elektrode 5 so eingestellt, daß am Ort des Reflexionsspiegels 2 eine maximale Energie auftritt. Anschließend wird die Elektrode 4 justiert. Sie wird so eingestellt, daß die Strahlung aus dem Kanal zwischen den Elektroden 5 und 3 maximal verstärkt wird. Anschließend wird die Elektrode 6 auf maximale Verstärkung eingestellt. Mit einer solchen Anordnung wurden folgende Parameter der Ausgangsstrahlung erhalten:
Impulshalbwertsbreite: 500 ps
Impulsenergie: ≈ 300 µJ
Impulsleistung: ≈ 600 kW
Ganzstrahldivergenz: 0,8 mrad × 2 mrad
Wirkungsgrad: ≈ 1,1 × 10-3
Wird bei der so justierten Anordnung der Abstand zwischen den Elektroden 5 und 3 vergrößert, so arbeitet das Elektrodenpaar 4, 3 als Sender und das Elektrodenpaar 5, 3 zeitlich verzögert ebenfalls als Sender. Auf diese Weise wird die zeitliche Impulshalbwertsbreite auf ca 900 ps erhöht bei nahezu konstanter Impulsenergie. Wird jedoch der Abstand der ursprünglich justierten Anordnung zwischen den Elektroden 5 und 3 weiter verringert, so arbeitet das Elektrodenpaar 4, 3 als Sender und das Elektrodenpaar 5, 3 absorbiert zeitlich zunehmend. Auf diese Weise wird bei nahezu konstanter Impulsleistung eine Verringerung der Strahldivergenz erreicht.
Ein erfindungsgemäß ausgebildeter Impulsgaslaser weist gegenüber vergleichbaren bekannten Lösungen wesentliche Vorteile auf. Die Anordnung der Elektrodenpaare mit kurzen Abständen zueinander bei gemeinsamer gestreckter Strahlungsachse erübrigt sowohl optische Umlenkelemente zwischen den Funktionsstufen als auch strahlschwächende zusätzliche Elemente im Laserkanal. Die hier vorgeschlagene Konfiguration des Laserkopfes mit extrem kurzer Bauform vermeidet weitgehend Strahlungsverluste, woraus ein hoher Wirkungsgrad resultiert. Das System arbeitet äußerst stabil und hat eine hohe Lebensdauer.
Der einfache Aufbau wirkt sich günstig auf Materialeinsatz und Herstellungstechnologie und damit auf die Kosten aus.
Mit einem transversal angeregten Impulsgaslaser nach der Erfindung lassen sich Laserimpulse großer Energie mit geringer Impulshalbwertsbreite und geringer Strahldivergenz erzeugen, wodurch vielfältige Anwendungsmöglichkeiten gegeben sind.

Claims (5)

1. Transversal angeregter Impulsgaslaser, insbesondere TEA-Stickstofflaser, mit mehreren Elektrodenpaaren, gekennzeichnet dadurch, daß alle Elektrodenpaare eine gemeinsame über die Länge des Laserkanals durchgehend sich erstreckende ortsfeste Elektrode besitzen, der mindestens zwei transversal verstellbare Gegenelektroden zugeordnet sind.
2. Impulsgaslaser nach Anspruch 1, gekennzeichnet dadurch, daß von den Gegenelektroden mindestens eine als Sendeelektrode und mindestens eine als Verstärkerelektrode arbeitet.
3. Impulsgaslaser nach Anspruch 1 und 2, gekennzeichnet dadurch, daß der durchgehenden Elektrode drei Gegenelektroden zugeordnet sind, von denen die mittlere als Sendeelektrode und die beiden benachbarten als Verstärkerelektroden arbeiten, wobei die Sendeelektrode auch als Absorberelektrode für den verstärkten und reflektierten Laserstrahl dient.
4. Impulsgaslaser nach Anspruch 1 und 2, gekennzeichnet dadurch, daß zwei benachbarte Gegenelektroden zeitlich nacheinander als Sendeelektroden arbeiten und mindestens eine weitere Gegenelektrode als Verstärkerelektrode arbeitet.
5. Impulsgaslaser nach Anspruch 1 und 2, gekennzeichnet dadurch, daß der durchgehenden Elektrode mindestens drei Gegenelektroden zugeordnet sind, von denen eine als Absorberelektrode arbeitet.
DE19863619354 1985-06-20 1986-06-09 Transversal angeregter impulsgaslaser Ceased DE3619354A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DD27757985A DD240101A1 (de) 1985-06-20 1985-06-20 Transversal angeregter impulsgaslaser

Publications (1)

Publication Number Publication Date
DE3619354A1 true DE3619354A1 (de) 1987-01-02

Family

ID=5568784

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19863619354 Ceased DE3619354A1 (de) 1985-06-20 1986-06-09 Transversal angeregter impulsgaslaser

Country Status (3)

Country Link
DD (1) DD240101A1 (de)
DE (1) DE3619354A1 (de)
GB (1) GB2177846B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024931B3 (de) * 2005-05-23 2007-01-11 Ltb-Lasertechnik Gmbh Transversal elektrisch angeregter Gasentladungslaser zur Erzeugung von Lichtpulsen mit hoher Pulsfolgefrequenz und Verfahren zur Herstellung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1231783B (it) * 1989-05-12 1992-01-14 Enea Testa laser per eccitazione a scarica trasversa con tre elettrodi
US5077749A (en) * 1989-07-10 1991-12-31 Kabushiki Kaisha Toshiba Laser apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2042613A1 (de) * 1969-08-29 1971-03-04 Secr Defence Brit Queranregungssystem fur einen Mole kulargaslaser
US4217560A (en) * 1977-04-25 1980-08-12 Kosyrev Felix K Gas laser
US4317067A (en) * 1980-04-11 1982-02-23 Fitzsimmons William A Dielectric surface electrical discharge device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2042613A1 (de) * 1969-08-29 1971-03-04 Secr Defence Brit Queranregungssystem fur einen Mole kulargaslaser
US4217560A (en) * 1977-04-25 1980-08-12 Kosyrev Felix K Gas laser
US4317067A (en) * 1980-04-11 1982-02-23 Fitzsimmons William A Dielectric surface electrical discharge device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BERGMANN, H.M., et al.: Pulsed corona excitation of high-power uv nitrogen lasers at pressures of 0-3 bar. US-Z.: Appl.Phys.Lett., Vol. 27, No. 10, November 1975, S. 553-555 *
HASSON, V., et al.: Ultraminiature high-power gas discharge lasers. US-Z.: Rev.Sci.Instrum., 50 (1), Jan. 1979, S. 59-63 *
KAGAWA, K., et al.: A high-power polarised cohe- rent TE N2 laser. GB-Z.: J.Phys.E: Sci.Instrum., Vol. 15, 1982, S. 1192-1197 *
SCOTT, G.W., et al.: Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser. US-Z.: Rev.Sci.Instrum. 55 (3), March 1984, S. 358-364 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024931B3 (de) * 2005-05-23 2007-01-11 Ltb-Lasertechnik Gmbh Transversal elektrisch angeregter Gasentladungslaser zur Erzeugung von Lichtpulsen mit hoher Pulsfolgefrequenz und Verfahren zur Herstellung
US7672354B2 (en) 2005-05-23 2010-03-02 Ltb-Lasertechnik Berlin Gmbh Electrically excited gas discharge laser for generating high-repetition frequency light pulses and method for the production thereof

Also Published As

Publication number Publication date
GB2177846B (en) 1989-07-26
DD240101A1 (de) 1986-10-15
GB8614985D0 (en) 1986-07-23
GB2177846A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
DE69005263T2 (de) Verbesserte Vorionisationselektrode für gepulste Gaslaser.
DE2406290C2 (de) Gas-Laser vom Wellenleitertyp
DE4426723A1 (de) Gleitentladungsvorionisation für Gaslaser
DE69200510T2 (de) Multifokale in Rückwärtsrichtung betriebene Raman-Laser-Vorrichtung.
DE69002850T2 (de) Hochleistungs-Laser mit Steuerung der Richtung der Ausgangsstrahlung.
DE2144201C3 (de) Ramanlaser
EP0590346A1 (de) Diffusionsgekühlter CO2-Bandleiterlaser mit reduzierter Zündspannung
DE19609851A1 (de) Bandleiterlaser
DE69006958T2 (de) Generator für Hochleistungs-Laserimpulse.
DE2124431A1 (de) Gaslaseranordnung
EP0770275B1 (de) Diodengepumpter hochleistungsfestkörperlaser
DE2319083A1 (de) Frequenzgesteuerter laser in passiver q-schaltung
DE4112311A1 (de) Transversal elektrisch gepumpter gaslaser mit schraeg ausgefuehrtem strahldurchgang
DE3619354A1 (de) Transversal angeregter impulsgaslaser
DE1171084B (de) Optischer Verstaerker
DE69200213T2 (de) Gaslaseroszillatorvorrichtung.
DE2232810A1 (de) Dreielektrodenaufbau zur transversalen anregung eines gaslasers
DE112011105360B4 (de) Gaslaser-vorrichtung
DE69108961T2 (de) Zweizelliger Ramanlaserkonverter.
EP0152570B1 (de) Gaslaser insbesondere TE-Laser
DE2523252A1 (de) Kompakter hochenergie-laser
DE69020689T2 (de) Schmalband-Laservorrichtung.
DE4311454C2 (de) Raman-Laser und dessen Verwendung
AT366517B (de) Pulsweise arbeitender, transversal elektrisch angeregter atmosphaerendruck(tea-)-gaslaser
DE3240413A1 (de) Mehrfachimpuls-tea-laser

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: SCHOLZ, MATTHIAS, DR., O-1199 BERLIN, DE

8110 Request for examination paragraph 44
8131 Rejection