DE3112496C2 - - Google Patents

Info

Publication number
DE3112496C2
DE3112496C2 DE3112496A DE3112496A DE3112496C2 DE 3112496 C2 DE3112496 C2 DE 3112496C2 DE 3112496 A DE3112496 A DE 3112496A DE 3112496 A DE3112496 A DE 3112496A DE 3112496 C2 DE3112496 C2 DE 3112496C2
Authority
DE
Germany
Prior art keywords
mats
glass fiber
fiber
laminate
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE3112496A
Other languages
German (de)
Other versions
DE3112496A1 (en
Inventor
John Alfred Lower Burrell Pa. Us Baumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Ohio Inc
Original Assignee
PPG Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PPG Industries Inc filed Critical PPG Industries Inc
Publication of DE3112496A1 publication Critical patent/DE3112496A1/en
Application granted granted Critical
Publication of DE3112496C2 publication Critical patent/DE3112496C2/de
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • B29C37/0082Mechanical anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2601/00Upholstery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/24995Two or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/666Mechanically interengaged by needling or impingement of fluid [e.g., gas or liquid stream, etc.]
    • Y10T442/667Needled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/67Multiple nonwoven fabric layers composed of the same inorganic strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/682Needled nonwoven fabric

Description

Die Erfindung betrifft ein Verbundmaterial aus thermoplastischem Harz und verstärkenden Glasfasern. Derartige Verbundmaterialien haben sich erfolgreich durchgesetzt bei der Herstellung von geformten Teilen für die ver­ schiedensten Zwecke, wie Automobilsitze, Schalen, Mo­ torgehäuse, Musikinstrumente, Kästen und dergleichen. Bei der Herstellung geformter Teile aus thermoplasti­ schem glasfaserverstärktem Verbundmaterial, wird das Material normalerweise erwärmt, um das Harz fließbar zu machen und die heiße Zusammensetzung wird in eine Presse eingebracht und kalt verformt. Verfahren zum Formen derartiger Verbundmaterialien sind in den US- Patentschriften 36 21 092 und 36 26 053 beschrieben.The invention relates to a composite material thermoplastic resin and reinforcing glass fibers. Such composite materials have successfully established themselves in the manufacture of molded parts for ver various purposes, such as automobile seats, shells, Mo gate cases, musical instruments, boxes and the like. In the production of molded parts from thermoplastic chemical fiber reinforced composite material, that will Material is normally heated to make the resin flowable to make and the hot composition turns into a Press inserted and cold formed. Process for Shapes of such composite materials are Patents 36 21 092 and 36 26 053 described.

Aus DE-OS 23 12 816 ist ein Verfahren zum Herstellen von derartigem Verbundmaterial bekannt, bei dem ein oder mehrere textile Flächengebilde, beispielsweise Glasfasermatten, erwärmt und in diesem Zustand mit der Schmelze eines thermoplastischen Kunststoffes zusammengeführt und dann in einer Druckzone miteinander verpreßt und abgekühlt werden.From DE-OS 23 12 816 is a method for producing known composite material in which one or several textile fabrics, for example Glass fiber mats, heated and in this condition with the Melt a thermoplastic merged and then together in a pressure zone pressed and cooled.

In US-PS 41 58 557 ist eine Vorrichtung und ein Verfahren zum Herstellen von Fasermatten aus Endlosfasern beschrieben. In dieser Druckschrift ist allgemein beschrieben, daß die Matten nach Verlassen der Trockeneinrichtung genadelt werden können. Einzelheiten über das Nadeln sind nicht angegeben. Diese Matten können zur Verstärkung von Thermoplasten wie Polypropylen verwendet werden. In US-PS 41 58 557 is an apparatus and a method for the production of fiber mats from continuous fibers described. In this publication is general described that the mats after leaving the Drying device can be needled. details about needling are not specified. These mats can for reinforcing thermoplastics such as polypropylene be used.  

Wenn in der Vergangenheit Matten mit unterschiedlichen Oberflächenstrukturen zur Herstel­ lung von thermoplastischen Laminaten verwendet wurden, bei denen diese Matten als Verstärkungsmaterial dien­ ten, so wurden die Matten in dem Laminat so angeord­ net, daß die gleichen Oberflächenstrukturen der Matten in die gleiche Richtung zeigten. Laminate dieses Aufbaus lassen sich zufriedenstellend herstellen mit Faserstrangmatten, die Faserstränge mit 50 Filamenten oder weniger aufweisen. Es wurde festgestellt, daß bei Verwendung von Fasermatten, bei denen die einzelnen Faserstränge mehr als 50 Filamente aufweisen, oftmals allerdings abhängig von der gewünschten endgültigen Form, diese Anordnung der Matten zu unbefriedigenden Ergebnis­ sen des fertigen Produktes führen. Insbesondere wurde festgestellt, daß Laminate, bei denen die Matten in der bekannten üblichen Weise angeordnet sind, während des Erwärmens in starkem Maße aufquellen und die erhitzten Preßlinge häufig die Form während des Verformens bei den üblichen Drucken nicht ausfüllen.If in the past mats with different Surface structures for the manufacture thermoplastic laminates were used, where these mats serve as reinforcing material so the mats were arranged in the laminate net that the same surface structures of the Mats pointed in the same direction. Laminate this Can be satisfactorily manufactured with Fiber strand mats, the fiber strands with 50 filaments or less. It was found that at Use of fiber mats where the individual Fiber strands have more than 50 filaments, often however depending on the final shape desired, this arrangement of the mats to unsatisfactory result of the finished product. In particular, was found that laminates in which the mats in the known usual way are arranged during the Warm up swell to a large extent and the heated Compacts often contribute to the shape during molding do not fill in the usual prints.

Aufgabe der vorliegenden Erfindung ist es, einen Auf­ bau für ein glasfaserverstärktes Verbundmaterial auf­ zuzeigen, der die vorstehend geschilderten Nachteile beim Verformen nicht aufweist.The object of the present invention is to construction for a glass fiber reinforced composite material to show the disadvantages described above does not have during deformation.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein thermoplastisches Harzverbundmaterial beziehungsweise die für das erfindungsgemäße Verbundmaterial zu verwendenden Matten aus Vliesen aus endlosen Glasfasern sind genadelte Matten, die hergestellt werden durch Durchstoßen einer Fasermatte aus endlosen Glasfasersträngen mit einer Vielzahl von Nadeln, die Widerhaken aufweisen, um die Faserstränge miteinander zu verwirren und einige von ihnen dabei in kurze Stücke zu zerbrechen. Durch dieses Nadelver­ fahren weist eine der Hauptoberflächen einer solchen Matte eine hohe Dichte von herausstehenden Glasfaserenden auf, während die gegenüberliegende Haupt­ oberfläche eine wesentlich geringere Zahl von derartig herausstehenden Fasern aufweist.This object is achieved by a thermoplastic resin composite material respectively  those for the composite material according to the invention using non-woven mats made of endless glass fibers are needled mats that are made by Puncturing a fiber mat from endless fiberglass strands with a variety of Needles that have barbs around the fiber strands confuse with each other and some of them doing it to break into short pieces. Through this needle ver driving has one of the main surfaces of such Matte a high density of protruding Fiber ends on while the opposite main surface a much smaller number of such protruding fibers.

Die Fasermatten, deren Stränge mehr als 50 Filamente pro Strang aufweisen, haben besonders ausgeprägt unterschiedliche Oberflächenstrukturen auf den Hauptoberflächen.The fiber mats, whose strands more than 50 filaments have per strand, have particularly pronounced different surface structures on the Main surfaces.

Die erfindungsgemäßen Laminate weisen mindestens zwei Glasfasermatten auf. Jede dieser Matten weist auf eine ihrer Hauptoberflächen eine hohe Zahl von heraus­ ragenden Glasfaserenden auf, die sich von der Oberfläche aus erstrecken. Die Matten werden in dem Laminat so zueinander angeordnet, daß die Oberflächen mit der hohe Zahl herausragender Glas­ faserenden einander nicht zugewandt sind und wenn die Imprägnierung mit einem thermoplastischen Harz erfolgt, diese Oberflächen mit den vielen herausragenden Faserenden der verstärkenden Matten außenliegend, mit den Harzdeckschichten abge­ deckt und mit ihnen verbunden werden, so daß diese Mattenoberflächen sich unterhalb der zwei Hauptober­ flächen des Laminats befinden.The laminates according to the invention have at least two Fiberglass mats. Each of these mats has one of their main surfaces out a high number protruding fiber optic ends that extend from the surface. The mats are arranged in the laminate so that each other the surfaces with the high number of outstanding glass fiber ends are not facing each other and if the Impregnated with a thermoplastic resin, these surfaces with the many outstanding fiber ends of the reinforcing Mats on the outside, covered with the resin cover layers covers and be connected to them so that these Mat surfaces are below the two main surfaces  surfaces of the laminate.

Der Gegenstand der vorliegenden Erfindung wird nun anhand der Abbildungen noch näher erläutert.The subject of the present invention now becomes explained in more detail using the illustrations.

Fig. 1 ist eine schematische Wiedergabe im Schnitt einer Fasermatte aus endlosen Glasfasersträngen, die zum Verstärken des Laminats verwendet wird. Fig. 1 is a schematic representation in section of a fiber mat made of endless glass fiber strands, which is used to reinforce the laminate.

Fig. 2 zeigt schematisch im Schnitt die erfindungsgemäße Anordnung der beiden verstärkenden Matten, die als Vlieseinlage in das Laminat eingebracht werden. Fig. 2 shows schematically in section the arrangement according to the invention of the two reinforcing mats, which are introduced as a fleece insert in the laminate.

Fig. 3 zeigt schematisch im Schnitt die Anordnung der Vlieseinlagen aus zwei verstärkenden Matten, wie sie bisher erfolgte. Fig. 3 shows schematically in section the arrangement of the fleece inserts made of two reinforcing mats, as has been done so far.

Fig. 4 zeigt schematisch im Schnitt das Laminierverfahren unter Verwendung einer Vlieseinlagenanordnung gemäß Fig. 2 zur Herstellung der erfindungsgemäßen Lami­ nate oder Verbundmaterialien. Fig. 4 shows schematically in section the lamination process using a fleece insert arrangement according to FIG. 2 for the production of the laminates according to the invention or composite materials.

Für die erfindungsgemäßen Laminate werden Glasfaser­ matten aus endlosen Fasersträngen verwendet, die her­ gestellt wurden durch Nadeln von endlosen Matten. Die Glasfaserstränge weisen 50 oder mehr Filamente pro Strang auf. Derartige Faserstränge zur Herstellung von Fasermatten durch Nadeln weisen 75 bis 125 Fila­ mente pro Strang auf, vorzugsweise 100 Filamente. Die Matten enthalten endlose Faserstränge, die eine Vielzahl von Filamenten aufweisen, beispielsweise 125 bis 250 oder mehr. Die Faserstränge zur Herstellung der end­ losen Matten weisen üblicherweise ein Schlichte­ mittel auf, das sie verträglich mit dem thermo­ plastischen Harz macht, das sie verstärken sollen. Typische Schlichten für derartige Faserstränge zur Herstellung von Matten, die für Polypropylenlaminate verwendet werden sollen, sind in der US-Patentschrift 38 49 148 beschrieben. Wenn andere Harze als Polypro­ pylen verwendet werden sollen, kann die Schlichte eine andere chemische Zusammensetzung haben, um die Faser­ stränge mit dem Harzsystem verträglich zu machen. Die zur Herstellung von Matten verwendeten Glasfaser­ stränge weisen Filamente verschiedener Durchmesser auf. Üblicherweise werden Filamente verwendet, die einen Strangdurchmesser von G bis T (Typenkennzeichnung US-Standard) aufweisen. Glass fibers are used for the laminates according to the invention mats made from endless fiber strands were made by needling endless mats. The Glass fiber strands have 50 or more filaments per Strand on. Such fiber strands for production of fiber mats by needles have 75 to 125 fila elements per strand, preferably 100 filaments. The Mats contain endless fiber strands that have a variety of filaments, for example 125 to 250 or more. The fiber strands used to make the end loose mats usually have a size means that they are compatible with the thermo plastic resin that they should reinforce. Typical sizes for such fiber strands Manufacture of mats for polypropylene laminates are to be used are in the US patent 38 49 148. If resins other than Polypro pylene should be used, the size can be one have different chemical composition to the fiber to make strands compatible with the resin system. The glass fiber used to make mats strands have filaments of different diameters on. Filaments are usually used, the one Line diameter from G to T (type identification US standard).  

Die erfindungsgemäß zu verwendenden thermoplastischen Harze, die üblicherweise für derartige Zwecke einge­ setzt werden, sind Homopolymere oder Copolymere, wie:The thermoplastic to be used according to the invention Resins commonly used for such purposes are homopolymers or copolymers, such as:

(1) Vinylpolymere, hergestellt durch Polymerisation von Vinylhalogeniden oder durch Copolymerisation von Vinylhalogeniden mit ungesättigten polymeri­ sierbaren Verbindungen, beispielsweise Vinyl­ estern, alpha, beta-ungesättigten Säuren, alpha, beta-ungesättigten Estern, alpha, beta-ungesättig­ ten Ketonen, alpha, beta-ungesättigten Aldehyden und ungesättigten Kohlenwasserstoffen, wie Butadien und Styrol;
(2) Poly-alpha-Olefine, wie Polyethylen, Polypropylen, Polybutylen, Polyisopren und dergleichen, ein­ schließlich Copolymere von Poly-alpha-Olefinen;
(3) Phenoxyharze;
(4) Polyamide, wie Polyhexamethylenadipamid;
(5) Polysulfone;
(6) Polycarbonate;
(7) Polyacetyle;
(8) Polyethylenoxide;
(9) Polystyrole, einschließlich Copolymere von Styrol mit monomeren Verbindungen, wie Acrylnitril und Butadien;
(10) Acrylharze, beispielsweise Polymere von Methyl­ acrylat, Acylamid, Methylmethacrylamid, Acryl­ nitril und Copolymere dieser Verbindungen mit Styrol, Vinylpyridin usw.;
(11) Neopren;
(12) Polyphenylenoxidharze;
(13) Polymere, wie beispielsweise Polybutylentereph­ thalat und Polyethylenterephthalat und
(14) Celluloseester, einschließlich der Nitrate, Acetate, Propionate usw.
(1) Vinyl polymers produced by polymerizing vinyl halides or by copolymerizing vinyl halides with unsaturated polymerizable compounds, for example vinyl esters, alpha, beta-unsaturated acids, alpha, beta-unsaturated esters, alpha, beta-unsaturated ketones, alpha, beta unsaturated aldehydes and unsaturated hydrocarbons, such as butadiene and styrene;
(2) poly-alpha-olefins such as polyethylene, polypropylene, polybutylene, polyisoprene and the like, including copolymers of poly-alpha-olefins;
(3) phenoxy resins;
(4) polyamides such as polyhexamethylene adipamide;
(5) polysulfones;
(6) polycarbonates;
(7) polyacetyls;
(8) polyethylene oxides;
(9) polystyrenes, including copolymers of styrene with monomeric compounds such as acrylonitrile and butadiene;
(10) acrylic resins, e.g. polymers of methyl acrylate, acylamide, methyl methacrylamide, acrylonitrile and copolymers of these compounds with styrene, vinyl pyridine, etc .;
(11) neoprene;
(12) polyphenylene oxide resins;
(13) Polymers such as polybutylene terephthalate and polyethylene terephthalate and
(14) Cellulose esters, including nitrates, acetates, propionates, etc.

Die vorstehende Aufzählung ist nicht als vollständig oder ausschließlich anzusehen, sondern soll nur den breiten Bereich der geeigneten polymeren Materialien illustrieren, die für die erfindungsgemäßen thermo­ plastischen Laminate eingesetzt werden können.The above list is not complete or only to look at, but only to wide range of suitable polymeric materials illustrate the thermo for the invention plastic laminates can be used.

Selbstverständlich können die thermoplastischen Harze Füllstoffe aufweisen, wenn dies erwünscht ist. Als Füllstoff können die üblichen bekannten Füllstoffe verwendet werden, wie Talk, Kalziumcarbonat, Tone, Diathomeenerde seien als beispielhaft und üblicher­ weise verwendet aufgezählt.Of course, the thermoplastic resins Have fillers if desired. As Filler can be the usual known fillers such as talc, calcium carbonate, clays, Diathome earths are exemplary and more common used wisely enumerated.

Die endlosen genadelten Fasermatten zur Verwendung für die erfindungsgemäßen Laminate werden herge­ stellt durch Hindurchführen einer endlosen nicht ge­ bundenen Glasfasermatte durch einen üblichen Filzweb­ stuhl oder eine Nadeleinrichtung mit Nadeln, die Widerhaken aufweisen. Während des Durchlaufs durch eine Nadeleinrichtung wird die Matte von Reihen von Nadeln durchstoßen, um die Glasfaserstränge miteinander zu verwirbeln und gleichzeitig auch Faserstränge zu zer­ brechen, um auf diese Weise eine mechanisch gebundene Matte zu erzeugen, die im endlosen Filament auch kurze Faserstränge aufweist. Das Nadeln führt, wenn alle Widerhaken der Nadeln in die gleiche Richtung zeigen, zu einer festen zusammenhängenden Mattenstruk­ tur, die eine Hauptoberfläche aufweist, aus der eine große Zahl von Faserenden herausragt und eine zweite Oberfläche, bei der wesentlich weniger Fasern heraus­ ragen.The endless needled fiber mats for use for the laminates according to the invention created by passing an endless one bound glass fiber mat through a usual felt web chair or a needle device with needles that  Have barbs. While passing through a Needle device is the mat of rows of needles puncture to the fiber strands together swirl and at the same time to break fiber strands break to a mechanically bound in this way Create mat that is also short in the endless filament Has fiber strands. Needling leads when all barbs of the needles in the same direction show to a solid coherent mat structure which has a main surface from which a protruding large number of fiber ends and a second Surface with much less fibers coming out protrude.

Ein Verfahren zum Herstellen von endlosen Fasermatten, ent­ weder aus Formspulen oder direkt aus Glasfasern, die aus Düsen gezogen werden, ist in der US-Patentschrift 41 58 557 beschrieben. Die Nadeleinrichtung oder Filzherstel­ lungseinrichtung kann eine der vielen kommerziell erhältlichen Anlagen sein, die eine ausreichende Größe aufweisen, um entsprechend breite Fasermatten herzustellen und zu nadeln. A method of making endless fiber mats, ent neither from coils or directly from glass fibers that are made Nozzles are drawn in US Pat. No. 4,158,557 described. The needle device or felt maker processing facility can be one of the many commercially available facilities that are sufficient Have size to match broad fiber mats to manufacture and to needle.  

Die typischen Nadeln für ein solches Verfahren sind dreieckig geformte Stahlnadeln mit neun Widerhaken, um die Faserstränge zu erfassen, wenn die Nadeln in die Matte eingestoßen werden und die die Fasern los­ lassen, wenn die Nadeln aus der Matte gezogen werden. Der Durchmesser der Nadeln liegt üblicherweise im Be­ reich zwischen 0,6 und 1,2 mm und die Matten werden punktförmig genadelt mit einer Dichte zwischen 100 bis 400 Stichen pro 6,451 cm² oder noch größere Nadel­ dichten.The typical needles for such a procedure are triangular shaped steel needles with nine barbs, to capture the fiber strands when the needles are in the mat are pushed in and the fibers get loose leave when the needles are pulled out of the mat. The diameter of the needles is usually in the loading become rich between 0.6 and 1.2 mm and the mats point needled with a density between 100 to 400 stitches per 6.451 cm² or larger needle poetry.

Glasfasermatten mit endlosen Glasfasern, die in der beschriebenen Weise durch Nadeln hergestellt wurden, weisen eine ausreichende mechanische Festigkeit und einen Zusammenhalt auf, daß sie gehandhabt werden können, ohne Zerstörung ihrer allgemeinen flachen Form. Diese Matten weisen üblicherweise zwei Hauptoberflächen und zwei Seitenkanten und eine Vorderkante auf. Eine Ab­ laufkante entsteht, wenn die Matte auf die gewünschte Länge geschnitten wird. Üblicherweise erfolgt die Mat­ tenherstellung kontinuierlich zu endlosen Fasermatten, die ebenso kontinuierlich durch die Nadelanlage ge­ führt werden. Das Material wird dann gefaltet in Kisten oder in Form großer Rollen der Weiterver­ wendung zugeführt.Glass fiber mats with endless glass fibers that are in the described by needles, have sufficient mechanical strength and a cohesion that they can be handled without destroying their general flat shape. These Mats usually have two main surfaces and two side edges and a front edge. An ab The leading edge is created when the mat is on the desired one Length is cut. Usually the mat continuous fiber mat production,  which is also continuous through the needle system leads. The material is then folded in Boxes or in the form of large rolls of further applied.

Die endlosen Glasfasermatten weisen nach dem Nadeln das Aussehen auf, das als allgemeiner Typ in Abb. 1 wiedergegeben ist. Die gezeigte Matte 1 weist auf einer Oberfläche eine große Anzahl von herausragenden Faserenden 2 auf. Die zweite Hauptoberfläche weist eine wesentlich geringere Zahl von derartigen Faserenden 3 auf. Die Zahl der Faserenden auf der weniger dichten Oberfläche liegt etwa um 25 bis 50% niedriger als die Zahl der Faserenden auf der dicht besetzten dichten Oberfläche.The endless glass fiber mats have the appearance after needling, which is shown as a general type in Fig. 1. The mat 1 shown has a large number of protruding fiber ends 2 on one surface. The second main surface has a significantly smaller number of such fiber ends 3 . The number of fiber ends on the less dense surface is about 25 to 50% lower than the number of fiber ends on the densely populated dense surface.

Abb. 2 zeigt die erfindungsgemäße Anordnung von zwei Matten gemäß Abb. 1 zur Verstärkung des thermoplastischen Harzverbundmaterials. In Abb. 4 wird gezeigt, wie die Matten 1 einer Laminierzone zwischen zwei Bändern 10 und 9 zugeführt werden, die über Umlenkwalzen 11 und 12 geführt sind. Zwei Harz­ deckschichten 4 und 5 werden zusammen mit den zwei Matten 1 zwischen den Bändern 10 und 9 hindurchge­ leitet. Auf die Matte 1 wird eine Harzschicht 7 ex­ trudiert, bevor die beiden Matten zusammengeführt und durch die Bänder 10 und 9 aufeinander gepreßt werden. Das Extrudat 7 wird üblicherweise in Form einer Harz­ schicht, quer über die gesamte Breite der Matte 1 auf­ gebracht und wird mit einer konstanten Zuführgeschwin­ digkeit aus dem Extruder 6 durch die Düse 8 auf die eine Mattenoberfläche aufgebracht. Fig. 2 shows the arrangement according to the invention of two mats according to Fig. 1 for reinforcing the thermoplastic resin composite material. Fig. 4 shows how the mats 1 are fed to a laminating zone between two belts 10 and 9 , which are guided over deflection rollers 11 and 12 . Two resin cover layers 4 and 5 are passed together with the two mats 1 between the tapes 10 and 9 . A resin layer 7 is extruded onto the mat 1 before the two mats are brought together and pressed together by the belts 10 and 9 . The extrudate 7 is usually in the form of a resin layer, brought across the entire width of the mat 1 and is applied at a constant feed speed from the extruder 6 through the nozzle 8 to the one mat surface.

Aus Abb. 4 ist klar zu erkennen, daß die mit Faser­ enden dicht bestückten Hauptoberflächen der Matten 1 jeweils nach außen zeigen und in Kontakt mit den Deckschichten 4 oder 5 gelangen, wenn die Bänder 10 und 9 den Laminarvorgang ausführen. Die mit einer geringen Zahl von Faserenden bestückten Oberflächen der Matten 1 liegen einander gegenüber und kommen beim Laminieren miteinander in Kontakt, wobei das Extrudat 7 zwischen die beiden Matten eingebracht wird, ehe das mehrschich­ tige System durch die nicht gezeigte Laminiereinrich­ tung zwischen den Bändern 10 und 9 hindurchläuft.From Fig. 4 it can be clearly seen that the main surfaces of the mats 1 , which are densely populated with fiber ends, each point outwards and come into contact with the cover layers 4 or 5 when the tapes 10 and 9 carry out the laminar process. The surfaces of the mats 1, which are equipped with a small number of fiber ends, face each other and come into contact during lamination, the extrudate 7 being introduced between the two mats before the multilayer system, by means of the laminating device (not shown), between the belts 10 and 9 runs through.

Die Deckschichten 4 und 5, die Matten 1 und das Extru­ dat 7 werden üblicherweise miteinander verbunden durch den Druck, den die Bänder 10 und 9 ausüben. Die Tempe­ raturen werden in der Laminierzone ausreichend hoch gehalten, um ein sicheres Aufschmelzen der Deck­ schichten 4 und 5 zu gewährleisten. Die Aufenthalts­ zeit ist nicht kritisch, sie soll jedoch lang genug sein, um sicherzustellen, daß die Harze die Matte 1 durchimprägnieren. Das durch und durch mit Harz im­ prägnierte Harz - Glasverbundmaterial wird dann abge­ kühlt, üblicherweise unter Aufrechterhaltung von Druck auf das Verbundmaterial, bis das Harz verfestigt ist. Das Resultat des Endproduktes ist eine Folie oder ein Polymerband, das unterhalb seiner Haupt­ oberflächen die genadelten Fasermatten aufweist, wobei die Mattenoberflächen mit vielen herausragenden Faserenden in direktem Kontakt mit der Deckschicht stehen.The cover layers 4 and 5 , the mats 1 and the extrusion dat 7 are usually connected to one another by the pressure exerted by the strips 10 and 9 . The temperatures are kept high enough in the laminating zone to ensure that the cover layers 4 and 5 melt securely. The residence time is not critical, but it should be long enough to ensure that the resins impregnate the mat 1 . The thoroughly resin-impregnated resin-glass composite material is then cooled, usually while maintaining pressure on the composite material, until the resin is solidified. The result of the end product is a film or a polymer tape, which has the needled fiber mats below its main surfaces, the mat surfaces with many outstanding fiber ends being in direct contact with the cover layer.

Das Harzverbundmaterial oder Laminat, das hergestellt wurde unter Verwendung der Deckschichten 4 und 5 aus thermoplastischem Harz, ist eine bevorzugte Ausfüh­ rungsform, die hergestellt wurde, wie in Abb. 4 gezeigt. Das erfindungsgemäße Laminat kann jedoch auch hergestellt werden ohne diese Deckschichten, rein unter Verwendung des Extrudats 7.The resin composite or laminate made using the thermoplastic resin facings 4 and 5 is a preferred embodiment made as shown in FIG . However, the laminate according to the invention can also be produced without these cover layers, using only the extrudate 7 .

Es ist aber ebenso möglich, einen Extruder mit einer Vielzahl von Düsen zu verwenden, um drei Schichten von Extrudat zu erhalten, eine für jede Außenseite der Matte und eine dritte zwischen zwei Matten.But it is also possible to use an extruder with a Variety of nozzles to use three layers of extrudate, one for each outside the mat and a third between two mats.

Claims (4)

1. Glasfaserverstärktes thermoplastisches Verbundmaterial mit mindestens zwei Matten eines Vlieses aus endlosen Glas­ fasersträngen, die mit thermoplastischem Harz so imprägniert sind, daß das Laminat Oberflächen aus thermoplastischem Harz aufweist, dadurch gekennzeichnet, daß die genadelten Glasfasermatten auf ihrer ersten Hauptober­ fläche herausstehende Glasfaserenden und auf der gegenüber­ liegenden Hauptoberfläche eine wesentlich geringere Zahl her­ ausstehende Glasfaserenden aufweisen und die Glasfasermatten im Laminat so zueinander angeordnet sind, daß die Oberflächen mit den vielen herausragenden Faserenden der Laminatoberfläche zugekehrt sind.1. Glass fiber reinforced thermoplastic composite material with at least two mats of a nonwoven made of endless glass fiber strands that are impregnated with thermoplastic resin so that the laminate has surfaces made of thermoplastic resin, characterized in that the needled glass fiber mats on their first main surface projecting glass fiber ends and on the have a much smaller number of protruding glass fiber ends on the opposite main surface and the glass fiber mats in the laminate are arranged in such a way that the surfaces with the many protruding fiber ends face the laminate surface. 2. Glasfaserverstärktes thermoplastisches Verbundmaterial nach Anspruch 1, dadurch gekennzeichnet, daß die Außenoberflächen des Laminats jeweils mit einer Bahn aus thermoplastischem Polymer abgedeckt sind.2. Glass fiber reinforced thermoplastic composite material according to claim 1, characterized, that the outer surfaces of the laminate each with a web are covered from thermoplastic polymer. 3. Glasfaserverstärktes thermoplastisches Verbundmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das thermoplastische Harz Polyamid, Polypropylen, Poly­ butylenterephthalat, Polyethylenterephthalat oder Poly­ ethylen ist. 3. Glass fiber reinforced thermoplastic composite material according to claim 1 or 2, characterized, that the thermoplastic resin polyamide, polypropylene, poly butylene terephthalate, polyethylene terephthalate or poly is ethylene.   4. Glasfaserverstärktes thermoplastisches Verbundmaterial nach Anspruch 2, dadurch gekennzeichnet, daß das Polymer der abdeckenden Bahnen Polyamid, Polypropylen, Polybutylenterephthalat, Polyethylenterephthalat oder Polyethylen ist.4. Glass fiber reinforced thermoplastic composite material according to claim 2, characterized, that the polymer of the covering sheets polyamide, polypropylene, Polybutylene terephthalate, polyethylene terephthalate or Is polyethylene.
DE3112496A 1980-11-24 1981-03-30 GLASS FIBER REINFORCED THERMOPLASTIC RESIN COMPOSITE MATERIAL Granted DE3112496A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/209,442 US4335176A (en) 1980-11-24 1980-11-24 Bonded needled fiber glass thermoplastic reinforced mats

Publications (2)

Publication Number Publication Date
DE3112496A1 DE3112496A1 (en) 1982-07-01
DE3112496C2 true DE3112496C2 (en) 1992-02-06

Family

ID=22778770

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3112496A Granted DE3112496A1 (en) 1980-11-24 1981-03-30 GLASS FIBER REINFORCED THERMOPLASTIC RESIN COMPOSITE MATERIAL

Country Status (10)

Country Link
US (1) US4335176A (en)
JP (1) JPS6038266B2 (en)
BE (1) BE887584A (en)
CA (1) CA1174579A (en)
CH (1) CH647977A5 (en)
DE (1) DE3112496A1 (en)
FR (1) FR2494632A1 (en)
GB (1) GB2088282B (en)
IT (1) IT1135372B (en)
NL (1) NL188099C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3507720A1 (en) * 1985-03-05 1986-09-11 Albert 7518 Bretten Spaay WORKING METHOD FOR THE PRODUCTION OF BLANKS OR SEMI-FINISHED FIBER-REINFORCED RESIN MOLDS FOR RESIN MOLDING PRESSES

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2139950B (en) * 1983-04-28 1987-02-04 Honda Motor Co Ltd Composite sound and heat insulating board
DE3321006A1 (en) * 1983-06-10 1984-12-13 Basf Ag, 6700 Ludwigshafen Process for producing glass fibre mats
JPS6050170U (en) * 1983-09-12 1985-04-09 斎藤 和助 portable cold container
JPS6278074A (en) * 1985-09-23 1987-04-10 デイ−・リンドレイ・ヘンリ− Thermal packaging assembly, thermal packaging material and thermal packaging method
US4692375A (en) * 1985-09-27 1987-09-08 Azdel, Inc. Thermoplastic sheet
US4615717A (en) * 1985-09-27 1986-10-07 Ppg Industries, Inc. Method and apparatus for making glass fiber oriented continuous strand mat
DE3535272C2 (en) * 1985-10-03 1995-04-13 Basf Ag Semi-finished product made of a textile fabric impregnated with a thermoplastic
US4873133A (en) * 1986-09-11 1989-10-10 General Electric Company Fiber reinforced stampable thermoplastic sheet
US4793802A (en) * 1986-12-04 1988-12-27 Azdel, Inc. Circulating gas oven for heating fiber reinforced thermoplastic resin sheets
US4752513A (en) * 1987-04-09 1988-06-21 Ppg Industries, Inc. Reinforcements for pultruding resin reinforced products and novel pultruded products
US5201979A (en) * 1987-05-08 1993-04-13 Research Association For New Technology Development Of High Performance Polymer Method of manufacturing a sheet-prepreg reinforced with fibers
US5445701A (en) * 1987-05-08 1995-08-29 Research Association For New Technology Development Of High Performance Polymer Apparatus of manufacturing a sheet-prepreg reinforced with fibers
DE3876285T2 (en) * 1987-05-08 1993-04-01 Mitsui Toatsu Chemicals METHOD FOR PRODUCING A FIBER REINFORCED PREPREAD FILM AND DEVICE THEREFOR.
US4802843A (en) * 1987-06-05 1989-02-07 Azdel, Inc. Method of preparing sheets of fiber reinforced thermoplastic resin or subsequent molding in a press
FR2617208B1 (en) * 1987-06-26 1989-10-20 Inst Textile De France PROCESS AND MATERIAL FOR NEEDLES OF GLASS MAT AND COMPOSITE PRODUCT MADE FROM SAID MAT
DE3741667A1 (en) * 1987-12-09 1989-06-22 Basf Ag GLASS MAT REINFORCED THERMOPLASTIC SEMI-FINISHED PRODUCTS
US4964891A (en) * 1988-11-13 1990-10-23 Ppg Industries, Inc. Programmably controlled fiber glass strand feeders and improved methods for making glass fiber mats
US5021289A (en) * 1988-11-15 1991-06-04 Eastman Kodak Company Reinforced polymeric sheet material
EP0434846B2 (en) * 1989-07-10 2002-10-16 Japan GMT Co., Ltd. Stampable sheet made of fiber-reinforced thermoplastic resin and molded article thereof
JPH03289468A (en) * 1990-04-04 1991-12-19 Dainippon Printing Co Ltd Package for fishery product and retaining method for freshness thereof
US5558924A (en) * 1992-02-26 1996-09-24 Shinih Enterprise Co., Ltd Method for producing a corrugated resin-bonded or thermo-bonded fiberfill and the structure produced thereby
US5702801A (en) * 1992-02-26 1997-12-30 Shinih Enterprise Co., Ltd. Method for producing a variable density, corrugated resin-bonded or thermo-bonded fiberfill and the structure produced thereby
FR2701665B1 (en) * 1993-02-17 1995-05-19 Europ Propulsion Method for manufacturing a part made of composite material, in particular a sandwich panel, from several assembled preforms.
EP0646454B1 (en) * 1993-09-25 1998-03-18 Symalit Ag Fibre reinforced thermoplastic sheet
US5643989A (en) * 1993-10-29 1997-07-01 Azdel, Inc. Fiber reinforced functionalized polyolefin composites
US5437928A (en) * 1993-10-29 1995-08-01 Ppg Industries, Inc. Glass fiber size and mat
US5908689A (en) * 1997-01-24 1999-06-01 Ppg Industries, Inc. Glass fiber strand mats, thermosetting composites reinforced with the same and methods for making the same
US5872067A (en) * 1997-03-21 1999-02-16 Ppg Industries, Inc. Glass fiber strand mats, thermoplastic composites reinforced with the same and methods for making the same
US5910458A (en) * 1997-05-30 1999-06-08 Ppg Industries, Inc. Glass fiber mats, thermosetting composites reinforced with the same and methods for making the same
US6258739B1 (en) * 1998-10-30 2001-07-10 Ppg Industries Ohio, Inc. Double sided needled fiber glass mat for high flow thermoplastic composite
US6268047B1 (en) 1999-01-22 2001-07-31 Ppg Industries Ohio, Inc. Glass fiber mats, laminates reinforced with the same and methods for making the same
US7785693B2 (en) 2001-04-06 2010-08-31 Ebert Composites Corporation Composite laminate structure
US6676785B2 (en) 2001-04-06 2004-01-13 Ebert Composites Corporation Method of clinching the top and bottom ends of Z-axis fibers into the respective top and bottom surfaces of a composite laminate
US7105071B2 (en) * 2001-04-06 2006-09-12 Ebert Composites Corporation Method of inserting z-axis reinforcing fibers into a composite laminate
US20050025948A1 (en) * 2001-04-06 2005-02-03 Johnson David W. Composite laminate reinforced with curvilinear 3-D fiber and method of making the same
US7056576B2 (en) * 2001-04-06 2006-06-06 Ebert Composites, Inc. 3D fiber elements with high moment of inertia characteristics in composite sandwich laminates
US7731046B2 (en) * 2001-04-06 2010-06-08 Ebert Composites Corporation Composite sandwich panel and method of making same
US6645333B2 (en) 2001-04-06 2003-11-11 Ebert Composites Corporation Method of inserting z-axis reinforcing fibers into a composite laminate
US20050118448A1 (en) * 2002-12-05 2005-06-02 Olin Corporation, A Corporation Of The Commonwealth Of Virginia Laser ablation resistant copper foil
FR2862987B1 (en) * 2003-11-28 2006-09-22 Saint Gobain Vetrotex GLASS MAT NEEDLED
USRE44893E1 (en) 2004-03-26 2014-05-13 Hanwha Azdel, Inc. Fiber reinforced thermoplastic sheets with surface coverings
US20070160822A1 (en) * 2005-12-21 2007-07-12 Bristow Paul A Process for improving cycle time in making molded thermoplastic composite sheets
JP2011214195A (en) * 2010-03-31 2011-10-27 Ibiden Co Ltd Mat, method for manufacturing the mat, and apparatus for purifying exhaust gas
EP3395568A4 (en) * 2015-12-25 2019-09-04 Toray Industries, Inc. Composite molded article and method for manufacturing same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626053A (en) * 1968-03-19 1971-12-07 Union Carbide Corp Method of molding thermoplastic sheet material
NL7007996A (en) * 1968-04-13 1970-12-04 Woven loose sheets of neutral synthetic fibres - for barrages and dykes
FR2049147A2 (en) * 1968-04-13 1971-03-26 Naue Kg E A H Woven loose sheets of neutral synthetic fibres - for barrages and dykes
US3621092A (en) * 1969-02-20 1971-11-16 Union Carbide Corp Stamping process
US3819465A (en) * 1969-04-29 1974-06-25 Troy Mills Inc Non-woven textile products
US3664909A (en) * 1970-03-25 1972-05-23 Ppg Industries Inc Needled resin fibrous article
US3849148A (en) * 1970-08-14 1974-11-19 Ppg Industries Inc Method of treating glass fibers to improve adhesion to polyolefins
GB1366636A (en) * 1971-12-16 1974-09-11 Permali Ltd Fibrereinforced resin
DE2312816C3 (en) * 1973-03-15 1983-02-03 Basf Ag, 6700 Ludwigshafen Process for the continuous production of semi-finished products from glass fiber reinforced thermoplastics
US4158557A (en) * 1978-04-26 1979-06-19 Ppg Industries, Inc. Method and apparatus for forming fiber mat
US4277531A (en) * 1979-08-06 1981-07-07 Ppg Industries, Inc. High strength fiber glass reinforced thermoplastic sheets and method of manufacturing same involving a reverse barb needling procedure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3507720A1 (en) * 1985-03-05 1986-09-11 Albert 7518 Bretten Spaay WORKING METHOD FOR THE PRODUCTION OF BLANKS OR SEMI-FINISHED FIBER-REINFORCED RESIN MOLDS FOR RESIN MOLDING PRESSES
DE3507720C2 (en) * 1985-03-05 1997-08-14 Rieter Automotive Int Ag Method and device for producing a blank from glass fiber reinforced plastic

Also Published As

Publication number Publication date
NL188099B (en) 1991-11-01
US4335176A (en) 1982-06-15
DE3112496A1 (en) 1982-07-01
NL8100400A (en) 1982-06-16
GB2088282A (en) 1982-06-09
GB2088282B (en) 1984-07-18
CA1174579A (en) 1984-09-18
JPS6038266B2 (en) 1985-08-30
NL188099C (en) 1992-04-01
FR2494632A1 (en) 1982-05-28
JPS5787947A (en) 1982-06-01
IT8119603A0 (en) 1981-02-09
IT1135372B (en) 1986-08-20
BE887584A (en) 1981-08-19
FR2494632B1 (en) 1985-01-25
CH647977A5 (en) 1985-02-28

Similar Documents

Publication Publication Date Title
DE3112496C2 (en)
DE3050887C2 (en) Tear-resistant glass fiber reinforced thermoplastic films
DE2948820C2 (en)
DE3508941C2 (en)
EP0319832B1 (en) Thermoplastic glass mat-reinforced preform
DE2948235A1 (en) METHOD FOR PRODUCING A RESIN PANEL REINFORCED WITH FIBERGLASS
DE2456109C3 (en) Process for the production of a scrim from parallel flocks of intersecting threads, yarns or the like
DE2310991A1 (en) METHOD FOR MANUFACTURING A POROUS, THERMOPLASTIC RESIN ARTICLE REINFORCED WITH GLASS MATS
DE3521374A1 (en) METHOD FOR PRODUCING A FILM COMPOSITE AND THAN MANUFACTURED FILM COMPOSITE
EP0597075B1 (en) Process for producing a needled carpet and needled carpet
DE4301423C2 (en) Process for forming a liquid crystal resin composite and molding a product therefrom
DE1956038A1 (en) Method and device for producing fiber-reinforced plates or foils from thermoplastic material and plate or foil produced by the method
DE1560899A1 (en) Composite reinforced resin sheet
EP1453659B1 (en) Method for producing fiberglass-reinforced or carbon fiber-reinforced synthetic materials
DE1479995B2 (en) PROCESS FOR IMPROVING THE ADHESION BETWEEN A THERMO PLASTIC POLYMER MATERIAL LAYER AND A FIBER-BASED TEXTILE LAYER AND A TEXTILE LAYER CONTAINING GLASS FOR PERFORMING THE PROCESS
DE3321006A1 (en) Process for producing glass fibre mats
DE3717321C2 (en) Process for producing a flat component reinforced by rovings
DE102004009245B4 (en) Method for producing a plastic molded part consisting of a nonwoven layer partly penetrated by a plastic material in the direction of the layer thickness
DE3737675C2 (en)
DE69821478T2 (en) Multi-layer film for the surface coating of moldings
EP3693500A1 (en) Method for producing a multilayer material
DE4217440C2 (en) Process for the production of a needled carpet and a needled carpet
DE2167246C2 (en) Fibrous or filamentary coextruded composite structure
DE69937842T2 (en) METHOD FOR PRODUCING A MAT AND OBJECTS PRODUCED FROM THEREOF
DE2236286A1 (en) FIBER FIBER FABRIC WITH A NET-LIKE STRUCTURE AND THE PROCESS FOR THE PRODUCTION THEREOF

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
D2 Grant after examination
8363 Opposition against the patent
8365 Fully valid after opposition proceedings
8327 Change in the person/name/address of the patent owner

Owner name: PPG INDUSTRIES OHIO, INC., CLEVELAND, OHIO, US