DE3032461A1 - Alloyed metal contact prodn. on oriented semiconductor crystal - by rastering surface with intense pulsed laser light before applying metal assists alloying - Google Patents

Alloyed metal contact prodn. on oriented semiconductor crystal - by rastering surface with intense pulsed laser light before applying metal assists alloying

Info

Publication number
DE3032461A1
DE3032461A1 DE19803032461 DE3032461A DE3032461A1 DE 3032461 A1 DE3032461 A1 DE 3032461A1 DE 19803032461 DE19803032461 DE 19803032461 DE 3032461 A DE3032461 A DE 3032461A DE 3032461 A1 DE3032461 A1 DE 3032461A1
Authority
DE
Germany
Prior art keywords
oriented
alloyed
metal contact
semiconductor
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19803032461
Other languages
German (de)
Other versions
DE3032461C2 (en
Inventor
Eberhard F. Dipl.-Phys. Dr. 8023 Pullach Krimmel
Hubert Dr.-Ing. 8000 München Patalong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19803032461 priority Critical patent/DE3032461A1/en
Priority to US06/289,880 priority patent/US4359486A/en
Priority to EP81106341A priority patent/EP0046914B1/en
Priority to JP13254981A priority patent/JPS5772322A/en
Publication of DE3032461A1 publication Critical patent/DE3032461A1/en
Application granted granted Critical
Publication of DE3032461C2 publication Critical patent/DE3032461C2/de
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/24Alloying of impurity materials, e.g. doping materials, electrode materials, with a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2636Bombardment with radiation with high-energy radiation for heating, e.g. electron beam heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Thyristors (AREA)

Abstract

In the prodn. of alloyed metal contact layers on crystal-oriented semiconductor surfaces by energy pulse radiation, the intended area of the semiconductor surface is first rastered with a close sequence of intensive laser light pulses. Then the metal layer is applied and alloyed with the semiconductor surface in conventional manner. The process is used on (100) oriented Si crystals used for the prodn. of transistors, esp. thyristors contg. controllable short circuits produced by integrated FETs. Pretreatment favours alloying and the formation of alloy layers of uniform thickness.

Description

Verfahren -zum-Herstellen von legierten Metalikontakt-Process for producing alloyed metal contacts

schichten - auf kristallorientierten Halbleiteroberflächen mittels EnergieDulsbestrahlung.layers - on crystal-oriented semiconductor surfaces by means of Energy pulse irradiation.

Die vorliegendesPatentsnmeldung betrifft ein Verfahren zur Herstellung von legierten Metallkontaktschichten auf kristallorientierten Haibleiteroberflächen mittels Energiepul-sbestrah1ung.The present patent application relates to a method of manufacture of alloyed metal contact layers on crystal-oriented semiconductor surfaces by means of energy pulse radiation.

Ein solches Verfahren ist aus der deutschen Patentschrift 28 25 212 bekannt. Bei diesem Verfahren werden extrem aunne Metallschichten, welche durch Aufdampfen, Zerstäuben, elektrolytische Abscheidung oder lonenimplantation auf einem Halbleitersubstrat aufgebracht worden sind, mit einem intensiven kurzen Laserlichtpuls bestrahlt und dabei an die Haibleiteroberfläche anlegiert.Such a method is from German patent specification 28 25 212 known. In this process extremely aunne metal layers, which through Vapor deposition, sputtering, electrodeposition or ion implantation on one Semiconductor substrate have been applied, with an intense short laser light pulse irradiated and thereby alloyed to the semiconductor surface.

Dabei müssen die Bestrahlungsbedingungen so gewählt werden, daß in dem -Substrat keine nennenswerte Diffusion stattfindet. Die Pulsdauer der Laserlichtpulse liegt deshalb im Nanosekundenbereich. Das bekannte Verfahren ist auf die'Herstellung extrem dünner Metalistrukturen, wie sie-beispielsweise in der VLSI-Technologie Anwendung finden, beschränkt.The irradiation conditions must be chosen so that in No significant diffusion takes place on the substrate. The pulse duration of the laser light pulses is therefore in the nanosecond range. The known process is based on the manufacture extremely thin metal structures, such as those used in VLSI technology, for example find limited.

In der Halbleitertechnologie wählt man im allgemeinen die Oberflächen, z.B. für Siliziummaterial, aus dem Bauelemente hergestellt werden sollen, in der Ebene einer bestimmten bevorzugten Kristallorientierung.In semiconductor technology, one generally chooses the surfaces e.g. for silicon material from which components are to be manufactured, in which Plane of a certain preferred crystal orientation.

Beispielsweise werden die Thyristoren der Zukunft mit Hilfe integrierter Feldeffekttransistoren erzeugte, steuerbare -Kurzschlüsse enthalten. Daher wird es notwendig-sein, die teistungshalbleiter- und dieMOS-Technik miteinander zu kombinieren. Während in der Leistungshalb leitertechnik wegen der guten Legierbarkeit 11-orientiertes Silizium verwendet wird, wird in der MOS-Technik vorzugsweise 9100>-orientiertes Silizium als Ausgangsmaterial verarbeitet, weil hier andere Kristalleigenschaften erheblich schwerer ins Gewicht fallen.For example, the thyristors of the future will be more integrated with the help of Contain controllable short circuits generated by field effect transistors. Hence will it may be necessary to use power semiconductor and MOS technology together to combine. While in the power semiconductor technology because of the good alloyability 11-oriented silicon is used, is preferably 9100> -oriented in MOS technology Silicon processed as the starting material because it has different crystal properties are considerably more significant.

Ein weiterer wesentlicher Gesichtspunkt ist, daß sich #100#-Silizium-Grundmaterial leichter ziehen und homogener dotieren läßt als #111#-silizium. 9100>-Silizium ist deshalb erheblich wirtschaftlicher herstellbar. Die Verwendung des #100#-Siliziums wäre deshalb auch vorteilhafter für die Herstellung von Leistungshalbleiterbauelementen.Another important consideration is that # 100 # silicon base material Can be drawn more easily and doped more homogeneously than # 111 # silicon. 9100> silicon can therefore be produced much more economically. Using the # 100 # silicon would therefore also be more advantageous for the production of power semiconductor components.

Der Einsatz von <1 00 -orientiertem Silizium zur Herstellung von Thyristoren stöBt jedoch bei der Legierung zwischen Metallschichten und Silizium auf Schwierigkeiten. Die Aluminium-Silizium-Legierung erfolgt in (100>-orientiertem Silizium-Oberflächen sehr ungleichmäßig, sodaß die negative Sperrfähigkeit sehr mangelhaft ist.The use of <1 00 -oriented silicon for the production of Thyristors, however, interfere with the alloy between metal layers and silicon on difficulties. The aluminum-silicon alloy is made in (100> -oriented Silicon surfaces very uneven, so the negative blocking ability is very is deficient.

Die Aufgabe, die der Erfindung zugrundeliegt, besteht deshalb darin, die Legiernngsfreudigkeit einer dünnen Oberflächenschicht der <1 00 --orientierten Siliziumkristallscheibe gegenüber dem Kontaktmetall zu erhöhen, damit die gesamte Fläche gleich zu Beginn des Legierungsvorganges anlegiert und dadurch eine gleichmäßig dicke Legierungsschicht erreicht wird.The object on which the invention is based is therefore to the ability to alloy a thin surface layer of the <1 00 -oriented To increase silicon crystal wafer compared to the contact metal, thus the entire The surface is alloyed right at the beginning of the alloying process and thus a uniform thick alloy layer is achieved.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß vor dem Aufbringen der Metallkontaktschicht der für den Metallkontakt vorgesehene Bereich der Halbleiteroberfläche mit einer dichten Folge intensiver Laserlichtpulse abgerastert wird, anschließend die Metallschicht aufgebracht und in bekannter Weise in die Halbleiterober- fläche einlegiert wird.According to the invention, this object is achieved in that prior to application of the metal contact layer is the area of the semiconductor surface provided for the metal contact is scanned with a dense sequence of intense laser light pulses, then the metal layer is applied and in a known manner in the semiconductor surface area is alloyed.

Dabeili-egt es im Rahmen der Erfindung, daß als Halbleiteroberfläche eine in #100#-Richtung orientierte Sili---ziumkristalloberfläche und- als Kontaktmetall z. B.Dabeili-egt within the scope of the invention that as a semiconductor surface a silicon crystal surface oriented in the # 100 # direction and as a contact metal z. B.

Aluminium, welches vorzugsweise in Form einer Folie aufgepreßt wird, verwendet-wird.Aluminum, which is preferably pressed on in the form of a foil, is used.

Gemäß einem besonders günstigen Ausführungsbeispiel nach der Lehre der-Erfindung wird ein Nd:YG-Pulslaser mit einer Wellenlänge von 1,06 /um, einer Pulsdauer von 0,5 µs und einer Leistung im Bereich-von 50 Watt verwendet,-- das Lichtstrahlenbündel des Lasers auf einen Durchmesser-von 50 e fokussiert und die zu behandelnde Halbleiteroberfläche mit einer Pulsfrequenz von 4 kHz durch dichtes Nèbeneinandersetzen der Einzelstrahlenbündelquerschnitte abgerastert. Die gesamte Bestrahlungszeit für eine etwa 7,5 cm große #100#-orientierte Siliziumkristallscheibe beträgt für dieses Beispiel ca.According to a particularly favorable embodiment according to the teaching of the invention is a Nd: YG pulse laser with a wavelength of 1.06 / µm, a Pulse duration of 0.5 µs and a power in the range of 50 watts used - that Light beam of the laser focused on a diameter of 50 e and the semiconductor surface to be treated with a pulse frequency of 4 kHz through dense Placing the individual beam cross-sections scanned next to one another. The whole Irradiation time for an approximately 7.5 cm large # 100 # -oriented silicon crystal wafer for this example is approx.

1 Minute.1 minute.

Das Verfahren nach der Lehre der Erfindung läßt sich folgendermaßen erklären: Wird eine SiIizi-umoberfläche mit einem kurzen Laser-Lichtpuls oterhalb einer kritischen Intensität Ikr be--strahlt, so verdampft von der bestrahlten Oberflächenstelle- e;as Silizium. Dadurch entsteht ein kleiner Krater vom Durchmesser des Laserstrahlbündels. Beim Abkühlen dieser Stelle bildet sich insbesondere an den Kraterrändern eine mit-vielen Versetzungslinien durchwachsene polykristalline - Oberflächenschicht. Wird die kritische Intensität 1kr nicht allzusehr überschritten, bleibt das Versetzungsliniennetzwerk auf diese Oberflächenschicht begrenzt.The method according to the teaching of the invention can be as follows Explain: Will a silicon surface with a short laser light pulse outside a critical intensity Ikr irradiated, so evaporated from the irradiated surface area- e; as silicon. This creates a small crater the diameter of the laser beam. When this point cools down, one with many forms, especially at the crater edges Dislocation lines through-grown polycrystalline surface layer. Will be the critical one If intensity 1kr is not exceeded too much, the dislocation line network remains limited to this surface layer.

Das dichte Versetzungsliniennetzwerk und die verschiedenen Orientierungen der Kristallite der polykristallinen Oberflächenschicht begünstigen das Anlösen des Silizium durch das Aluminium und das auch bei (100>-orientierten Siliziumscheiben, so daß sich eine gleichmäßig dünne Oberflächen-Aluminium-Silizium-Legierungsschicht ausbildet.The dense network of dislocation lines and the different orientations the crystallites of the polycrystalline Favor surface layer the dissolving of the silicon by the aluminum and that also with (100> -oriented Silicon wafers, so that there is a uniformly thin surface aluminum-silicon alloy layer trains.

Elektronenstrahlbeugungsdiagramme in Reflexion zeigen von der unbestrahlten, geläppten Scheibenrückseite das Kikuchi-Diagramm einer perfekten einkristallinen Oberflächenschicht. Nach dem Laserbestrahlen an Luft werden diffuse Debye-Scherrer-Ringe sichtbar, die auf eine dünne, nicht notwendigerweise stöchiometrische Oxidschicht hinweisen. Diese Oxidschicht ist ca. 30 nm dick. Nach dem Abätzen mit Fluß säure erscheinen einzelne Bragg-Reflete überlagert mit einem Debve-Scherrer~Ringsystem, das von polykristallinen Oberflächenbereichen stammt. Die Kraterböden dürften einkristallin sein, während die Kraterränder polykristalline Struktur besitzen. Demnach ist das Verfahren umso wirkungsvoller, je feiner das Laserlichtstrahlenbündel fokussiert ist und je dichter die einzelnen Bestrahlungsflecke liegen. Im Gegensatz zu dem in der deutschen Patentschrift 28 25 212 beschriebenen Verfahren zum Anlegieren extrem dünner Strukturen ist das erfindungsgemäße Verfahren insbesondere zum Herstellen dickerer Legierungsschichten geeignet.Electron beam diffraction diagrams in reflection show from the unirradiated, lapped disk back the Kikuchi diagram of a perfect single crystal Surface layer. After laser irradiation in air, diffuse Debye-Scherrer rings become visible on a thin, not necessarily stoichiometric oxide layer Clues. This oxide layer is approx. 30 nm thick. After etching with hydrofluoric acid appear individual Bragg references superimposed with a Debve-Scherrer ring system, that originates from polycrystalline surface areas. The crater floors are likely to be monocrystalline while the crater rims have a polycrystalline structure. So that is The more finely focused the laser light beam, the more effective the method and the closer the individual radiation spots are. In contrast to that in the German patent 28 25 212 described method for alloying The method according to the invention is particularly useful for producing extremely thin structures thicker alloy layers are suitable.

Im folgenden sollen anhand eines Ausführungsbeispiels und der Figuren 1 bis 4 die einzelnen Verfahrensschritte schematisch dargestellt und noch kurz erläutert werden.In the following, using an exemplary embodiment and the figures 1 to 4 the individual process steps are shown schematically and briefly explained will.

Dabei gelten in den Figuren für gleiche Teile die gleichen Bezugszeichen.The same reference numerals apply to the same parts in the figures.

Eine Siliziumkristallscheibe 1 mit einer in <i00-Richtung orientierten Oberfläche wird, wie in Figur 1 dargestellt, mit scharf fokussiertem, intensiven Laserlichtpulsen 2 abrasternd bestrahlt, so daß Verdampfungskrater mit einer dunnen Oberflächenschicht 3 aus ausgedehnten Versetzungsliniennetzwerken und Polykristallen entstehen, die der nachfolgenden Legierung keinen Widerstand mehr entgegensetzen.A silicon crystal wafer 1 with one oriented in the <i00 direction Surface is, as shown in Figure 1, with sharply focused, intense Laser light pulses 2 irradiated scanning, so that evaporation craters with a thin Surface layer 3 of extensive dislocation line networks and Polycrystals are formed which no longer offer any resistance to the subsequent alloy oppose.

Auf diese gestörte Oberflächenschicht 3 wird, wie aus Figur 2 zu entnehmen ist, eine Aluminium-Schicht 4 durch Aufdampfen, Zerstäuben, elektrolytische Abscheidung oder durch Anpressen einer Folie aufgebracht und in den Halbleiterkörper 1 einlegiert. Dabei bildet sich zunächst auf der Siliziumkristallscheibe 1 eine Aluminium-Silizium-Schmelze 14 (siehe Figur 3), welche bei der Abkuhlwig in ein Aluminium-Silizium-Eutektikum 24 und eine p-leitende Siliziumschicht 5 übergeht (siehe Figur 4).As can be seen from FIG. 2, this disrupted surface layer 3 is applied is an aluminum layer 4 by vapor deposition, sputtering, electrodeposition or applied by pressing a film on and alloyed into the semiconductor body 1. In the process, an aluminum-silicon melt is initially formed on the silicon crystal disk 1 14 (see Figure 3), which during the cooling phase into an aluminum-silicon eutectic 24 and a p-conductive silicon layer 5 passes over (see Figure 4).

Nach der Durchführung des Verfahrens nach der Lehre der Erfindung wurden in Bezug auf die elektrischen Parameter folgende Ergebnisse erzielt: Es wurden Thyristoren, welche mittels integrierter Feldeffekttransistoren erzeugte steuerbare Kurzschlüsse enthalten, aus <10C5-Silizium hergestellt. Ein Teil der 00>-.orientierten Silizium-Scheiben wurden vor der Legierung der erfindungsgemäß en Laserbehandlung unterzogen. Die Häufigkeit der gemessenen Sperrfähigkeit URIV in negativer Richtung ist -aus den Figuren 5 und 6 ersichtlich-. Die Sperrfähigkeit ist bei den unbehandelten Scheiben (siehe Figur 5), wie auch in früheren Versuchen schon festgestellt wurde, schlecht. Bei den laserbehandelten Scheiben (siehe Figur 6) dagegen ist die negative Sperrfähigkeit grundlegend verbessert und erreicht die Sperrfähigkeit von Thyristoren aus <111>-orientierten Silizium. Damit ist gezeigt, daß auch <i 00> -orientiertes Silizium mit Aluminium legierbar ist, wenn die zu legierende Fläche vorher eine dementsprechende Laserbehandlung erçåhrt. An den Laser selbst werden dabei keine besonderen Güteanforderungen gestellt.After performing the method according to the teaching of the invention the following results were obtained with regard to the electrical parameters: Thyristors, which are generated controllable by means of integrated field effect transistors Contains short circuits, made from <10C5 silicon. Part of the 00> -. Oriented Before alloying, silicon wafers were subjected to the laser treatment according to the invention subjected. The frequency of the measured blocking ability URIV in the negative direction can be seen from FIGS. 5 and 6. The blocking ability is with the untreated Discs (see Figure 5), as was also found in earlier experiments, bad. In the case of the laser-treated disks (see FIG. 6), however, the negative one Blocking ability fundamentally improved and reaches the blocking ability of thyristors made of <111> -oriented silicon. This shows that <i 00> -oriented silicon can be alloyed with aluminum if the surface to be alloyed a corresponding laser treatment has been given beforehand. Be at the laser itself there are no special quality requirements.

Durch das Verfahren nach der Lehre der Erfindung ist die Möglichkeit gegeben, die MOS-Technologie und die Bipolar-Technologie besser zu integrieren.By the method according to the teaching of the invention is the opportunity given to better integrate the MOS technology and the bipolar technology.

7 Patentansprüche 6 Figuren Leerseite7 claims 6 figures Blank page

Claims (7)

Patentansprüche.Claims. Verfahren zur Herstellung von legierten Metallkontaktschichten auf kristallorientierten Halbleiteroberflächen mittels Energiepulsbestrahlung, d a d u r c h g e -k e n n z e i c h n et -, daß vor dem Aufbringen der Metallkontaktschicht der für den-Metallkontakt vorgesehene Bereich der Halbleiteroberfläche mit einer dichten Folge intensiver Laserlichtpulse abgerastert wird, anschließend die Metallschicht aufgebracht und in bekarnter Weise in die Halbleiteroberfläche einlegiert wird. Process for the production of alloyed metal contact layers crystal-oriented semiconductor surfaces by means of energy pulse radiation, d a d u r c h g e -k e n n z e i c h n et - that before the application of the metal contact layer the area of the semiconductor surface intended for metal contact with a dense sequence of intense laser light pulses is scanned, then the metal layer is applied and alloyed into the semiconductor surface in a known manner. 2. Verfahren nach Anspruch 1, d a d u r c h g e -k e n n z e i c -h n e t , daß als Halbleiteroberfläche eine in #100#-Richtung orientierte Siliziumkristalloberfläche und al-Kontaktmetall Aluminium verwendet wird.2. The method according to claim 1, d a d u r c h g e -k e n n z e i c -h n e t that the semiconductor surface is a silicon crystal surface oriented in the # 100 # direction and aluminum contact metal is used. 3. Verfahren nach Anspruch 2, d a d u r c h g e -k e nn z e i c h n e t , daß das Aluminium in Form einer Folie aufgepreßt wird.3. The method according to claim 2, d a d u r c h g e -k e nn z e i c h Not that the aluminum is pressed on in the form of a foil. 4. Verfahren nach Anspruch 1 bis 3, d a d u r c h g e -k e n n z e i c h n e t- , daß ein Nd:YAG-Pulslaser mit einer Wellenlänge # von 1,O& /um, einer Pulsdauer von 0,5 µs und einer Leistung im Bereich von 50 W-verwendet wird.4. The method according to claim 1 to 3, d a d u r c h g e -k e n n z e i c h n e t- that a Nd: YAG pulse laser with a wavelength # of 1, O & / um, a pulse duration of 0.5 µs and a power in the range of 50 W is used. 5. Verfahren nach Anspruch 4, d a d u r c h g e -k e n n ze i c h n e t , daß das Lichtstrahlenbündel des Lasers auf einen Durchmesser von 50 µm fokussiert und- die- zu behandelnde tIalbleiteroberfläche mit einer Pulsfrequenz von 4 kHz durch dichtes Nebeneinandersetzen der Einzelstrahlenbündelquerschnitte abgerastert wird.5. The method according to claim 4, d a d u r c h g e -k e n n ze i c h n e t that the light beam of the laser focuses on a diameter of 50 microns and the semiconductor surface to be treated with a pulse frequency of 4 kHz scanned by placing the individual beam cross-sections close together will. 6. Verfahren nach Anspruch 1 bis 5, da d u r c h g- e k e n n z -e i c h n e t , daß die gesamte Bestrahlungs- zeit für eine etwa 7,5 cm große <100ß-orientierte Siliziuinkristallscheibe auf ca. 1 Minute eingestellt wird.6. The method according to claim 1 to 5, since d u r c h g e k e n n z -e i c h n e t that the entire irradiation time for about 7.5 cm large <100 [beta] -oriented silicon crystal disk set to approx. 1 minute will. 7. Anwendung des Verfahrens nach Anspruch 1 bis 6 zur Herstellung von Halbleiterbauelementen, insbesondere zur Herstellung von Thyristoren, welche mittels integrierter Feldeffekttransistoren erzeugte, steuerbare Kurzschlüsse enthalten.7. Application of the method according to claim 1 to 6 for the production of semiconductor components, in particular for the production of thyristors, which Contain controllable short circuits generated by means of integrated field effect transistors.
DE19803032461 1980-08-28 1980-08-28 Alloyed metal contact prodn. on oriented semiconductor crystal - by rastering surface with intense pulsed laser light before applying metal assists alloying Granted DE3032461A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19803032461 DE3032461A1 (en) 1980-08-28 1980-08-28 Alloyed metal contact prodn. on oriented semiconductor crystal - by rastering surface with intense pulsed laser light before applying metal assists alloying
US06/289,880 US4359486A (en) 1980-08-28 1981-08-04 Method of producing alloyed metal contact layers on crystal-orientated semiconductor surfaces by energy pulse irradiation
EP81106341A EP0046914B1 (en) 1980-08-28 1981-08-14 Method of forming alloyed metal contact layers on crystallographically oriented semiconductor surfaces using pulsed energy radiation
JP13254981A JPS5772322A (en) 1980-08-28 1981-08-24 Method of generating alloyed metallic contact layer to surface of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803032461 DE3032461A1 (en) 1980-08-28 1980-08-28 Alloyed metal contact prodn. on oriented semiconductor crystal - by rastering surface with intense pulsed laser light before applying metal assists alloying

Publications (2)

Publication Number Publication Date
DE3032461A1 true DE3032461A1 (en) 1982-04-01
DE3032461C2 DE3032461C2 (en) 1989-04-13

Family

ID=6110613

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19803032461 Granted DE3032461A1 (en) 1980-08-28 1980-08-28 Alloyed metal contact prodn. on oriented semiconductor crystal - by rastering surface with intense pulsed laser light before applying metal assists alloying

Country Status (2)

Country Link
JP (1) JPS5772322A (en)
DE (1) DE3032461A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282478A (en) 2002-01-17 2003-10-03 Sony Corp Method for alloying and method forming wire, method for forming display element, and method for manufacturing image display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1540991A1 (en) * 1964-11-19 1970-02-19 Philips Nv Method for producing a body with a transition between two different materials, in particular semiconductor materials and bodies produced by this method
DE1514288B2 (en) * 1964-12-11 1974-10-31 N.V. Philips' Gloeilampenfabrieken, Eindhoven (Niederlande) Method for attaching a semiconductor body to a carrier plate
US4059461A (en) * 1975-12-10 1977-11-22 Massachusetts Institute Of Technology Method for improving the crystallinity of semiconductor films by laser beam scanning and the products thereof
DE2625917B2 (en) * 1975-06-19 1979-04-12 Asea Ab, Vaesteraas (Schweden) Semiconductor device
DE2825212B1 (en) * 1978-06-08 1979-07-12 Siemens Ag Process for the production of semiconductor components using a short, intense laser light pulse
GB2035690A (en) * 1978-11-17 1980-06-18 Keller R Semiconductor device and a method of contacting a partial region of a semiconductor surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111061A (en) * 1975-03-26 1976-10-01 Hitachi Ltd Electrode forming method
JPS5723223A (en) * 1980-07-18 1982-02-06 Fujitsu Ltd Manufacture of compound semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1540991A1 (en) * 1964-11-19 1970-02-19 Philips Nv Method for producing a body with a transition between two different materials, in particular semiconductor materials and bodies produced by this method
DE1514288B2 (en) * 1964-12-11 1974-10-31 N.V. Philips' Gloeilampenfabrieken, Eindhoven (Niederlande) Method for attaching a semiconductor body to a carrier plate
DE2625917B2 (en) * 1975-06-19 1979-04-12 Asea Ab, Vaesteraas (Schweden) Semiconductor device
US4059461A (en) * 1975-12-10 1977-11-22 Massachusetts Institute Of Technology Method for improving the crystallinity of semiconductor films by laser beam scanning and the products thereof
DE2825212B1 (en) * 1978-06-08 1979-07-12 Siemens Ag Process for the production of semiconductor components using a short, intense laser light pulse
GB2035690A (en) * 1978-11-17 1980-06-18 Keller R Semiconductor device and a method of contacting a partial region of a semiconductor surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US-Z.: IEEE Journal of Solid-State Circuits, Vol. SC-10, Nr. 4, August 1974, S. 219-228 *

Also Published As

Publication number Publication date
DE3032461C2 (en) 1989-04-13
JPS5772322A (en) 1982-05-06

Similar Documents

Publication Publication Date Title
EP0046914B1 (en) Method of forming alloyed metal contact layers on crystallographically oriented semiconductor surfaces using pulsed energy radiation
DE1933690C3 (en) Method for producing an at least regionally monocrystalline film on a substrate
DE2412102C2 (en) Method and device for producing a doped semiconductor zone and an ohmic contact double layer thereon
DE4229399C2 (en) Method and device for producing a functional structure of a semiconductor component
DE3541587C2 (en) Process for the production of a thin semiconductor film
DE10205323B4 (en) Method for producing a semiconductor component
DE2258444A1 (en) PROCESS AND MANUFACTURING OF ELECTRICAL INSULATING ZONES IN OPTICAL COMPONENTS
DE112019006396B4 (en) FREE-STANDING POLYCRYSTALLINE DIAMOND SUBSTRATE AND METHOD OF MAKING THE SAME
DE3311635A1 (en) SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
DE3126953C2 (en) Process for the thermal treatment of the surface of workpieces by means of a linearly polarized laser beam
DE1544275C3 (en) Process for the formation of zones of different conductivity in semiconductor crystals by ion implantation
DE112011100451T5 (en) Method for producing a semiconductor device and device for producing a semiconductor device
DE2917654A1 (en) ARRANGEMENT AND METHOD FOR SELECTIVE, ELECTROCHEMICAL ETCHING
DE3240162C2 (en) Method of fabricating a double-diffused source-based short-circuit power MOSFET
DE3123949A1 (en) METHOD FOR PRODUCING SEMICONDUCTOR ARRANGEMENTS BY ION IMPLANTATION
DE3231671T1 (en) SUPPORT OF STRUCTURES BASED ON SEMICONDUCTOR MATERIALS OF GROUP IV
DE1764066B1 (en) Diamond nuclear radiation detector and process for its manufacture
DE2705444A1 (en) Semiconductor prodn. process using locally limited heating - involves electromagnetic irradiation in specified pulses through mask
DE3032461A1 (en) Alloyed metal contact prodn. on oriented semiconductor crystal - by rastering surface with intense pulsed laser light before applying metal assists alloying
DE1963131A1 (en) Method of manufacturing semiconductor elements
DE19633183A1 (en) Semiconductor component with foreign atoms introduced by ion implantation and method for its production
DE2837750A1 (en) METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS
DE19825635C1 (en) Method of producing polycrystalline silicon thin films for microelectronic components, especially thin film transistors on glass substrates
DE2837653A1 (en) Local heating of small semiconductor regions - using thin masking film of low absorptivity and specified refraction forming partly dielectric mirror and partly anti-reflexing coating
DE3045784A1 (en) Alloyed metal contact prodn. on oriented semiconductor crystal - by rastering surface with intense pulsed laser light before applying metal assists alloying

Legal Events

Date Code Title Description
AG Has addition no.

Ref country code: DE

Ref document number: 3045784

Format of ref document f/p: P

OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
AG Has addition no.

Ref country code: DE

Ref document number: 3045784

Format of ref document f/p: P

8110 Request for examination paragraph 44
AG Has addition no.

Ref country code: DE

Ref document number: 3045784

Format of ref document f/p: P

D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee