DE2707715A1 - Utilising solar energy for desalination and salt prodn. - using heat exchanger at atmospheric pressure supplying sea-water to vacuum evaporator - Google Patents

Utilising solar energy for desalination and salt prodn. - using heat exchanger at atmospheric pressure supplying sea-water to vacuum evaporator

Info

Publication number
DE2707715A1
DE2707715A1 DE19772707715 DE2707715A DE2707715A1 DE 2707715 A1 DE2707715 A1 DE 2707715A1 DE 19772707715 DE19772707715 DE 19772707715 DE 2707715 A DE2707715 A DE 2707715A DE 2707715 A1 DE2707715 A1 DE 2707715A1
Authority
DE
Germany
Prior art keywords
heat exchanger
water
salt
vacuum
vacuum evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19772707715
Other languages
German (de)
Inventor
Auf Nichtnennung Antrag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FRITZEN HELMUT ING GRAD
Original Assignee
FRITZEN HELMUT ING GRAD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FRITZEN HELMUT ING GRAD filed Critical FRITZEN HELMUT ING GRAD
Priority to DE19772707715 priority Critical patent/DE2707715A1/en
Publication of DE2707715A1 publication Critical patent/DE2707715A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/211Solar-powered water purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

A seawater desalination and salt prodn. plant is operated by solar energy and comprises solar heating panels (right) contg. circulating water pipes leading to a heat exchanger, this raises the circulating water from an inlet temp. of about 45 degrees C to an outlet temp. of about 80 degrees at the heat exchanger; seawater is pref. first passed through a solar preheater to raise it to about 40 degrees C, Then passes through the heat exchanger, rising to about 75 degrees C and then passes into a vacuum evaporator operating at 0.1 bar; the vapour from this evaporator is condensed in a vacuum condenser at the same pressure (immersed bottom left) connected to a vacuum pump. Drinking water is drawn off from this condenser. The vacuum evaporator is constructed for easy cleaning to enable encrusted salt to be removed.

Description

Titel: Mit Sonnenenergie betriebene Meerwasser-Title: Solar powered seawater

etnsalzungs - und Salzgewinnungsanlage lerzeichnis: weite 1.) Deckblatt- Verzeichnis 1 2.) Beschreibung des Verfahrens 3.) Beschriebung der Anlagenkomponenten 4,5 4.) Leistungsbeschreibung der Meerwasserentsalzungsanlage 6 5.) Kapazitätsberechnung der Anlage 7 6.) Gesamtanlage (Skizze) 3 7.) Patentansprüche 2.) Beschreibung des Verfahrens: Die Anlage besteht grundsätzliche aus zwei Kreislauf Der erste Kreislauf wird mit Brauchwasser durchflos dieses Brauchwasser zirkuliert durch die von der so aufgeheizten Rohre, wird zum Schluß gesammelt, wenn eine Temperatur von ca. 80°C erreicht hat, welches Regulieren der Strömungsgeschwindigkeit möglich ist dieser Sammeleitung gelangt das Brauchwasser in ein Wärmetauscher mit einer Temperatur von ca. 45°C. In Wärmetauscher wird vorzugsweise Gegenstromverfahren geschlagen. Das Brauchwasser sammelt sich in einem der isoliert ist, und das wasser seine Temperatur von ca. salting and salt production plant list: wide 1.) cover sheet Directory 1 2.) Description of the process 3.) Description of the system components 4,5 4.) Performance description of the seawater desalination plant 6 5.) Capacity calculation of the system 7 6.) Overall system (sketch) 3 7.) Patent claims 2.) Description of the process: The system basically consists of two circuits The first circuit is circulated with service water through this service water through the pipes so heated, is collected at the end when a temperature of approx. 80 ° C, which allows the flow rate to be regulated If this collecting line is the domestic water in a heat exchanger with a Temperature of approx. 45 ° C. The countercurrent process is preferred in the heat exchanger beaten. The service water collects in one of the insulated areas and the water its temperature of approx.

45°C hält, um erneut in den Kreislauf einfließen zu nen. Das Meerwasser wird vorgewärmt (evtl. durch 80 strahlung) im zweiten Kreislauf auf ca. 40°C und ge in den Wärmetauscher, wobei es auf ca. 75°C aufgabe wird. Das Meerwasser fließt in den Vakuumverdampfer speziell so gebaut sein muß, daß das Meerwasser auf laufender Basis in dem Vakuumverdampfer verda;npfen kann, und das anfallende salz schnell und einfach entfernt werden kann (evtl. auf mechanische Weise), was hier h schlich nachts erfolgen sollte. Entscheidend für den Vakuumverdampfer ist auch, daß das einlaufende Meerwasser auf eine große Oberfläche gebracht wird durch spezielle Verfahrensweise, um günstige Werte fur die die Verdampfung zu erhalten. 45 ° C to flow back into the cycle. The sea water is preheated (possibly by 80 radiation) in the second circuit to approx. 40 ° C and ge into the heat exchanger, where it is fed to approx. 75 ° C. The sea water flows The vacuum evaporator must be specially built in such a way that the seawater is on running Base can evaporate in the vacuum evaporator, and the resulting salt quickly and can easily be removed (possibly in a mechanical way), which crept here should be done at night. It is also crucial for the vacuum evaporator that the incoming sea water is brought to a large surface by a special procedure, in order to obtain favorable values for the evaporation.

Eine evtl. zusätzliche Beheizung des einfließenden Meerwassers in den Vakuumverdampfer durch Fremdenergie würde eine Beschleunigung der Durchgangsmenge bedeuten. Der erste Kreislauf könnte insofern aus Stahl gefertigt werden und der zweite Kreislauf aus salzbeständigem Stahl. Aus dem Vakuumverdampfer wird der Dampf abgeleitet und kondensiert im Meerwasser. Unten am Kondensatabscheider kann Trinkwasser abgeleitet werden. Oben am Kondensatabscheider wird die Leitung zum Anschluß einer Vekuumpumpe vorgesehen. Die Vakuumpump. erzeugt beim Anfahren der Anlage einen Unterdruck von ca. 0,1 at und läuft während des Betriebes der Anlage weiter, um evtl. Undichtigkeiten in den Leitungen und Komponenten auszugleichen.Any additional heating of the incoming sea water in the vacuum evaporator by external energy would accelerate the flow rate mean. The first cycle could be made of steel and the second circuit made of salt-resistant steel. The vacuum evaporator becomes the steam diverted and condensed in sea water. Drinking water can be found at the bottom of the condensate separator be derived. At the top of the condensate separator, the line is used to connect a Vacuum pump provided. The vacuum pump. creates a vacuum when the system starts up of approx. 0.1 at and continues to run while the system is in operation to prevent any leaks balance in the lines and components.

Im Vakuumverdampfer kann Meersalz technisch gewonnen werden.Sea salt can be obtained technically in a vacuum evaporator.

3.) Beschreibung der Anlagenkomponenten: a.) Sonnenenergiespeicherfläche: Diese besteht aus einzelnen Elementen, jedes Element kann dargestellt werden als eine großflächige Blechplatte, die mit einzelnen Wasserrohren längs durchzogen wird. Die Fläche ist entsprechend den Strahlungswerten optimal zu gestalten (z.U. schwarzer Anstrich usw.), daß eine max.3.) Description of the system components: a.) Solar energy storage area: This consists of individual elements, each element can be represented as a large sheet metal plate with individual water pipes running through it lengthways. The surface is to be optimally designed according to the radiation values (e.g. black Paint, etc.) that a max.

Energiezufuhr ermöglicht wird. Die einzelnen Rohre werden in ein Sammelrohr geleitet, welches das auf ca. SO-C erwärmt Wasser dem Wärmetauscher zuführt. Aufgrund von Wärmedehnungen sind Rohrkompensatoren bzw. Gleitauflager vorzusehen. Das rohwasser läuft mit ca. 45°C in die Flächen ein und verläßt diese mit ca. 80°C. Energy supply is made possible. The individual tubes are in a Collecting pipe, which feeds the water heated to approx. SO-C to the heat exchanger. Due to thermal expansion, pipe expansion joints or sliding supports must be provided. The raw water enters the surfaces at approx. 45 ° C and leaves them at approx. 80 ° C.

b.) Wärmetauscher (WT)t Bei der technischen Ausführung des WT sind folgende Kriterien zu berücksichtigen: ein Gegenstrom- WT ist anzustreben; Dampfbildung auf der Meerwassersteite ist nicht erwünscht, um Salzablagerungen möglichst zu vermeiden. Das Temperaturbild muß so sein, daß die Endtemperatur des Meerwassers gleichmäßig gewährleistet ist bei Eintritt in den Vakuumverdampfer. Ein Säubern des WT muß relativ schnell erfolgen können. Das in den WT einlaufende Meerwasser wird vorzugsweise ebenfalls durch Sonnenstrahlung vorgewärmt auf ca. 40'C, um den Temperaturverlauf im 'NT günstig zu beeinflussen.b.) Heat exchanger (WT) t In the technical design of the WT are the following criteria must be taken into account: a countercurrent heat exchanger is to be aimed for; Steam formation on the sea water side is not desirable in order to avoid salt deposits as much as possible. The temperature picture must be such that the final temperature of the sea water is uniform is guaranteed when entering the vacuum evaporator. Cleaning the WT must be relative can be done quickly. The sea water entering the WT is preferred also preheated by solar radiation to approx. 40'C to keep track of the temperature to influence favorably in the 'NT.

c.) Zwischenbehälter: Der Zwischenbehälter sammelt das aus dem WT ca. 45"C warme rohwasser und wird hier als Wärmereservoir benutzt.c.) Intermediate container: The intermediate container collects that from the WT approx. 45 "C warm raw water and is used here as a heat reservoir.

Der fiwischenbehälter muß insofern entsprechend isoliert sein, er ist erforderlich, um bei beginnender Sonneneinstrahlung eine möglichst hohe Einlauftemperatur für die bestrahlten Energiesammelflächen gewährleisten zu können. The fish tank must be insulated accordingly, he is necessary to ensure that the inlet temperature is as high as possible when the sun begins to shine to be able to guarantee for the irradiated energy collecting surfaces.

d.) Vakuumverdampfer: Die Kriterien zur technischen Ausführung des Vakuumverdampfers sind folgende: Der Vakuumverdampfer muß bei entsprechender Salzablagerung schnell gereinigt werden können.d.) Vacuum evaporator: The criteria for the technical execution of the Vacuum evaporators are as follows: The vacuum evaporator must be used when there is a corresponding salt deposit can be cleaned quickly.

Die relative Verdampfungsfläche des Meerwassers muß ziemlich hoch sein, um das Vakuum an die Oberfläche des Meerwassers gelangen zu lassen, so daß eine relativ schnelle Verdampfung ermöglicht wird. Das Vakuum beträgt ca. 0,1 at, wobei die Verdampfungstemperatur von ca. 45'C zugeordnet wird. The relative evaporation area of the sea water must be quite high be to let the vacuum reach the surface of the sea water so that a relatively rapid evaporation is made possible. The vacuum is approx. 0.1 at, whereby the evaporation temperature of approx. 45'C is assigned.

e.) Kondensator: Der Dampf aus dem Vakuumverdampfer wird im Kondensator kondensiert, welches meerwasser von ca. 15- 20°C bewirkt.e.) Condenser: The vapor from the vacuum evaporator is in the condenser condenses, which causes sea water of approx. 15-20 ° C.

Im Kondensatabscheider sammelt sich das kondensierte Frischwasser, welches unten am Kondensatabscheider abgezogen wird. Oben am Kondensatabscheider wird Vakuum gezogen vorzugsweise mittels einer rotierenden Vakuumpumpe. The condensed fresh water collects in the condensate separator, which is drawn off at the bottom of the condensate separator. At the top of the condensate trap a vacuum is drawn, preferably by means of a rotating vacuum pump.

4. Leistungsbeschreibung dieser Meerwasserentsalzungs -anlage: Da rund eine Millierde Menschen auf der Erde (Latein amerika, Asien, Afrika) nur über ein Existenzminimum an Trinkwasser verfügt (ca. 3 Liter täglich), einige hundert Millionen Hunger leiden, weil ihnen Wasser für Felder und Vieh fehlt, der Durchschnitts- Erdbewohner jedoch knapp 3000 Liter pro Tag braucht, wird in dieser Beschreibung ein Nominal- Trinkwasserverbrauch von ca.4. Description of services for this seawater desalination plant: Da around a billion people on earth (Latin America, Asia, Africa) just over has a subsistence level of drinking water (approx. 3 liters per day), a few hundred Millions go hungry because they lack water for fields and cattle, the average Earth inhabitants, however, need just under 3000 liters per day, is used in this description a nominal drinking water consumption of approx.

1000 Liter pro Person und Tag zugrundegelegt. 1000 liters per person per day is assumed.

Eine Meerwasserentsalzungsanlage von ca. ein Quadr kilometer Fläche, in der Yauptsache durch Sonnenenergie betrieben, wäre insofern in der Lage ca. 15 000 Menschen mit Trink- und Breuchwasser zu versorgen. Ein Einbringen von zusätzlicher Fremdenergie (Äbfaliverbrennung, Olverbrennung usw.) würde eine Optimierung der Anlage bed ten. Zu beachten ist, deß ein Teil von verbrauchtem Wasser mittels Klärung wiederverwendbar wäre. Die Entsalzungsanlge kenn beliebig erweitert werden. Nach vorsichtiger Schätzung kann bei dieser Anlage derzeit mit 3 einem Preis von ca. 0,1 biß 1 DW m3 Trinkwasser gerechnet werden. Bei bisher in Betrieb befindlichen Entsalzungsanlagen beträgt der Preis ca. 2,50 DM m³ Trinkwas 5. Kapazitätsberechnung der Anlage: bm 1 m3 Wasser aufzuheizen von 15°C auf 45'C sind erforderlich: Q = m x c x ( t2- t) = 1000 kg x 1 kcal/kg grd x ( 45 - 15 ) grd = 90 000 kcal/ m3 Die gesamte Verdampfungswärme fAr 1 m³ Wasser bei der Verdampfungstemperatur von ts= 45°C beträgt: vs = 570 000 kcal/ m³ Die gesamt aufzubringende Energie beträgt somit: Q + vs = 600 000 kcal/m³ Die Sonnenstrahlung besitzt eine Energie von ca. 1100 kcal/ h m2 Bei einer Strahlungsfläche von einem Quadratkilometer wird bei einer Strahlungsdauer von ca. 8 Stunden täglich folgende Energie frei: E = 1000m x 1000m x 8h x 1100 kcal/ h = 8 830 000 000 kcali Tag E : (Q + v) = 8 800 000 000 kcal/Tag 600 000 kcal/ m3 = 14 600 m³/ Tag Eine derartige Anlage würde demnach ca. 14 600 m3 Trinkwasser täglich erzeugen können. A seawater desalination plant with an area of around one square kilometer, Mainly powered by solar energy, it would be able to do approx. 15 To supply 000 people with drinking and Breuch water. An introduction of additional External energy (waste incineration, oil incineration, etc.) would optimize the It should be noted that some of the water consumed is treated by means of clarification would be reusable. The desalination plant can be expanded as required. To With a cautious estimate, a price of approx. 0.1 to 1 DW m3 of drinking water are calculated. For previously in operation Desalination plants the price is about 2.50 DM m³ drinking water 5. Capacity calculation of the system: bm 1 m3 of water are to be heated from 15 ° C to 45'C required: Q = m x c x (t2- t) = 1000 kg x 1 kcal / kg deg x (45 - 15) deg = 90,000 kcal / m3 The total heat of evaporation for 1 m³ of water at the evaporation temperature from ts = 45 ° C is: vs = 570,000 kcal / m³ The total energy to be applied is thus: Q + vs = 600,000 kcal / m³ The solar radiation has an energy of approx. 1100 kcal / h m2 With a radiation area of one square kilometer, one Radiation duration of approx. 8 hours daily releases the following energy: E = 1000m x 1000m x 8h x 1100 kcal / h = 8 830 000 000 kcali day E: (Q + v) = 8 800 000 000 kcal / day 600,000 kcal / m3 = 14,600 m³ / day. Such a system would therefore be approx. 14,600 m3 of drinking water can produce daily.

Claims (1)

7. Patentansprüche: a.) Das Verfahrensprinzip "mit Sonnenenergie betriebene Meerwasserentsalzungs- und Salzgewinnungsanlage" nach Deschreibung seite 2 und 7, sowie schemazelennung seite 3, dadurch gekennzeichnet, daß das vorgeschlagene Anlagenkonzept eine dargestellte möglichkeit der Entsalzung von Meerwasser bedeutet.7. Claims: a.) The process principle "powered by solar energy Seawater desalination and salt production plant "according to the description on pages 2 and 7, and schema separation page 3, characterized in that the proposed system concept an illustrated possibility of desalination of sea water means. b.) Technische Anlagenkonzeption bzw. deren Komponenten nach a.), dadurch gekennzeichnet, daß aufgrund der dargestellten Anlagenkonzeption und deren Komponenten, wie in Seite 4 und 5 erläutert eine Entselzung von Meerwasser als techn. Möglichkeit betrachtet werden kann.b.) Technical system design or its components according to a.), characterized in that due to the system design shown and their Components, as explained in pages 4 and 5, a desseling of seawater as a techn. Possibility can be considered.
DE19772707715 1977-02-23 1977-02-23 Utilising solar energy for desalination and salt prodn. - using heat exchanger at atmospheric pressure supplying sea-water to vacuum evaporator Pending DE2707715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19772707715 DE2707715A1 (en) 1977-02-23 1977-02-23 Utilising solar energy for desalination and salt prodn. - using heat exchanger at atmospheric pressure supplying sea-water to vacuum evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19772707715 DE2707715A1 (en) 1977-02-23 1977-02-23 Utilising solar energy for desalination and salt prodn. - using heat exchanger at atmospheric pressure supplying sea-water to vacuum evaporator

Publications (1)

Publication Number Publication Date
DE2707715A1 true DE2707715A1 (en) 1978-08-24

Family

ID=6001942

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19772707715 Pending DE2707715A1 (en) 1977-02-23 1977-02-23 Utilising solar energy for desalination and salt prodn. - using heat exchanger at atmospheric pressure supplying sea-water to vacuum evaporator

Country Status (1)

Country Link
DE (1) DE2707715A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0067146A1 (en) * 1981-06-05 1982-12-15 Vereinigte Edelstahlwerke Aktiengesellschaft (Vew) Distillation device
AU718277B2 (en) * 1996-06-19 2000-04-13 Ebara Corporation Desalination apparatus and method of operating the same
ES2207388A1 (en) * 2002-03-18 2004-05-16 Gines Sanchez Gomez Obtaining fresh water and salt from the marine water and distillation system
EP2876087A1 (en) * 2013-11-20 2015-05-27 Wolfgang Zenker Latent heat vacuum evaporator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0067146A1 (en) * 1981-06-05 1982-12-15 Vereinigte Edelstahlwerke Aktiengesellschaft (Vew) Distillation device
AU718277B2 (en) * 1996-06-19 2000-04-13 Ebara Corporation Desalination apparatus and method of operating the same
US6391162B1 (en) 1996-06-19 2002-05-21 Ebara Corporation Desalination apparatus and method of operating the same
ES2207388A1 (en) * 2002-03-18 2004-05-16 Gines Sanchez Gomez Obtaining fresh water and salt from the marine water and distillation system
EP2876087A1 (en) * 2013-11-20 2015-05-27 Wolfgang Zenker Latent heat vacuum evaporator

Similar Documents

Publication Publication Date Title
DE3105550C2 (en) Process for the most extensive treatment of fresh water, brackish water, sea water and waste water for drinking and industrial water purposes
DE102009007915B4 (en) Process for desalting saline water
EP0779829B1 (en) Process and device for desalinating sea water
DE112015002615T5 (en) An indirect low temperature multi-effect desalination system utilizing the exhaust heat of marine engines
DE4340745C2 (en) Method and device for extracting industrial water from contaminated water
EP0593687B1 (en) Process and device for the desalination of sea water using a plate type heat exchanger
DE102011012805A1 (en) Treatment of raw brine from desalination plants
DE2334481C3 (en) Device for obtaining pure water from sea water
DE2707715A1 (en) Utilising solar energy for desalination and salt prodn. - using heat exchanger at atmospheric pressure supplying sea-water to vacuum evaporator
DE102008026673A1 (en) Solar seawater desalination system comprises an evaporation chamber with a surface absorbing sun radiation and/or made of a material absorbing the sun radiation, a speed-controlled ventilator, through which the air is supplied, and a pump
DE2510168A1 (en) Water desalination and purificn by solar energy - in osmosis plant powered by turbine generator in closed solar cell circuit
DE19649146A1 (en) Solar-powered salt water desalination boiler heated by parabolic mirror
DE10222316A1 (en) Apparatus and method for solar desalination of seawater and current generation involves use of a solar heated sea water boiler provided with a membrane letting through steam but not salt
DE2346609A1 (en) Concentration of encrusting liquids salt water or effluent - by mixing with liquid possessing higher affinity for tube surfaces
EP2407374B1 (en) Seagoing vessel with at least one cooler
DE10152702A1 (en) Method for evaporating sea-water or brackish water involves spraying of the water from above into a reactor and supplying the latter with solar-heated air in counter-flow from below
DE2248566A1 (en) DISTILLER
GB1147441A (en) Improvements in or relating to flash distillation
DE202012009318U1 (en) Solar seawater desalination plant
DE4239636A1 (en) Solar energy operated desalination plant - has air flow passing through evaporation chamber to condenser where water vapour is separated into cool air and drinking water
WO1999001380A1 (en) Method and apparatus for environmentally friendly desalting of sea-water
DE2258670C2 (en) Device for drinking water treatment
DE3427302A1 (en) Steam power plant for generating steam from salt-containing raw water
DE102004035189A1 (en) Plant for desalinating water, especially sea water, by distillation, comprising solar collectors, evaporation units, heat exchangers and condensate collector consisting of open channel system in closed housing
DE379320C (en) Device for utilizing the heat of the salty or sludge-containing steam boiler water drained after a feedwater tank

Legal Events

Date Code Title Description
OAM Search report available
OC Search report available
OHJ Non-payment of the annual fee