DE2628823C3 - Glass ceramic material for the encapsulation of semiconductor components - Google Patents

Glass ceramic material for the encapsulation of semiconductor components

Info

Publication number
DE2628823C3
DE2628823C3 DE19762628823 DE2628823A DE2628823C3 DE 2628823 C3 DE2628823 C3 DE 2628823C3 DE 19762628823 DE19762628823 DE 19762628823 DE 2628823 A DE2628823 A DE 2628823A DE 2628823 C3 DE2628823 C3 DE 2628823C3
Authority
DE
Germany
Prior art keywords
ceramic material
glass
percent
semiconductor components
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE19762628823
Other languages
German (de)
Other versions
DE2628823B2 (en
DE2628823A1 (en
Inventor
Kunigunde 7521 Hemmingen Boehringer
Stauros Dr.Rer.Nat. 7000 Stuttgart Smernos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent Deutschland AG
Original Assignee
Standard Elektrik Lorenz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Elektrik Lorenz AG filed Critical Standard Elektrik Lorenz AG
Priority to DE19762628823 priority Critical patent/DE2628823C3/en
Priority to AU26405/77A priority patent/AU2640577A/en
Publication of DE2628823A1 publication Critical patent/DE2628823A1/en
Publication of DE2628823B2 publication Critical patent/DE2628823B2/en
Application granted granted Critical
Publication of DE2628823C3 publication Critical patent/DE2628823C3/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • C03C8/245Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders containing more than 50% lead oxide, by weight
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Glass Compositions (AREA)

Description

1010

1515th

2020th

Die Erfindung betrifft einen glaskeramischen Werkstoff wie im Oberbegriff des Anspruchs 1 angegeben. Ein derartiger glaskeramischer Werkstoff ist aus der τ-, DE-AS 15 96 949 bekannt.The invention relates to a glass-ceramic material as specified in the preamble of claim 1. Such a glass ceramic material is known from τ-, DE-AS 15 96 949th

Der Transformationspunkt, das ist die Temperatur, bei der die Eigenschaften eines Glases in die einer unterkühlten Flüssigkeit übergehen, der dort angegebenen Gläser liegt zwischen 327°C und 375°C. ;;>The transformation point, that is the temperature at which the properties of a glass are transformed into one supercooled liquid pass over, the glasses specified there are between 327 ° C and 375 ° C. ;;>

Beim Transformationspunkt beträgt die Viskosität ungefähr 1011 Poise. Um einen glaskeramischen Werkstoff zum Löten oder zum Verkapseln von Halbleiterbauelementen verwenden zu können, ist eine Viskosität von ca. 105 bis IO7 Poise notwendig. Die Temperatur, bei r> der diese Viskosität erreicht wird, liegt erfahrungsgemäß 80° — 1000C über dem Transformationspunkt. Somit liegt die Temperatur, bei der die Verkapselung erfolgen kann, bei den obengenannten glaskeramischen We -kstoffen oberhalb von 400° C. ad At the transformation point, the viscosity is approximately 10 11 poise. In order to be able to use a glass-ceramic material for soldering or for encapsulating semiconductor components, a viscosity of approx. 10 5 to 10 7 poise is necessary. The temperature at r> of this viscosity is achieved is, experience shows 80 ° - 100 0 C above the transformation point. Thus, the temperature at which the encapsulation can take place is above 400 ° C. ad in the case of the above-mentioned glass-ceramic materials

Werden golddrahtgebondete Halbleiterbauelemente bei Temperaturen oberhalb der eutektischen Temperatur einer Gold-Silizium-Legierung von 378°C mit einem glaskeramischen Werkstoff verkapselt, dann bilden Gold und Silizium ein in der Schmelze lösliches Eutektikum. Daher sind glaskeramische Werkstoffe, deren Verarbeitungstemperatur oberhalb der eutektischen Temperatur liegt, zur Verkapselung von golddrahtgebondeten Halbleiterbauelementen nicht geeignet. Are gold wire bonded semiconductor components at temperatures above the eutectic temperature a gold-silicon alloy of 378 ° C encapsulated with a glass ceramic material, then form Gold and silicon are a eutectic that is soluble in the melt. Therefore, glass-ceramic materials are whose processing temperature is above the eutectic temperature, for the encapsulation of gold wire bonded Semiconductor components not suitable.

Es ist Aufgabe der Erfindung, einen glaskeramischen Werkstoff anzugeben, mit dem Verkapselungen von Halbleiterbauelementen bei Temperaturen unterhalb von 378° C ohne nennenswerte Änderung der elektrischen Kenndaten der Halbleiter möglich sind. v, The object of the invention is to provide a glass-ceramic material with which the encapsulation of semiconductor components at temperatures below 378 ° C. is possible without any significant change in the electrical characteristics of the semiconductors. v,

Die Lösung dieser Aufgabe erfolgt mit den im kennzeichnenden Teil des Anspruchs 1 angegebenen Mitteln.This problem is solved with those specified in the characterizing part of claim 1 Means.

Bei der Verarbeitungstemperatur des neuen glaskeramischen Werkstoffs bilden Gold und Silizium kein in der bn Glasschmelze lösliches Eutektikum. Die passive SiO2-Schicht des Halbleiterbauelements wird von der Schmelze des glaskeramischen Werkstoffs nicht angegriffen und die elektrischen Kennwerte des Halbleiterbauelements bleiben unverändert. «,5At the processing temperature of the new glass-ceramic material, gold and silicon do not form a eutectic that is soluble in the bn glass melt. The passive SiO 2 layer of the semiconductor component is not attacked by the melt of the glass-ceramic material and the electrical characteristics of the semiconductor component remain unchanged. «, 5

Die Erfindung wird an Hand eines Beispiels näher erläutert.The invention is explained in more detail using an example.

Moi-%Moi-% PbOPbO 46,646.6 PbF2 PbF 2 4,64.6 B2OjB 2 Oj 22,622.6 ZnOZnO 21,621.6 SiO2 SiO 2 2,32.3 TI2OTI 2 O 2,32.3

Diese Substanzen werden gemischt und in einem Platintiegel bei Temperaturen zwischen 8000C und 11000C geschmolzen. Das Schmelzen erfolgt in Luftatmosphäre. Anstatt TI2O können auch andere Tl-Verbindungen, die sich in der Schmelze in TI2O umwandeln, verwendel werden. Nach dem Abkühlen wird die Substanz in eine pulverförmige Form gebracht.These substances are mixed and melted in a platinum crucible at temperatures between 800 ° C. and 1100 ° C. Melting takes place in an air atmosphere. Instead of TI 2 O, other Tl compounds that convert to TI 2 O in the melt can also be used. After cooling, the substance is brought into a powdery form.

Bei dem neuen glaskeramischen Werkstoff ist es besonders wichtig, daß annähernd folgende Molverhältnisse eingehalten werdenWith the new glass-ceramic material it is particularly important that approximately the following molar ratios be respected

PbO: ZnO: B2O., = 2:1:1
PbF2: TI2O: SiO2 = 2:1:1
PbO: ZnO: B 2 O., = 2: 1: 1
PbF 2 : TI 2 O: SiO 2 = 2: 1: 1

(PbO -f ZnO + B2O1): (PbF2: Tl2: SiO2) % ,(" ; J(PbO -f ZnO + B 2 O 1 ): (PbF 2 : Tl 2 : SiO 2 ) % , ( "; J

Zur Erläuterung des Temperaturverhaltens des neuen glaskeramischen Werkstoffs wird die Meßkurve einer Differential Thermo-Analyse verwendet. Bei einer derartigen Messung wird eine Probe aus dem glaskeramischen Werkstoff linear um 10°C/min aufgeheizt und Abweichungen von der Aufheiztemperatur werden mittels zweier gegeneinander geschalteter Thermoelemente durch Differenzbildung festgestellt. Dabei ist ein Thermoelement in eine inerte Substanz, z. B. AI2O), eingebettet, während das andere Thermoelement von der Probe umgeben ist. Auftretende Spitzen in der Temperaturdifferenzkurve zeigen mit exothermer oder endothermer Wärmetönung verbundene Materialumwandlungen an.The measurement curve of a differential thermal analysis is used to explain the temperature behavior of the new glass-ceramic material. In such a measurement, a sample made of the glass-ceramic material is heated linearly by 10 ° C./min and deviations from the heating temperature are determined by means of two mutually connected thermocouples by forming the difference. A thermocouple is immersed in an inert substance, e.g. B. AI 2 O), while the other thermocouple is surrounded by the sample. Occurring peaks in the temperature difference curve indicate material conversions associated with exothermic or endothermic warming.

Beim Transformationspunkt, der bei 260°C liegt, tritt eine erste exotherme Spitze auf. Auf diese Spitze folgt ein Temperaturbereich mit endothermer Wärmetönung, innerhalb dessen der glaskeramischc Werkstoff erweicht. Die exotherme Kristallisation beginnt bei 372°C und hat bei 385°C ihr Maximum.At the transformation point, which is at 260 ° C, occurs a first exothermic peak. This peak is followed by a temperature range with endothermic warming, within which the glass ceramic material softens. The exothermic crystallization begins at 372 ° C and has its maximum at 385 ° C.

Die Temperatur, bei der die Verkapselung von Halbleiterbauelementen vorgenommen werden kann, liegt, wie bereits erwähnt, 80—100°C über dem Transformationspunkt, d. h. sie liegt bei 3500C. Diese Temperaturen liegen unter der eutektischen Temperatur des Gold-Silizium-Eutektikums. Der, verglichen mit dem bekannten Glas, niedrige Transformationspunkt wird vorwiegend durch den Zusatz von TI erreicht.The temperature at which the encapsulation can be made of semiconductor components, is, as already mentioned, 80-100 ° C above the transformation point that is, it is located at 350 0 C. These temperatures are below the eutectic temperature of the gold-silicon eutectic. The transformation point, which is low compared with the known glass, is mainly achieved through the addition of TI.

Überraschenderweise wurde festgestellt, daß die elektrischen Kennwerte der Halbleiterbauelemente durch die Verkapselung nur dann nicht verändert werden, wenn die in dem glaskeramischen Werkstoff enthaltenen Substanzen das angegebene Molverhältnis haben.Surprisingly, it was found that the electrical characteristics of the semiconductor components are not changed by the encapsulation only if those in the glass-ceramic material contained substances have the specified molar ratio.

Hierzu Ϊ Blatt ZeichnungenFor this purpose Ϊ sheet of drawings

Claims (1)

Patentanspruch:Claim: Glaskeramischer Werkstoff zur Verkapselung von Halbleiterbauelementen, in dem 1,5 bis 2,5 Gewichtsprozent SiO2, 7,5 bis 10 Gewichtsprozent B2O3, 70 bis 80 Gewichtsprozent PbO, 10 bis 15 Gewichtsprozent ZnO, 0,5 bis 24 Gewichtsprozent Fluor, abzüglich einer äquivalenten Menge Sauerstoff, enthalten sind, dadurch gekennzeichnet, daß zusätzlich angenähert 2,3 Mol-Prozent TI2O enthalten sind, daß die Mol-Verhältnisse von PbO : ZnO : B2O3 angenähert 2:1:1 sind, daß die Molverhältnisse von PbF2: TI2O : SiO2 angenähert 2:1:1 sind und daß das Molverhältnis vonGlass-ceramic material for encapsulating semiconductor components in which 1.5 to 2.5 percent by weight SiO 2 , 7.5 to 10 percent by weight B 2 O 3 , 70 to 80 percent by weight PbO, 10 to 15 percent by weight ZnO, 0.5 to 24 percent by weight fluorine , minus an equivalent amount of oxygen, characterized in that it also contains approximately 2.3 mol percent TI2O, that the molar ratios of PbO: ZnO: B 2 O 3 are approximately 2: 1: 1, that the Molar ratios of PbF 2 : TI 2 O: SiO 2 are approximately 2: 1: 1 and that the molar ratio of (PbO + ZnO + B2Oj): (PbF2 + TI2O + SiO2)
zwischen 8 :1 und 10:1 liegt.
(PbO + ZnO + B 2 Oj): (PbF 2 + TI 2 O + SiO 2 )
is between 8: 1 and 10: 1.
Als Ausgangsstoffe zur Herstellung des glaskeramischen Werkstoffs werden handelsübliche Substanzen mit der Reinheit p. a. in folgender Zusammensetzung verwendet:Commercially available substances are used as starting materials for the production of the glass-ceramic material with purity p. a. used in the following composition:
DE19762628823 1976-06-26 1976-06-26 Glass ceramic material for the encapsulation of semiconductor components Expired DE2628823C3 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19762628823 DE2628823C3 (en) 1976-06-26 1976-06-26 Glass ceramic material for the encapsulation of semiconductor components
AU26405/77A AU2640577A (en) 1976-06-26 1977-06-23 A glass-ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19762628823 DE2628823C3 (en) 1976-06-26 1976-06-26 Glass ceramic material for the encapsulation of semiconductor components

Publications (3)

Publication Number Publication Date
DE2628823A1 DE2628823A1 (en) 1977-12-29
DE2628823B2 DE2628823B2 (en) 1978-06-29
DE2628823C3 true DE2628823C3 (en) 1979-03-01

Family

ID=5981549

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19762628823 Expired DE2628823C3 (en) 1976-06-26 1976-06-26 Glass ceramic material for the encapsulation of semiconductor components

Country Status (2)

Country Link
AU (1) AU2640577A (en)
DE (1) DE2628823C3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3442131A1 (en) * 1984-11-17 1986-05-22 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn METHOD FOR ENCODING MICROELECTRONIC SEMICONDUCTOR AND LAYER CIRCUITS

Also Published As

Publication number Publication date
DE2628823B2 (en) 1978-06-29
AU2640577A (en) 1979-01-04
DE2628823A1 (en) 1977-12-29

Similar Documents

Publication Publication Date Title
DE1176325C2 (en) Thermally devitrifiable zinc-silicon-borate glasses for sealing preformed parts made of glass, metal or ceramic
DE1179277B (en) Coating of electrical switching elements with glass
DE1496540B1 (en) Process for the production of coatings from metallic copper and / or silver on ceramic molded bodies that have been removed from glass
DE10042590A1 (en) Glass for anode joining and for manufacture of semiconductor sensor, contains preset amount of lithium oxide and is devoid of sodium oxide
DE1596820C2 (en) Glass based on ZnO-B deep 2 O deep 3 -SiO deep 2 with a thermal expansion coefficient of 44.5 to 44.8.10 high -7 / degree C (0-300 degrees C) and its use
DE4005011C1 (en)
DE2628823C3 (en) Glass ceramic material for the encapsulation of semiconductor components
DE1596949B2 (en) FAST AND AT RELATIVELY LOW TEMPERATURE DE-GLASS COMPOSITIONS
US4251595A (en) Low temperature sealing glasses
DE2435555C2 (en) OPTICAL GLASS OF THE SYSTEM SIO DEEP 2 -B DEEP 2 O DEEP 3 -BAO-LA DEEP 2 O DEEP 3 -ZRO DEEP 2 WITH THE OPTICAL POSITION ND = (1.650 + -2) X10 HIGH -3 AND VD = 55.5 + -1.0, WHICH IS CHARACTERIZED BY HIGH CHEMICAL RESISTANCE AND LOW PRIVACY TO CRYSTALLIZATION
DE2947465A1 (en) GLASS COMPOSITION AND METHOD FOR PRODUCING THE SAME
DE1953891B2 (en) High temperature resistant putty material
DE2330243A1 (en) METHOD FOR MANUFACTURING A PASS-THROUGH A METAL ELEMENT THROUGH A CERAMIC PART WITH THE HELP OF A MELTING PROCESS
AT223235B (en) Method for covering at least a part of electrical switching elements
DE2554934C3 (en) Method for firmly bonding a copper surface to a glass
DE1596949C (en) Solder glass compositions devitrifying rapidly and at a relatively low temperature
DE2700273A1 (en) GRAY FILLING MATERIAL FOR A GLASS-CERAMIC MATERIAL
EP3907199B1 (en) Prestressing using gradient material
EP0889522A2 (en) Ceramic housing and method of manufacturing it
DE1137091B (en) Material for legs of thermal or Peltier elements
SU480659A1 (en) Low-melting glass cement
DE2012366C3 (en) Glasses of the system SIO2 -Al2 O3 -Cu2 O with low thermal expansion, low density and good thermal shock resistance and their use
DE2714773C3 (en) SiO 2 -PbO-K 2 O based glasses for encapsulating electrical parts
DE3239039C2 (en) Fusion material composition of a lead borate glass and β-eucryptite
DE1496698A1 (en) Glass suitable for dielectric purposes and a capacitor made with it

Legal Events

Date Code Title Description
OD Request for examination
C3 Grant after two publication steps (3rd publication)
8339 Ceased/non-payment of the annual fee