DE2131407A1 - Gas depositon of dense silicon layers - on graphite bodies and fibres - Google Patents

Gas depositon of dense silicon layers - on graphite bodies and fibres

Info

Publication number
DE2131407A1
DE2131407A1 DE19712131407 DE2131407A DE2131407A1 DE 2131407 A1 DE2131407 A1 DE 2131407A1 DE 19712131407 DE19712131407 DE 19712131407 DE 2131407 A DE2131407 A DE 2131407A DE 2131407 A1 DE2131407 A1 DE 2131407A1
Authority
DE
Germany
Prior art keywords
layer
silicon
gas
pyrographite
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19712131407
Other languages
German (de)
Other versions
DE2131407C3 (en
DE2131407B2 (en
Inventor
Max Dr Koeniger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Priority to DE19712131407 priority Critical patent/DE2131407C3/en
Publication of DE2131407A1 publication Critical patent/DE2131407A1/en
Publication of DE2131407B2 publication Critical patent/DE2131407B2/de
Application granted granted Critical
Publication of DE2131407C3 publication Critical patent/DE2131407C3/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A simple silicon compd. gas diluted with H2 is used such as, e.g. SiCl4, SiHCl3. The fibre, etc., is heated to 1000 degrees C and a dense pyrographite layer 1-10 mu thick is produced by deposition. The body is then heated to above 1420 degrees C and a stream of the silicon contg. gas is passed around it. Silicon is deposited which reacts with the pyrographite to produce silicon carbide as a dense protective adhering layer.

Description

Verfahren zur Gasabscheidung dichter Siliziumkarbid-Schichten Die Erfindung bezieht sich auf ein Verfahren zur Gasabscheidung dichter Siliziumkarbid-Schichten, vorzugsweise zum Oxydationsschutz von Graphitkörpern und Graphitfasern.Process for the gas deposition of dense silicon carbide layers The invention relates to a method for gas deposition of dense silicon carbide layers, preferably for protection against oxidation of graphite bodies and graphite fibers.

Bekannt ist die Abscheidung von Siliziumkarbid-Schichten aus einer Gasphase auf Graphitkörpern oder sogenannten Refractory-Metallen durch Reduktion von silizium- und graphithaltigen Verbindungen, wie beispielsweise CII SiCl zum Schutz des Trägers 3 3 gegen Oxidation. IIierbei wächst auf dem erhitzten Trägermaterial (Substrat) eine mehr oder weniger dichte Siliziukarbid-Schicht auf, die je nach dem Ausdehnungskoeffizienten des Trägers mehr oder weniger stark haftet. Um nun den unter der Schicht liegenden Träger wirklich gut vor Oxidation zu schützen, müssen relativ dlcke Schichten von 10 - 100 ( Stärke abgeschieden werden. Diese dicken Schichten sind jedoch gegenüber Rißbildungen, vorallem bei Abweichung der Ausdehnungskoeffizienten zwischen Träger und Schicht, besonders empfindlich.The deposition of silicon carbide layers from one is known Gas phase on graphite bodies or so-called refractory metals through reduction of silicon and graphite-containing compounds, such as CII SiCl for Protection of the carrier 3 3 against oxidation. This grows on the heated substrate (Substrate) a more or less dense silicon carbide layer, depending on the adheres to the expansion coefficient of the carrier more or less strongly. To now to protect the carrier lying under the layer really well against oxidation relatively thick layers of 10 - 100 (thickness can be deposited. These thick Layers are, however, against the formation of cracks, especially in the event of a deviation in the expansion coefficient between carrier and layer, particularly sensitive.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Gasphasenabscheidung dünner, jedoch sehr dichter Siliziumkarbid-Schichten aufzuzeigen, bei dem äußerst dünne Schichten auf ein Tragermaterial aufgebracht werden können, die wegen ihrer geringen Dicke weniger rißempfindlich sind und die auch bei hohen Temperaturen das darunterliegende EIaterial vor Oxidation schützen.The present invention is based on the object of a method for the vapor deposition of thin, but very dense silicon carbide layers, in which extremely thin layers can be applied to a carrier material, which are less susceptible to cracking because of their small thickness and which are also high Temperatures protect the underlying egg material from oxidation.

Diese Aufgabe wird dadurch gelöst, daß zunächst auf dem bis ca 10000 C erhitzten Substrat in an sich bekannter Weise eine 1 bis 10 - dicke, sehr dichte Py.rographitschicht abgeschieden wird und in einem anschließenden Verfahrensschritt Substrat mit Pyrographit-Schicht auf eine Temperatur von etwas über 14200 C gebracht und der Reaktion einer siliziumhaltigen Verbindung und Wasserstoff - beispielsweise mit Wasserstoff verdünntem SiIIC13, SiC14 oder Sill4 - ausgesetzt wird. Hierdurch wird die Pyrographit-Schicht in eine Siliziumkarbid-Schicht umgewandelt.This object is achieved in that first on the to about 10,000 C, a 1 to 10-thick, very dense substrate is heated in a manner known per se Py.rographitschicht is deposited and in a subsequent process step Substrate with Pyrographite layer to a temperature slightly above 14200 C and the reaction of a silicon-containing compound and hydrogen - for example SiIIC13, SiC14 or Sill4 diluted with hydrogen - exposed will. This converts the pyrographite layer into a silicon carbide layer.

Der Vorteil dieser Maßnahmen ist darin zu sehen, daß die gewonnene Schutzschicht eine große Haftfähigkeit und eine absolute Gasdichtigkeit aufweist. Bei der Aufbringung einer derartigen Siliziumkarbid-Schicht auf Graphitfäden wird deren Diegsamkeit nicht wesentlich beeinträchtigt und bei Einbettung dieser den in anderen Materialien wird die Legierungsbildung verhindert.The advantage of these measures is to be seen in the fact that the Protective layer has great adhesiveness and absolute gas tightness. When applying such a silicon carbide layer to graphite threads whose looseness is not significantly impaired and when these are embedded the the formation of alloys is prevented in other materials.

Die Erfindung ist nachfolgend an einem Ausführungsbeispiel bes ciiri eben.The invention is described below using an exemplary embodiment just.

In einem Ofen 20 wird ein Substrat 10 gemäß dem Aúsführungsoeispiel ein Graphitkörper aus Elektrographit oder eine Graphitfaser - einer Temperatur von ca. 1000° C ausgesetzt und so in bekannter Weise mit einer 1 - 10 starken Pyrographit-Schicht 11 allseitig versehen. Diese Schicht ist vollkommen gasdicht.In a furnace 20, a substrate 10 according to the embodiment a graphite body made of electrographite or a graphite fiber - a temperature of exposed to approx. 1000 ° C and thus in a known manner with a 1 - 10 thick pyrographite layer 11 provided on all sides. This layer is completely gas-tight.

In dem nächsten Verfahrensschritt wird das Substrat auf eine Temperatur erbracht, die kurz über dem Schmelzpunkt von Silizium liegt, also etwas über 14200 C. Ist diese Temperatur erreicht, so wird das Gemisch 12 einer siliziumhaltigen Verbindung und wasserstoff - beispielsweise SiItC13, SiC14 oder SiH4 mit Wasserstoff verdünnt - in den Reaktionsraum geleitet. Auf der heißen Substratoberfläche findet die Reduktion der siliziumhaltigen Xrorbindung durch den Wasserstoff statt. Das hierbei ent5tehende Silizium ist bei der herrschenden Substrattemperatur schmelzflüssig und reagiert mit der Pyrographitschicht zu Silizium-Karbid Die dabei auf dem Substrat entstehende Siliziumkarbid-Schicht 1 ist durch die Menge der vorgegebenen Pyrographit-Schicht bestimmt. Nach Verbrauch dieser letztgenannten Schicht entsprechend obiger Reaktionsgleichung wird etwaiges später abgeschiedenes Silizium als polikristalline Siliziun-Schicht aufwachsen. Diese Schicht kann später sehr leicht durch Ätzbehandlung in einem Salpeter-Flußsäuregemi Sch abgetragen werden.In the next process step, the substrate is brought to a temperature that is just above the melting point of silicon, i.e. slightly above 14200 C. When this temperature is reached, the mixture 12 is a silicon-containing compound and hydrogen - for example SiItC13, SiC14 or SiH4 Diluted hydrogen - passed into the reaction chamber. On the hot substrate surface the reduction of the silicon-containing xorbond by the hydrogen takes place. The resulting silicon is molten at the prevailing substrate temperature and reacts with the pyrographite layer to form silicon carbide The silicon carbide layer 1 formed on the substrate is determined by the amount of the specified pyrographite layer. After this last-mentioned layer has been consumed in accordance with the above reaction equation, any silicon deposited later will grow as a polycrystalline silicon layer. This layer can later be removed very easily by etching in a nitric-hydrofluoric acid mixture.

Die entstehende SiC-Schicht 11 ist außerordentlich feinkörnig und dicht und daher besonders osydations s chütz end . Lin speziel -les Merkmal dieses Verfahrens ist, daß das Silizium nur mit der iyrographit-Schicht reagiert und wegen deren großer Dichte nIcht in den darunterliegenden Substratkörpey eindringen kann. Dies hat den Vorteil, daß im Inneren des Substratkörpers selbst keine Siliziumkarbid-Bildung erfolgen kann und damit auch eine mögliche Sprengung des Substratkörpers vermieden wird. Ein weiterer Vorteil ist, daß als Gasgemisch nur eine siliziumhaltige Verbindung erforderlich ist, da der Kohlenstoff zur Bildung des SiC aus der Pyrographitschicht entnommen wird.The resulting SiC layer 11 is extremely fine-grained and dense and therefore particularly protective against oxidation. Lin special feature of this Process is that the silicon only reacts with the iyrographite layer and because of whose high density cannot penetrate into the underlying substrate body. This has the advantage that there is no silicon carbide formation inside the substrate body itself can take place and thus also avoids a possible explosion of the substrate body will. Another advantage is that only a silicon-containing compound is used as the gas mixture is required because the carbon is used to form the SiC from the pyrographite layer is removed.

Claims (1)

Patentanspruch Claim Verfahren zur Gasabscheidung dichter Siliziumkarbid-Schichten, vorzugsweise zum Oxydationsschutz von Graphitkörpern bzw.Process for gas deposition of dense silicon carbide layers, preferably for protection against oxidation of graphite bodies or Graphitfasern, dadurch g e k e n n z e i c h n e t , daß auf dem bis-ca. 1000° C erhitzten Substrat (10) in an sich bekannter Weise zunächst eine 1 bis 10 LC starke Pyrographitschicht ( abgeschieden wird und in einem anschließenden Verfahrensschritt Substrat (10) und Pyrographitschicht (ti) auf eine Temperatur von etwas über 14200 C gebracht und der Reaktion einer siliziumhaltigen Verbindung und Wasserstoff (12) - beispielsweise mit -Wassersdoff verdünntem SiHC13 oder SiH4 -ausgesetzt wird, wobei die Pyrographit-Schicht (11) in eine Siliziumkarbid-Schicht umgewandelt wird.Graphite fibers, characterized in that on the up to approx. 1000 ° C heated substrate (10) in a manner known per se, initially a 1 to 10 LC thick pyrographite layer (is deposited and in a subsequent process step Substrate (10) and pyrographite layer (ti) to a temperature of a little over 14200 C brought and the reaction of a silicon-containing compound and hydrogen (12) - is exposed, for example, to SiHC13 or SiH4 diluted with water, wherein the pyrographite layer (11) is converted into a silicon carbide layer.
DE19712131407 1971-06-24 1971-06-24 Process for the gas deposition of a dense silicon carbide layer Expired DE2131407C3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19712131407 DE2131407C3 (en) 1971-06-24 1971-06-24 Process for the gas deposition of a dense silicon carbide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19712131407 DE2131407C3 (en) 1971-06-24 1971-06-24 Process for the gas deposition of a dense silicon carbide layer

Publications (3)

Publication Number Publication Date
DE2131407A1 true DE2131407A1 (en) 1973-01-11
DE2131407B2 DE2131407B2 (en) 1980-12-11
DE2131407C3 DE2131407C3 (en) 1981-12-10

Family

ID=5811707

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19712131407 Expired DE2131407C3 (en) 1971-06-24 1971-06-24 Process for the gas deposition of a dense silicon carbide layer

Country Status (1)

Country Link
DE (1) DE2131407C3 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567120A1 (en) * 1984-07-05 1986-01-10 United Technologies Corp Composite SiC/Si3N4 coatings or carbon-carbon composite materials
US4702960A (en) * 1980-07-30 1987-10-27 Avco Corporation Surface treatment for carbon and product
US4752503A (en) * 1984-07-20 1988-06-21 Societe Europeenne De Propulsion Process for the manufacture of a composite material with refractory fibrous reinforcement and ceramic matrix
US4871587A (en) * 1982-06-22 1989-10-03 Harry Levin Process for coating an object with silicon carbide
US4921725A (en) * 1986-12-04 1990-05-01 Centre National De La Recherche Scientifique (Cnrs) Process for coating carbon fibers with a carbide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372671A (en) * 1965-05-26 1968-03-12 Westinghouse Electric Corp Apparatus for producing vapor growth of silicon crystals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372671A (en) * 1965-05-26 1968-03-12 Westinghouse Electric Corp Apparatus for producing vapor growth of silicon crystals

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702960A (en) * 1980-07-30 1987-10-27 Avco Corporation Surface treatment for carbon and product
US4871587A (en) * 1982-06-22 1989-10-03 Harry Levin Process for coating an object with silicon carbide
FR2567120A1 (en) * 1984-07-05 1986-01-10 United Technologies Corp Composite SiC/Si3N4 coatings or carbon-carbon composite materials
US4752503A (en) * 1984-07-20 1988-06-21 Societe Europeenne De Propulsion Process for the manufacture of a composite material with refractory fibrous reinforcement and ceramic matrix
US5026604A (en) * 1984-07-20 1991-06-25 Societe Europeenne De Propulsion Composite material with refractory fibrous reinforcement and ceramic matrix
US4921725A (en) * 1986-12-04 1990-05-01 Centre National De La Recherche Scientifique (Cnrs) Process for coating carbon fibers with a carbide

Also Published As

Publication number Publication date
DE2131407C3 (en) 1981-12-10
DE2131407B2 (en) 1980-12-11

Similar Documents

Publication Publication Date Title
DE2825009C2 (en) Carbide body and process for its manufacture
DE3719515A1 (en) Oxidation-resistant body made of carbon and process for its preparation
DE1667657B2 (en) METHOD OF MANUFACTURING SILICON CARBIDE WHISKERS
DE4041901A1 (en) Pyrolytic prodn. of poly:silicon rod - on starter filament held by protectively coated graphite holder
DE2642554A1 (en) PROCESS FOR PRODUCTION OF ALPHA SILICON NITRIDE POWDER (ALPHA SI LOW 3 N LOW 4 POWDER)
DE3931767C2 (en) Coated carbon articles and process for making them
DE4041902C2 (en)
DE1521465C3 (en) Process for the production of textureless polycrystalline silicon
DE1951359B2 (en) Process for coating a carrier material with a metal carbonitride
DE2703873C3 (en) Process for the preparation of crystalline compounds A1 ™ B & trade
DE2131407A1 (en) Gas depositon of dense silicon layers - on graphite bodies and fibres
DE3315971C2 (en)
DE102015224120A1 (en) Fluidized bed reactor and process for producing polycrystalline silicon granules
DE1544287A1 (en) Method for producing a protective layer from a silicon or germanium nitrogen compound on the surface of a semiconductor crystal
DE1571425B2 (en) Article containing carbon with a protective layer of silicon carbide and method for making the same
DE102004002303B4 (en) A method of making a coated carbon / carbon composite and coated carbon / carbon composite produced thereafter
DE1614455C3 (en) Method for producing a protective layer consisting partly of silicon oxide and partly of silicon nitride on the surface of a semiconductor body
US1905520A (en) Conversion of methane into liquid hydrocarbons
WO2011098064A1 (en) Method for hydrogenating chlorosilanes and converter for carrying out the method
DE1041484B (en) Process for the production of a Si O layer on the surface of a crucible
DE2042813A1 (en) Process for the production of silicon carbide single crystals in whisker form
DE1088863B (en) Process for the production of shaped bodies from silicon carbide
DE1282621B (en) Process for producing, in particular, monocrystalline silicon carbide
DE1564108A1 (en) Foreign material layer for semiconductor components and method for producing the same
DE1571425C (en) An article containing carbon with a protective layer of silicon carbide and a method for making the same

Legal Events

Date Code Title Description
OGA New person/name/address of the applicant
8326 Change of the secondary classification
C3 Grant after two publication steps (3rd publication)
8339 Ceased/non-payment of the annual fee