DE202006020157U1 - Modularer Sonnenkollektor - Google Patents

Modularer Sonnenkollektor Download PDF

Info

Publication number
DE202006020157U1
DE202006020157U1 DE202006020157U DE202006020157U DE202006020157U1 DE 202006020157 U1 DE202006020157 U1 DE 202006020157U1 DE 202006020157 U DE202006020157 U DE 202006020157U DE 202006020157 U DE202006020157 U DE 202006020157U DE 202006020157 U1 DE202006020157 U1 DE 202006020157U1
Authority
DE
Germany
Prior art keywords
absorber
sheet
solar collector
heat transfer
transfer medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202006020157U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Aluminium Deutschland GmbH
Original Assignee
Hydro Aluminium Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Aluminium Deutschland GmbH filed Critical Hydro Aluminium Deutschland GmbH
Priority to DE202006020157U priority Critical patent/DE202006020157U1/de
Priority claimed from DE102006003096A external-priority patent/DE102006003096B4/de
Publication of DE202006020157U1 publication Critical patent/DE202006020157U1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/503Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits formed by paired plates, only one of which is plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/55Solar heat collectors using working fluids the working fluids being conveyed between plates with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/60Details of absorbing elements characterised by the structure or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

Sonnenkollektor zur Erwärmung eines Wärmeleitmediums umfassend mindestens ein Absorberelement (1) mit mindestens einem Absorberblech (2) zur Absorption des Sonnenlichtes und Kanälen (5) für das Wärmeleitmedium, welche mit dem Absorberblech derart verbunden sind, so dass Wärme von dem Absorberblech (2) an das Wärmeleitmedium übertragen werden kann und das Absorberblech (2) eine selektiv absorbierende Beschichtung aufweist, dadurch gekennzeichnet, dass ein unterhalb des Absorberbleches (2) angeordnetes Blech (3) vorgesehen ist, welches mit dem Absorberblech (2) abdichtend verbunden ist, wobei das untere Blech (3) und/oder das Absorberblech (2) Prägungen (6) aufweist, welche nach dem Verbinden des Bleches (3) mit dem Absorberblech (2) zumindest teilweise Kanäle (5) für das Wärmeleitmedium bilden und die selektiv absorbierende Beschichtung des Absorberblechs (2) hochtemperaturfest ist.

Description

  • Die Erfindung betrifft einen Sonnenkollektor zur Erwärmung eines Wärmeleitmediums umfassend mindestens ein Absorberelement mit mindestens einem Absorberblech zur Absorption des Sonnenlichtes und Kanälen für das Wärmeleitmedium, welche mit dem Absorberblech derart verbunden sind, so dass Wärme von dem Absorberblech an das Wärmeleitmedium übertragen werden kann. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines Sonnenkollektors.
  • Sonnenkollektoren zur Erwärmung eines Wärmeleitmediums bzw. zur Warmwassererzeugung werden heutzutage in verschiedenen Formen als Flachkollektoren oder Röhrenkollektoren angefertigt. Röhrenkollektoren enthalten in einem Hüllrohr ein beschichtetes Absorberblech, dass sich durch die Sonnenstrahlung erwärmt und Kupferrohre mit einem Wärmeleitmedium erhitzt. Das Absorberblech ist üblicherweise aus Kupfer oder Aluminium und mit einer selektiv absorbierenden Beschichtung versehen, so dass möglichst viel Sonnenlicht absorbiert und möglichst wenig davon als Wärmestrahlung wieder abgestrahlt wird. Die Isolierung der Kupferrohre erfolgt durch das evakuierte Hüllrohr. Daneben werden häufig so genannte Flachkollektoren verwendet, welche im Gegensatz zu einem evakuierten Hüllrohr die Isolierung der mit dem Absorberblech in Kontakt stehenden Kupferrohre über konventionelles Isoliermaterial, beispielsweise Mineralwolle, realisieren. Beiden Kollektorarten ist gemein, dass diese ein Absorberelement mit einem Absorberblech aufweisen, mit welchem Kupferrohre zum Transport des Wärmeleitmediums durch Löten, Kleben oder Verschweißen verbunden sind. Einerseits ist das Verbinden der Kupferrohre mit dem Absorberblech aufwändig und insofern kostenintensiv, da dieses einzeln durch gängige Fügeverfahren (Schweißen, Löten, Kleben) durchgeführt wird. Andererseits stellt ein Rohrquerschnitt in Bezug auf die Effizienz der Wärmeübertragung vom Absorberblech auf das Wärmeleitmedium keine optimale Geometrie dar, da das Oberflächenvolumenverhältnis in Bezug auf die Kontaktfläche zum Absorberblech nicht optimal ist.
  • Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen Sonnenkollektor zur Verfügung zu stellen, welcher bzw. mit welchem die Kosten für die Herstellung von Sonnenkollektoren deutlich gesenkt und verbesserte Sonnenkollektoren zur Verfügung gestellt werden können.
  • Gemäß einer ersten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe für ein gattungsgemäßen Sonnenkollektor dadurch gelöst, dass ein unterhalb des Absorberbleches angeordnetes Blech vorgesehen ist, welches mit dem Absorberblech abdichtend verbunden ist, wobei das untere Blech und/oder das Absorberblech Prägungen aufweist, welche nach dem Verbinden des Bleches mit dem Absorberblech zumindest teilweise Kanäle für das Wärmeleitmedium bilden.
  • Erfindungsgemäß werden die Kanäle für das Wärmeleitmedium durch das Absorberblech selbst und das unterhalb des Absorberbleches angeordnete Blech gebildet. Dadurch wird einerseits in Bezug auf die geometrische Form der Kanäle für das Wärmeleitmedium ein maximaler Freiheitsgrad erzielt. Andererseits kann durch ein Verbinden des Bleches mit dem Absorberblech gleichzeitig alle Kanäle für das Wärmeleitmedium eines Absorberelementes hergestellt werden, so dass beispielsweise eine aufwändige Montage der Rohre entfällt. Ein aufwändiges Verlöten und Befestigen der einzelnen Kupferrohre an dem Absorberblech wird also dadurch vermieden und insofern die Kosten deutlich gesenkt. Durch eine geeignete Wahl der Prägungen des unteren Bleches und/oder des Absorberbleches kann die Querschnittsform der Kanäle und deren Verlauf im Absorberelement für das Wärmeleitmedium in Bezug auf einen verbesserten Wärmetransport optimiert werden, so dass verbesserte Sonnenkollektoren zur Verfügung gestellt werden können.
  • Gemäß einer ersten vorteilhaften Ausgestaltung des erfindungsgemäßen Sonnenkollektors wird dieser in Bezug auf den Wärmeübertrag vom Absorberblech auf das Wärmeleitmedium dadurch verbessert, dass das Absorberblech mit dem unteren Blech stoffschlüssig verbunden, insbesondere verlötet, ist. Eine stoffschlüssige Verbindung gewährleistet eine besonders gute Wärmeübertragung, insbesondere dann, wenn Verbindungstechniken überwendet werden, welche in den Verbindungsstellen Werkstoffe mit hoher Wärmeleitfähigkeit verwenden. Dies gilt insbesondere für das Verlöten des Absorberbleches mit dem unteren Blech, da ein Lot, welches im Allgemeinen eine metallische Legierung ist, eine hohe Wärmeleitfähigkeit aufweist.
  • Sind die Prägungen des Absorberbleches und des unteren Bleches zumindest teilweise von deren Kontaktfläche wegweisend ausgeführt, können die Prägungen des Absorberbleches sowie des unteren Bleches in ihrer Tiefe verringert werden, da die Kanäle in diesem Fall beispielsweise durch jeweils gegenüberliegende Prägungen im Absorberblech und im unteren Blech gebildet werden. Hierdurch kann die Herstellung des geprägten Absorberbleches bzw. des unteren Bleches vereinfacht werden und gleichzeitig eine vergrößerte Absorptionsfläche des Absorberbleches zur Verfügung gestellt werden.
  • Weist das Absorberblech eine selektiv absorbierende Beschichtung auf, kann der Wirkungsgrad des Sonnenkollektors weiter gesteigert werden.
  • Eine besonders wirtschaftliche Herstellung des Sonnenkollektors kann, gemäß einer nächsten weitergebildeten Ausführungsform, dadurch erreicht werden, dass das Absorberblech und/oder das untere Blech zumindest teilweise aus Aluminium oder einer Aluminiumlegierung bestehen. Aluminium bzw. eine Aluminiumlegierung zeichnet sich nicht nur durch eine hervorragende Verarbeitungsfähigkeit aus, sondern weist darüber hinaus noch sehr gute Wärmeleiteigenschaften auf. Im Vergleich zum üblicherweise eingesetzten Kupfer ermöglicht ein wesentlich günstigerer Materialpreis eine kostengünstige Konstruktion ohne dass die Effizienz verringert wird. Zur Anwendung kommen dabei Aluminiumlegierung, beispielsweise vom Typ 3xxx, welche zur Herstellung von Wärmetauschern, beispielsweise für Kraftfahrzeuge, verwendet werden. Darüber hinaus ist aber auch der Einsatz anderer Aluminiumlegierungen denkbar.
  • Ein besonders einfaches Herstellverfahren ergibt sich dann, wenn das Absorberblech und/oder das untere Blech zumindest auf der mit dem Wärmeleitmedium in Kontakt stehenden Fläche eine Lotplattierung aufweisen. Eine Lotplattierung gewährleistet einerseits einen besonders rationellen und wirtschaftlichen Herstellungsprozess, in dem Durchlauföfen oder Batch-Öfen zum Verlöten des Absorberbleches mit dem unteren Blech verwendet werden können. Eine optionale Korrosionsschutzplattierung kann allgemein die Beständigkeit des Aluminiums bzw. der Aluminiumlegierung gegenüber dem Wärmeleitmedium verbessern.
  • Weist das Absorberblech zusätzlich Prägungen zur Vergrößerung der Absorptionsfläche auf, kann die maximale durch das Absorberblech absorbierte Strahlungsenergie vergrößert werden und damit der Wirkungsgrad des Sonnenkollektors verbessert werden.
  • Vorzugsweise verlaufen die Wärmeleitmedium führenden Kanäle zumindest teilweise mäanderförmig und/oder zumindest teilweise parallel zueinander. Beim teilweisen, mäanderförmigen Verlauf der Kanäle führt beispielsweise nur ein Kanal das Wärmeleitmedium mäanderförmig über einen Teil der Fläche des Absorberelementes. Dies wird zumeist durch sogenannte Serpentinenregister realisiert. Damit wird erreicht, dass das Wärmeleitmedium beim Durchfluss durch die Kanäle des Sonnenkollektors möglichst lange mit dem Absorberblech bzw. mit dem unteren Blech in Kontakt bleibt. Das Wärmeleitmedium kann dann aufgrund der langen Verweildauer im Absorberelement auf eine relativ hohe Temperatur erwärmt werden. Im Gegensatz sind bei teilweise parallel verlaufenden Kanälen diese beispielsweise über zwei Sammelkanäle miteinander verbunden, so dass der Durchfluss des Wärmeleitmediums in mehreren Kanälen parallel erfolgt. Diese Bereiche des Absorberelementes werden in sogenannten Parallelregistern realisiert.
  • Aufgrund des geringeren Durchflusswiderstandes bei parallelem Durchfluss kann eine höhere Menge an Wärmeleitmedium durch das Absorberelement geführt werden kann, so dass prinzipiell eine höhere Wärmemenge vom Absorberblech abtransportiert werden kann. Darüber hinaus ist es aufgrund des geringeren Druckverlustes in Parallelregistern möglich, Pumpen mit einer geringeren Leistung und damit kostengünstigere Pumpen zu verwenden. Insbesondere durch die erfindungsgemäße Ausführung des Absorberblechs und des unteren Blechs sind jedoch beliebige andere Verlaufsformen der Kanäle für das Wärmeleitmedium des Sonnenkollektors möglich, welche die Wärmeübertragung vom Absorberblech auf das Wärmeleitmedium optimieren. Beispielsweise können auch sehr viel komplexere Verläufe der Kanäle, beispielsweise eine Kombination von Serpentinen- und Paralleldurchfluss, für das Wärmeleitmedium realisiert werden. Daneben sind auch Strömungswiderstände zur Erzeugung turbulenter Strömungen denkbar, um eine Erhöhung der Konvektionswärmeübergangs vom Absorberblech bzw. unteren Blech auf das Wärmeleitmedium zu erzielen.
  • Ist die selektiv absorbierende Beschichtung zusätzlich hochtemperaturfest, kann eine Beschichtung des Absorberbleches noch vor dem Lötprozess aufgebracht werden.
  • Eine bandweise Verarbeitung des vorgesehenen Absorberbleches und des unteren Bleches kann aber auch dadurch ermöglicht werden, dass tiefgezogene Prägungen im Absorberblech und/oder unteren Blech vorgesehen sind. Tiefziehen ist eines der gängigen Umformverfahren im Bereich der Herstellung von anwendungsspezifischen Blechen, welches eine bandweise Verarbeitung der Bleche ermöglicht, in dem nach dem Abwickeln eines Bandes von einem Coil die Bleche geprägt und anschließend vereinzelt werden. Es ist jedoch auch vorstellbar, die Bleche vom Band ausgehend zuzuschneiden und anschließend zu prägen. Beide Verfahren weisen ein hohes Automatisierungspotential auf und ermöglichen damit eine sehr wirtschaftliche Herstellung entsprechender Bleche.
  • Vorzugsweise weist jedes Absorberelement Anschlussstücke, insbesondere Fittings, zum Anschließen eines Zu- und Ablaufs für das Wärmeleitmedium oder für weitere Sonnenkollektoren auf, so dass die Sonnenkollektoren problemlos an das Wärmeleitmedium oder an weitere Sonnenkollektoren angeschlossen werden können.
  • Gemäß einer nächsten weitergebildeten Ausführungsform des erfindungsgemäßen Sonnenkollektors, wird dieser dadurch vorteilhaft ausgestaltet, dass der Sonnenkollektor modular aufgebaut ist. Mit „modular" sind vorliegend einerseits die Abmessungen des Sonnenkollektors und die Anordnung der Anschlusselemente gemeint, welche so ausgestaltet sind, dass eine Vielzahl von Sonnenkollektoren zu einer nahezu beliebig großen Sonnenkollektoreinheit zusammengeschlossen werden können. Andererseits bezieht sich der modulare Aufbau der Sonnenkollektoren auf die Verwendung des Absorberelementes, welches ohne Montage der einzelnen Kanäle für das Wärmeleitmedium verwendbar ist.
  • Ein Verfahren zur Herstellung eines Sonnenkollektors mit einem Absorberelement, wobei das Absorberelement mindestens ein Absorberblech zur Absorption des Sonnenlichtes aufweist, kann die folgenden Schritte umfassen:
    • – ein unterhalb des Absorberbleches angeordnetes Blech wird bereitgestellt,
    • – das untere Blech und/oder das obere Absorberblech wird mit Prägungen, insbesondere mit zumindest teilweise mäanderförmig verlaufenden Prägungen, versehen, welche zumindest teilweise die Kanäle für das Wärmeleitmedium bilden und
    • – das Absorberblech und das untere Blech werden abdichtend miteinander verbunden.
  • Wie bereits oben ausgeführt, wird durch das Verfahren die Montage des Absorberelementes wesentlich vereinfacht, so dass erfindungsgemäße Sonnenkollektoren wesentlich kostengünstiger hergestellt werden können. Beim abdichtend miteinander verbinden können verschiedene Verbindungstechniken zum Einsatz kommen. Denkbar ist beispielsweise, dass lediglich über einen Kraft- oder Formschluss eine Verbindung des Absorberbleches mit dem unteren Blech erzielt wird. Aber auch der Einsatz von Schweiß- und/oder Klebeverfahren ist möglich.
  • Gemäß einer nächsten vorteilhaften Ausgestaltung des Verfahrens wird das Absorberblech mit dem unteren Blech stoffschlüssig verbunden, insbesondere verlötet. Die stoffschlüssige Verbindung gewährleistet nicht nur den, wie erwähnt, maximalen Wärmeübertrag vom Absorberblech zum unteren Blech, sondern auch die notwendige Dichtheit der durch das Absorberblech und das untere Blech gebildeten Kanäle für das Wärmeleitmedium. Beim Löten wird in der Regel eine sehr gute Wärmebrücke zwischen Absorberblech und unterem Blech ermöglicht, so dass die Effizienz des Sonnenkollektors gesteigert werden kann.
  • Vorzugsweise wird beim Löten ein lotplattiertes unteres Blech und/oder Absorberblech verwendet, so dass die Anwendung von besonders wirtschaftlichen Lötverfahren, beispielsweise einem Lötverfahren in einem Durchlaufofen bzw. in einem Batch-Ofen ermöglicht wird. Selbstverständlich können verschiedenste Lötverfahren verwendet werden, beispielsweise das Salzbad-Löten, das Vakuumlöten oder CAB-Löten. Ferner können korrosive oder nicht korrosive Flussmittel verwendet werden.
  • Gemäß einer alternativen Ausgestaltung des Verfahrens kann alternativ beim Löten eine zwischen dem Absorberblech und dem unteren Blech angeordnete Lötfolie verwendet werden. Die Lötfolie dient, äquivalent zu einer Plattierschicht aus Aluminiumlot, der Bereitstellung eines metallischen Lotes an den Verbindungsstellen des Absorberbleches und des unteren Bleches. Das Verfahren selbst entspricht dem bei der Verwendung von lotplattierten Blechen mit der Ausnahme, dass zwischen den in dem Fall nicht lotplattierten Blechen die Lötfolie angeordnet werden muss.
  • Das Verfahren kann weiter dadurch verbessert werden, dass die Prägungen des Absorberbleches und/oder des unteren Bleches durch Tiefziehen in ein Band oder in vorher zugeschnittene Bleche eingebracht werden. Bei der bandweisen Prägung werden die geprägten Blech nachträglich vereinzelt, so dass bereits bestehende Anlagen zur Herstellung des geprägten Absorberbleches bzw. des unteren Bleches verwendet werden können. Dies trifft auch zu, wenn die Bleche vor dem Tiefziehen zugeschnitten werden.
  • Bestehen das Absorberblech und/oder das untere Blech zumindest teilweise aus Aluminium und/oder einer Aluminiumlegierung, können die Bleche des Absorberelementes aus einem kostengünstigen Werkstoff mit hervorragenden Umformeigenschaften zur Verfügung gestellt werden.
  • Weiter vereinfacht wird das Verfahren zur Herstellung von Sonnenkollektoren dadurch, dass das Absorberblech vor dem Verbinden mit dem unteren Blech mit einer selektiv absorbierenden, hochtemperaturfesten Beschichtung beschichtet wird. Wie bereits zuvor ausgeführt, erhöht eine derartige Beschichtung einerseits den Wirkungsgrad des Sonnenkollektors erheblich. Andererseits kann durch das Aufbringen vor dem Verbinden der Bleche die Beschichtung bandweise und damit besonders wirtschaftlich erfolgen. Vorzugsweise sollte die Beschichtung hochtemperaturfest sein, damit auch Lötprozesse ohne Schäden überstanden werden können.
  • Wird das Absorberblech nach dem Verbinden mit dem unteren Blech mit einer selektiv absorbierenden Beschichtung beschichtet, können auch nicht hochtemperaturfeste Beschichtungen verwendet werden, da beispielsweise ein nachträgliches Löten des Absorberbleches entfällt.
  • Werden beim Löten des Absorberbleches und des unteren Bleches gleichzeitig Anschlussstücke zum Anschließen eines Zu- und Ablaufs des Wärmeleitmediums, insbesondere zum Anschließen von weiteren Sonnenkollektoren, angelötet, kann das Absorberelement mit einer minimalen Anzahl von Arbeitsschritten so zur Verfügung gestellt werden, dass es unmittelbar für den Einbau in den Sonnenkollektor und unmittelbar für den Anschluss weiterer Sonnenkollektoren bzw. des Zu- und Ablaufs des Wärmeleitmedium vorbereitet ist.
  • Es gibt nun eine Vielzahl von Möglichkeiten den erfindungsgemäßen Sonnenkollektor weiterzubilden und auszugestalten. Hierzu wird einerseits verwiesen auf die dem unabhängigen Schutzanspruch 1 nachgeordneten Schutzansprüche sowie auf die Beschreibung von vier Ausführungsbeispielen in Verbindung mit der Zeichnung. In der Zeichnung zeigt
  • 1 in einer schematischen Schnittansicht das Absorberelement eines ersten Ausführungsbeispiels eines erfindungsgemäßen Sonnenkollektors,
  • 2 ein Absorberelement eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Sonnenkollektors in einer perspektivischen Ansicht,
  • 3 in einer schematischen Schnittansicht das Absorberelement eines dritten Ausführungsbeispiels eines erfindungsgemäßen Sonnenkollektors und
  • 4 ein Absorberelement eines vierten Ausführungsbeispiels eines erfindungsgemäßen Sonnenkollektors.
  • In 1 ist in einer Schnittansicht das Absorberelement 1 eines ersten Ausführungsbeispiels eines erfindungsgemäßen Sonnenkollektors dargestellt. Das Absorberelement 1 besteht aus einem Absorberblech 2 und einem unteren Blech 3, welche über Verbindungsstellen 4 stoffschlüssig, beispielsweise durch eine Lötnaht, verbunden sind. Die Verbindungsstellen 4 zwischen dem Absorberblech 2 und dem unteren Blech 3 werden vorzugsweise durch ein metallisches Lot gebildet, so dass die Verbindungsstellen 4 zur Wärmeübertragung an das untere Blech 3 und damit an das Wärmeleitmedium beitragen. Das untere Blech 3 des ersten Ausführungsbeispiels weist Prägungen 6 auf, durch welche die Kanäle 5 für das Wärmeleitmedium zumindest teilweise gebildet werden. Das Absorberblech 2 ist zudem zusätzlich, wie bereits ausgeführt, mit einer Beschichtung 12 versehen, welche eine hohe Absorption der eingestrahlten Sonnenstrahlung ermöglicht und gleichzeitig eine Rückstrahlung der aufgenommenen Strahlungsenergie verringert.
  • Das in 1 dargestellte Absorberelement 1 wird in der Regel in modularer Weise hergestellt, wobei nach Möglichkeit standardisierte Absorberelemente 1 mit standardisierten Abmessungen hergestellt werden. Aufgrund des rationalen Herstellverfahrens, welches auf das Verlöten von einzelnen, beispielsweise aus Kupfer bestehenden Rohren verzichtet, können Sonnenkollektoren so besonders wirtschaftlich hergestellt werden. Es versteht sich dabei von selbst, dass das Absorberelement 1 des Sonnenkollektors zusätzlich noch isoliert werden muss, um einen Wärmeabfluss ausschließlich über das Wärmeleitmedium zu gewährleisten. Hierzu sind die aus dem Stand der Technik bekannten Maßnahmen zu treffen.
  • In 2 ist nun das Absorberelement 1 eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Sonnenkollektors perspektivisch dargestellt, bei welchem die Kanäle 5 in einem Serpentinenregister verlaufen. Man erkennt den mäanderförmigen Verlauf der Kanäle 5 für das Wärmeleitmedium, welche in zwei Anschlussbereiche 7, 8 münden. Vorzugsweise werden gemäß des in 2 dargestellten zweiten Ausführungsbeispiels die Anschlussstücke 9 und 10 gleichzeitig mit dem Verlöten des Absorberbleches 2 und des unteren Bleches 3 ebenso angelötet. Dies vereinfacht den Herstellprozess weiter. Zwar sind in 2 die Kanäle 5 für das Wärmeleitmedium in einem Serpentinenregister dargestellt, es ist jedoch vorstellbar einen beliebigen Verlauf, wie beispielsweise in Parallelregistern, durch geeignete Prägung des Absorberbleches 2 und/oder unteren Bleches 3 zu ermöglichen. Die geprägten Kanäle 5 für das Wärmeleitmedium werden dabei vorzugsweise durch Verwendung eines Tiefziehverfahrens in das untere Blech und/oder das Absorberblech eingebracht.
  • Ferner zeigt 3 in einer Schnittansicht das Absorberelement 1 eines dritten Ausführungsbeispiels des erfindungsgemäßen Sonnenkollektors, bei welchem sowohl in das Absorberblech 2 als auch in das untere Blech 3 Prägungen zur Bildung der Kanäle 5 für das Wärmeleitmedium eingebracht worden sind. Werden in beide Bleche die Prägungen zur Bildung der Kanäle 5 für das Wärmeleitmedium eingebracht, können diese relativ flach ausfallen, sofern die Prägungen von der Kontaktfläche der Bleche wegweisend, wie in dem dritten Ausführungsbeispiel dargestellt, eingebracht werden. Zusätzlich weist das Absorberblech weitere Prägungen 11 auf, welche zur Vergrößerung der Absorptionsfläche dienen und zu einem verbesserten Wirkungsgrad des Sonnenkollektors beitragen. Die in 3 dargestellten zylinderförmigen Kanäle 5 für das Wärmeleitmedium müssen nicht notwendigerweise zylinderförmig sein. Vielmehr kann mit dem erfindungsgemäßen Verfahren zur Herstellung von Sonnenkollektoren eine Vielzahl an Kanalquerschnitten für die Kanäle 5 des Wärmeleitmediums realisiert werden, so dass diese optimal an die Wärmeübertragung vom Absorberblech auf das Wärmeleitmedium angepasst werden können.
  • In einer schematischen perspektivischen Ansicht ist schließlich in 4 ein Absorberelement 13 eines vierten Ausführungsbeispiels eines erfindungsgemäßen Sonnenkollektors dargestellt. Die Kanäle 5 für das Wärmeleitmedium verlaufen im unteren Blech 3 des Absorberelements 13 in einem Parallelregister 14 zwischen zwei Sammelkanälen 15, 16, die jeweils in einer Einlassöffnung 17 und in einer Auslassöffnung 18 münden. Durch die teilweise parallel verlaufenden Wärmeleitmedium führenden Kanäle 5 wird ein größerer effektiver Leitungsquerschnitt für das Wärmeleitmedium realisiert, so dass der Leitungswiderstand pro Absorberelement 13 sinkt. Damit wird es möglich, die Durchflussmengen des Wärmeleitmediums deutlich zu erhöhen und den Abtransport einer größeren Wärmemenge zu ermöglichen. Gleichzeitig können auch in den Kanälen 5, 15 und 16 Maßnahmen getroffen werden, um den Wärmeübergang vom Absorberblech und vom unteren Blech auf das Wärmeleitmedium zu erhöhen. Beispielsweise können gezielt Strömungswiderstände durch zusätzliche Prägungen eingebracht werden, welche durch Erzeugung von Wirbeln die Konvektion des Wärmemediums an den Kanalwänden erhöhen.

Claims (10)

  1. Sonnenkollektor zur Erwärmung eines Wärmeleitmediums umfassend mindestens ein Absorberelement (1) mit mindestens einem Absorberblech (2) zur Absorption des Sonnenlichtes und Kanälen (5) für das Wärmeleitmedium, welche mit dem Absorberblech derart verbunden sind, so dass Wärme von dem Absorberblech (2) an das Wärmeleitmedium übertragen werden kann und das Absorberblech (2) eine selektiv absorbierende Beschichtung aufweist, dadurch gekennzeichnet, dass ein unterhalb des Absorberbleches (2) angeordnetes Blech (3) vorgesehen ist, welches mit dem Absorberblech (2) abdichtend verbunden ist, wobei das untere Blech (3) und/oder das Absorberblech (2) Prägungen (6) aufweist, welche nach dem Verbinden des Bleches (3) mit dem Absorberblech (2) zumindest teilweise Kanäle (5) für das Wärmeleitmedium bilden und die selektiv absorbierende Beschichtung des Absorberblechs (2) hochtemperaturfest ist.
  2. Sonnenkollektor nach Anspruch 1, dadurch gekennzeichnet, dass das Absorberblech (2) mit dem unteren Blech (3) stoffschlüssig verbunden, insbesondere verlötet ist.
  3. Sonnenkollektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Prägungen (6) des Absorberbleches (2) und des unteren Bleches (3) zumindest teilweise von deren Kontaktfläche wegweisend ausgeführt sind.
  4. Sonnenkollektor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Absorberblech (2) und/oder das untere Blech (3) zumindest teilweise aus Aluminium oder einer Aluminiumlegierung bestehen.
  5. Sonnenkollektor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Absorberblech (2) und/oder das untere Blech (3) zumindest auf der mit dem Wärmeleitmedium in Kontakt stehenden Fläche eine Lotplattierung aufweist.
  6. Sonnenkollektor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Absorberblech (2) zusätzlich Prägungen (6) zur Vergrößerung der Absorptionsfläche aufweist.
  7. Sonnenkollektor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Wärmeleitmedium führenden Kanäle (5) zumindest teilweise mäanderförmig und/oder zumindest teilweise parallel zueinander verlaufen.
  8. Sonnenkollektor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass tiefgezogene Prägungen (6) im Absorberblech (2) und/oder unteren Blech (3) vorgesehen sind.
  9. Sonnenkollektor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Absorberelement Anschlusstücke (9, 10), insbesondere Fittings, zum Anschließen eines Zu- und Ablaufs für das Wärmeleitmedium oder für weitere Sonnenkollektoren aufweist.
  10. Sonnenkollektor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Sonnenkollektor modular aufgebaut ist.
DE202006020157U 2006-01-20 2006-01-20 Modularer Sonnenkollektor Expired - Lifetime DE202006020157U1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202006020157U DE202006020157U1 (de) 2006-01-20 2006-01-20 Modularer Sonnenkollektor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202006020157U DE202006020157U1 (de) 2006-01-20 2006-01-20 Modularer Sonnenkollektor
DE102006003096A DE102006003096B4 (de) 2006-01-20 2006-01-20 Modularer Sonnenkollektor

Publications (1)

Publication Number Publication Date
DE202006020157U1 true DE202006020157U1 (de) 2007-12-13

Family

ID=38825603

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202006020157U Expired - Lifetime DE202006020157U1 (de) 2006-01-20 2006-01-20 Modularer Sonnenkollektor

Country Status (1)

Country Link
DE (1) DE202006020157U1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010050249A1 (de) * 2010-09-13 2012-03-15 Meindl-Köhle Umform- und Systemtechnik GmbH & Co. KG Von einem Wärmeträger durchströmtes Trägermodul, insbesondere Trägermodul für Photovoltaikzellen;Verfahren und Vorrichtung zur Herstellung eines derartigen Trägermoduls
AT509018B1 (de) * 2009-10-29 2012-04-15 Dtec Gmbh Flachabsorber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT509018B1 (de) * 2009-10-29 2012-04-15 Dtec Gmbh Flachabsorber
DE102010050249A1 (de) * 2010-09-13 2012-03-15 Meindl-Köhle Umform- und Systemtechnik GmbH & Co. KG Von einem Wärmeträger durchströmtes Trägermodul, insbesondere Trägermodul für Photovoltaikzellen;Verfahren und Vorrichtung zur Herstellung eines derartigen Trägermoduls
DE102010050249B4 (de) * 2010-09-13 2013-03-07 Meindl-Köhle Umform- und Systemtechnik GmbH & Co. KG Von einem Wärmeträger durchströmtes Trägermodul, insbesondere Trägermodul für Photovoltaikzellen;Verfahren und Vorrichtung zur Herstellung eines derartigen Trägermoduls

Similar Documents

Publication Publication Date Title
DE102006003096B4 (de) Modularer Sonnenkollektor
EP1204495B1 (de) Wärmetauscher
EP1830140B1 (de) Hybridkollektor
EP1707911A1 (de) Wärmetauscher, beispielsweise Ladeluftkühler und Herstellungsverfahren
DE10045175A1 (de) Wärmetauscher und Verfahren zur Herstellung desselben
EP0162192A1 (de) Verfahren zum kohärenten Verbinden von Bauteilen mit einem deformierbaren Hilfsmaterial, insbesondere zum Verbinden dünnwandiger Bauteile
CH635009A5 (de) Verfahren zum verbinden eines metallrohres mit einem metallblech und nach dem verfahren hergestellte absorptionsplatte.
DE112016003449T5 (de) Wärmetauscher und Verfahren zum Herstellen desselben
DE102008022391A1 (de) Absorber, insbesondere für einen Sonnenkollektor und Verfahren zur Herstellung eines Absorbers für einen Sonnenkollektor
DE202006020157U1 (de) Modularer Sonnenkollektor
DE19861180B4 (de) Verfahren zum Herstellen eines Absorbers für einen Solarkollektor
DE102019001810A1 (de) Adsorptiver Wärme- und Stoffübertrager
EP2058077A1 (de) Verfahren zum Verbinden einer Aluminiumrippe mit einem Stahlrohr und Wärmetauscher mit einer derart hergestellten Einheit
DE202019005055U1 (de) Hybrider Solarkollektor zur Dacheindeckung
EP1813902A1 (de) Wärmetauschersystem, Befestigungselement, Verfahren zur Herstellung eines Wärmetauschersystems, Verfahren zur Herstellung eines Befestigungselements
DE2549749A1 (de) Waermeaustauscher aus zwei oder mehreren werkstoffen mit sehr unterschiedlichen physikalischen eigenschaften
AT512172B1 (de) Absorber für solarstrahlung
DE4402020C2 (de) Verfahren und Anlage zur Herstellung von Wärmetauschern für fluide Wärmeträger sowie druckfester Wärmetausch
DE3331619C2 (de)
DE10164296B4 (de) Heizkörper
EP3430342A1 (de) Vollflächige verbindung von wärmeübertragerblöcken durch hydraulisches aufweiten von rohren zwischen profilen
DE102017003584B4 (de) Lamellenwärmeübertrager, sowie ein Herstellungsverfahren eines solchen
AT365331B (de) Ebener plattenwaermetauscher, insbesondere sonnenkollektor
DE102008051898A1 (de) Verfahren zur Herstellung eines Wärmeübertragers und Wärmeübertrager, hergestellt nach dem Verfahren
AT412908B (de) Absorber für einen sonnenkollektor

Legal Events

Date Code Title Description
R207 Utility model specification

Effective date: 20080117

R150 Term of protection extended to 6 years

Effective date: 20090714

R151 Term of protection extended to 8 years

Effective date: 20120126

R152 Term of protection extended to 10 years

Effective date: 20140129

R071 Expiry of right