DE19940262A1 - Waschmittelzusatzstoffe in fester Form - Google Patents

Waschmittelzusatzstoffe in fester Form

Info

Publication number
DE19940262A1
DE19940262A1 DE1999140262 DE19940262A DE19940262A1 DE 19940262 A1 DE19940262 A1 DE 19940262A1 DE 1999140262 DE1999140262 DE 1999140262 DE 19940262 A DE19940262 A DE 19940262A DE 19940262 A1 DE19940262 A1 DE 19940262A1
Authority
DE
Germany
Prior art keywords
acid
substances
contain
water
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE1999140262
Other languages
English (en)
Inventor
Manfred Weuthen
Ditmar Kischkel
Rainer Eskuchen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Priority to DE1999140262 priority Critical patent/DE19940262A1/de
Priority to EP00117604A priority patent/EP1081217A3/de
Publication of DE19940262A1 publication Critical patent/DE19940262A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Vorgeschlagen werden Waschmittelzusatzstoffe in fester Form, welche sich dadurch auszeichnen, daß sie aus einer entschäumenden Verbindung als Kern und einer sie umhüllenden Schicht bestehen.

Description

Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der Waschmittel und betrifft neue beschichtete Entschäu­ mergranulate für den besonderen Einsatz in stark schäumenden Waschmitteln mit hohem Aniontensi­ degehalt.
Stand der Technik
Ein typisches Merkmal anionischer Tenside besteht darin, Schaum zu entwickeln. In vielen Anwendun­ gen, wie beispielsweise in Handgeschirrspülmitteln oder Haarshampoos wird dieser Effekt vom Ver­ braucher ausdrücklich gewünscht, da er ihn mit Leistungsfähigkeit gleichsetzt, auch wenn dies aus wissenschaftlicher Sicht nicht ohne weiteres zutrifft. Im Bereich der Haushalts- und Industriewaschmit­ teln ist Schaumentwicklung jedoch im wesentlichen unerwünscht, da sie rasch zu einem Überschäu­ men der Maschine führen kann. Nachdem auf anionische Tenside als Bestandteil der Rezepturen we­ gen ihres speziellen Leistungsprofil in der Regel nicht verzichtet werden kann, besteht die Notwendig­ keit, Waschmittelformulierungen mit einer hinreichenden Menge an Entschäumern zu versehen, die einerseits die Schaummenge auf ein akzeptables Maß begrenzen ohne auf der anderen Seite die Re­ zeptur in ihrer Leistungsfähigkeit zu mindern oder zu teuer werden zu lassen. Aus dem Stand der Technik sind für diesen Zweck eine Vielzahl von Verbindungen bekannt, von denen an dieser Stelle nur die Seifen, die Paraffine und die Silikone genannt werden sollen.
Die Herstellung derartiger Entschäumer erfolgt bisher entweder durch Trocknung der entsprechenden wäßrigen Emulsionen bzw. Dispersionen oder durch direktes Aufsprühen der Entschäumerkomponente auf einen Träger. Hierzu werden bekannte Prozesse, wie z. B. Wirbelschichttrocknung bzw. Wirbel­ schichtgranulierung, Sprühmischverfahren und die konventionelle Gegenstromtrocknung im Sprühturm genutzt. Hierbei werden in allgemeinen auch Zuschlagsstoffe, wie etwa Natriumsulfat oder Zeolith als Träger eingearbeitet. Hilfsstoffe und Entschäumerkomponente sind - makroskopisch betrachtet - im Granulat homogen verteilt, obwohl sich unter dem Mikroskop erweist, daß das Produkt auch heteroge­ ne Bereiche aufweist, beispielsweise Zonen, in denen beispielsweise der Entschäumer konzentriert vorliegt. Konventionelle Entschäumer dieser Art sind in ihrer Wirkung verbesserungswürdig, insbeson­ dere dann wenn es darum geht, Waschmittel, vorzugsweise solche in Tablettenform, auch dann wir­ kungsvoll zu entschäumen, wenn diese einen hohen Anteil besonders schaumstarker anionischer Ten­ side enthalten. Die Aufgabe der Erfindung hat somit darin bestanden, diesem Problem abzuhelfen.
Beschreibung der Erfindung
Gegenstand der Erfindung sind Waschmittelzusatzstoffe in fester Form, die sich dadurch auszeichnen, daß sie aus einer entschäumenden Verbindungen als Kern und einer sie umhüllenden Schicht beste­ hen.
Überraschenderweise wurde gefunden, daß die erfindungsgemäßen Waschmittelzusatzstoffe, bei de­ nen es sich um beschichtete Entschäumer handelt, im Gegensatz zu nicht-beschichteten Vergleichs­ produkten des Handels auch dann noch in der Lage sind, die Schaumentwicklung von Waschmitteln während der gesamten Dauer des Waschvorgangs zuverlässig zu regulieren, wenn die Mittel über ei­ nen besonders hohen Anteil an Aniontensiden verfügen bzw. Aniontenside mit einem besonders aus­ geprägten Schaumvermögen enthalten. Es ist nicht störend, wenn ein Teil der Beschichtung herstel­ lungsbedingt in das Entschäumerkorn gelangt. Die Beschichtung des Entschäumerkorns muß zudem auch nicht vollständig sein, es ist ausreichend, wenn die Umhüllung sicher stellt, daß die Wanderung von Wasser und Tensiden, insbesondere nichtionischen Tensiden, in das Korn und damit die Desakti­ vierung des Entschäumer verhindert wird.
Entschäumer
Die erfindungsgemäßen Waschmittelzusatzstoffe, enthalten die entschäumenden Verbindungen - bezo­ gen auf die Summe Aktivsubstanz und gegebenenfalls Träger - vorzugsweise in Gesamtmengen von 75 bis 99 Gew.-%, bevorzugt von 80 bis 95 und insbesondere von 85 bis 90 Gew.-%. Bei den Ent­ schäumern kann es sich um wachsartige Verbindungen und/oder Silikonverbindungen handeln. Einer Ausführungsform der vorliegenden Erfindung entsprechend sind als Entschäumer ausschließlich wachsartige Entschäumerverbindungen enthalten. Als "wachsartig" werden solche Verbindungen ver­ standen, die einen Schmelzpunkt bei Atmosphärendruck über 25°C (Raumtemperatur), vorzugsweise über 50°C und insbesondere über 70°C aufweisen. Die ggf. erfindungsgemäß enthaltenen wachsarti­ gen Entschäumersubstanzen sind in Wasser praktisch nicht löslich, d. h. bei 20°C weisen sie in 100 g Wasser eine Löslichkeit unter 0,1 Gew.-% auf. Prinzipiell können alle aus dem Stand der Technik be­ kannten wachsartigen Entschäumersubstanzen enthalten sein. Geeignete wachsartige Verbindungen sind beispielsweise Bisamide, Fettalkohole, Fettsäuren, Carbonsäureester von ein- und mehrwertigen Alkoholen sowie Paraffinwachse oder Mischungen derselben. Alternativ können natürlich auch die für diesen Zweck bekannten Silikonverbindungen eingesetzt werden.
Geeignete Paraffinwachse stellen im allgemeinen ein komplexes Stoffgemisch ohne scharfen Schmelzpunkt dar. Zur Charakterisierung bestimmt man üblicherweise seinen Schmelzbereich durch Differential-Thermo-Analyse (DTA), wie in "The Analyst" 87 (1962), 420, beschrieben, und/oder seinen Erstarrungspunkt. Darunter versteht man die Temperatur, bei der das Paraffin durch langsames Ab­ kühlen aus dem flüssigen in den festen Zustand übergeht. Dabei sind bei Raumtemperatur vollständig flüssige Paraffine, das heißt solche mit einem Erstarrungspunkt unter 25°C, erfindungsgemäß nicht brauchbar. Eingesetzt werden können beispielsweise die aus EP 0309931 A1 bekannten Paraf­ finwachsgemische aus beispielsweise 26 Gew.-% bis 49 Gew.-% mikrokristallinem Paraffinwachs mit einem Erstarrungspunkt von 62°C bis 90°C, 20 Gew.-% bis 49 Gew.-% Hartparaffin mit einem Erstar­ rungspunkt von 42°C bis 56°C und 2 Gew.-% bis 25 Gew.-% Weichparaffin mit einem Erstarrungs­ punkt von 35°C bis 40°C. Vorzugsweise werden Paraffine bzw. Paraffingemische verwendet, die im Bereich von 30°C bis 90°C erstarren. Dabei ist zu beachten, daß auch bei Raumtemperatur fest er­ scheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigem Paraffin enthalten können. Bei den erfindungsgemäß brauchbaren Paraffinwachsen liegt dieser Flüssiganteil so niedrig wie mög­ lich und fehlt vorzugsweise ganz. So weisen besonders bevorzugte Paraffinwachsgemische bei 30°C einen Flüssiganteil von unter 10 Gew.-%, insbesondere von 2 Gew.-% bis 5 Gew.-%, bei 40°C einen Flüssiganteil von unter 30 Gew.-%, vorzugsweise von 5 Gew.-% bis 25 Gew.-% und insbesondere von 5 Gew.-% bis 15 Gew.-%, bei 60°C einen Flüssiganteil von 30 Gew.-% bis 60 Gew.-%, insbesondere von 40 Gew.-% bis 55 Gew.-%, bei 80°C einen Flüssiganteil von 80 Gew.-% bis 100 Gew.-%, und bei 90°C einen Flüssiganteil von 100 Gew.-% auf. Die Temperatur, bei der ein Flüssiganteil von 100 Gew.-% des Paraffinwachses erreicht wird, liegt bei besonders bevorzugten Paraffinwachsgemischen noch unter 85°C, insbesondere bei 75°C bis 82°C. Bei den Paraffinwachsen kann es sich um Petrolatum, mikrokristalline Wachse bzw. hydrierte oder partiell hydrierte Paraffinwachse handeln.
Geeignete Bisamide als Entschäumer sind solche, die sich von gesättigten Fettsäuren mit 12 bis 22, vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C-Atomen ableiten. Geeig­ nete Fettsäuren sind Laurin-, Myristin-, Stearin-, Arachin- und Behensäure sowie deren Gemische, wie sie aus natürlichen Fetten beziehungsweise gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhält­ lich sind. Geeignete Diamine sind beispielsweise Ethylendiamin, 1,3-Propylendiamin, Tetramethy­ lendiamin, Pentamethylendiamin, Hexamethylendiamin, p-Phenylendiamin und Toluylendiamin. Bevor­ zugte Diamine sind Ethylendiamin und Hexamethylendiamin. Besonders bevorzugte Bisamide sind Bismyristoylethylendiamin, Bispalmitoylethylendiamin, Bisstearoylethylendiamin und deren Gemische sowie die entsprechenden Derivate des Hexamethylendiamins.
Geeignete Carbonsäureester als Entschäumer leiten sich von Carbonsäuren mit 12 bis 28 Kohlen­ stoffatomen ab. Insbesondere handelt es sich um Ester von Behensäure, Stearinsäure, Hydroxystea­ rinsäure, Ölsäure, Palmitinsäure, Myristinsäure und/oder Laurinsäure. Der Alkoholteil des Carbonsäure­ esters enthält einen ein- oder mehrwertigen Alkohol mit 1 bis 28 Kohlenstoffatomen in der Kohlenwas­ serstoffkette. Beispiele von geeigneten Alkoholen sind Behenylalkohol, Arachidylalkohol, Kokosalkohol, 12-Hydroxystearylalkohol, Oleylalkohol und Laurylalkohol sowie Ethylenglykol, Glycerin, Polyvinylalko­ hol, Saccharose, Erythrit, Pentaerythrit, Sorbitan und/oder Sorbit. Bevorzugte Ester sind solche von Ethylenglykol, Glycerin und Sorbitan, wobei der Säureteil des Esters insbesondere aus Behensäure, Stearinsäure, Ölsäure, Palmitinsäure oder Myristinsäure ausgewählt wird. In Frage kommende Ester mehrwertiger Alkohole sind beispielsweise Xylitmonopalmitat, Pentarythritmonostearat, Glycerin­ monostearat, Ethylenglykolmonostearat und Sorbitanmonostearat, Sorbitanpalmitat, Sorbitanmonolau­ rat, Sorbitandilaurat, Sorbitandistearat, Sorbitandibehenat, Sorbitandioleat sowie gemischte Talgalkyl­ sorbitanmono- und -diester. Brauchbare Glycerinester sind die Mono-, Di- oder Triester von Glycerin und genannten Carbonsäuren, wobei die Mono- oder Diester bevorzugt sind. Glycerinmonostearat, Glycerinmonooleat, Glycerinmonopalmitat, Glycerinmonobehenat und Glycerindistearat sind Beispiele hierfür. Beispiele für geeignete natürliche Ester als Entschäumer sind Bienenwachs, das hauptsächlich aus den Estern CH3(CH2)24COO(CH2)27CH3 und CH3(CH2)26COO(CH2)25CH3 besteht, und Carnauba­ wachs, das ein Gemisch von Carnaubasäurealkylestern, oft in Kombination mit geringen Anteilen freier Carnaubasäure, weiteren langkettigen Säuren, hochmolekularen Alkoholen und Kohlenwasserstoffen, ist.
Geeignete Carbonsäuren als weitere Entschäumerverbindung sind insbesondere Behensäure, Stea­ rinsäure, Ölsäure, Palmitinsäure, Myristinsäure und Laurinsäure sowie deren Gemische, wie sie aus natürlichen Fetten bzw. gegebenenfalls gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Bevorzugt sind gesättigte Fettsäuren mit 12 bis 22, insbesondere 18 bis 22 C-Atomen.
Geeignete Fettalkohole als weitere Entschäumerverbindung sind die hydrierten Produkte der be­ schriebenen Fettsäuren.
Weiterhin können zusätzlich Dialkylether als Entschäumer enthalten sein. Die Ether können asym­ metrisch oder aber symmetrisch aufgebaut sein, d. h. zwei gleiche oder verschiedene Alkylketten, vor­ zugsweise mit 8 bis 18 Kohlenstoffatomen enthalten. Typische Beispiele sind Di-n-octylether, Di-i- octylether und Di-n-stearylether, insbesondere geeignet sind Dialkylether, die einen Schmelzpunkt über 25°C, insbesondere über 40°C aufweisen.
Weitere geeignete Entschäumerverbindungen sind Fettketone der Formel (I),
R1-CO-R2 (I)
in der R1 und R2 unabhängig voneinander lineare oder verzweigte Kohlenwasserstoffreste mit 11 bis 25 Kohlenstoffatomen und 0 oder 1 Doppelbindung darstellen. Derartige Ketone stellen bekannte Stoffe dar, die nach den einschlägigen Methoden der präparativen organischen Chemie erhalten werden kön­ nen. Zu ihrer Herstellung geht man beispielsweise von Carbonsäuremagnesiumsalzen aus, die bei Temperaturen oberhalb von 300°C unter Abspaltung von Kohlendioxid und Wasser pyrolysiert werden, beispielsweise gemäß der deutschen Offenlegungsschrift DE 25 53 900 OS. Geeignete Fettketone sind solche, die durch Pyrolyse der Magnesiumsalze von Laurinsäure, Myristinsäure, Palmitinsäure, Palmi­ toleinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Arachinsäure, Gadoleinsäure, Be­ hensäure oder Erucasäure hergestellt werden. Bevorzugt sind Hentriacontanon-16; (R1 und R2 steht für einen Alkylrest mit 15 Kohlenstoffatomen), Tritriacontanon-17 (R1 und R2 steht für einen Alkylrest mit 16 Kohlenstoffatomen), Stearon (Pentatriacontanon-18; R1 und R2 steht für einen Alkylrest mit 17 Kohlen­ stoffatomen), Heptatriacontanon-19 (R1 und R2 steht für einen Alkylrest mit 18 Kohlenstoffatomen), Arachinon (Nonatriacontanon-20; R1 und R2 steht für einen Alkylrest mit 19 Kohlenstoffatomen), Hente­ tracontanon-21 (R1 und R2 steht für einen Alkylrest mit 20 Kohlenstoffatomen) und/oder Behenon (Triatetracontanon-22; R1 und R2 steht für einen Alkylrest mit 21 Kohlenstoffatomen).
Weitere geeignete Entschäumer sind Fettsäurepolyethylenglykolester der Formel (II),
R3COO(CH2CH2O)nH (II)
in der R3CO für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen und n für Zahlen von 0,5 bis 1,5 steht. Derartige Fettsäurepo­ lyethylenglyolester werden vorzugsweise durch basisch homogen katalysierte Anlagerung von Ethylen­ oxid an Fettsäuren erhalten, insbesondere erfolgt die Anlagerung von Ethylenoxid an die Fettsäuren in Gegenwart von Alkanolaminen als Katalysatoren. Der Einsatz von Alkanolaminen, speziell Triethanol­ amin, führt zu einer äußerst selektiven Ethoxylierung der Fettsäuren, insbesondere dann, wenn es darum geht, niedrig ethoxylierte Verbindungen herzustellen. Bevorzugt im Sinne der vorliegenden Er­ findung werden Fettsäurepolyethylenglykolester der Formel (II), in der R3CO für einen linearen Acylrest mit 12 bis 18 Kohlenstoffatomen und n für die Zahl 1 steht. Besonders geeignet ist mit 1 Mol Ethylen­ oxid ethoxylierte Laurinsäure. Innerhalb der Gruppe der Fettsäurepolyethylenglykolester werden solche bevorzugt, die einen Schmelzpunkt über 25°C, insbesondere über 40°C aufweisen.
Innerhalb der Gruppe der wachsartigen Entschäumer werden besonders bevorzugt die beschriebenen Paraffinwachse alleine als wachsartige Entschäumer eingesetzt oder in Mischung mit einem der ande­ ren wachsartigen Entschäumer, wobei der Anteil der Paraffinwachse in der Mischung vorzugsweise über 50 Gew.-% - bezogen auf wachsartige Entschäumermischung - ausmacht. Die Paraffinwachse können bei Bedarf auf Träger aufgebracht sein. Als Trägermaterial sind alle bekannten anorganischen und/oder organischen Trägermaterialien geeignet. Beispiele für typische anorganische Trä­ germaterialien sind Alkalicarbonate, Alumosilikate, wasserlösliche Schichtsilikate, Alkalisilikate, Alkali­ sulfate, beispielsweise Natriumsulfat, und Alkaliphosphate. Bei den Alkalisilikaten handelt es sich vor­ zugsweise um eine Verbindung mit einem Molverhältnis Alkalioxid zu SiO2 von 1 : 1,5 bis 1 : 3,5. Die Verwendung derartiger Silikate resultiert in besonders guten Korneigenschaften, insbesondere hoher Abriebsstabilität und dennoch hoher Auflösungsgeschwindigkeit in Wasser. Zu den als Trägermaterial bezeichneten Alumosilikaten gehören insbesondere die Zeolithe, beispielsweise Zeolith NaA und NaX. Zu den als wasserlöslichen Schichtsilikaten bezeichneten Verbindungen gehören beispielsweise amor­ phes oder kristallines Wasserglas. Weiterhin können Silikate Verwendung finden, welche unter der Bezeichnung Aerosil® oder Sipernat® im Handel sind. Als organische Trägermaterialien kommen zum Beispiel filmbildende Polymere, beispielsweise Polyvinylalkohole, Polyvinylpyrrolidone, Poly(meth)acrylate, Polycarboxylate, Cellulosederivate und Stärke in Frage. Brauchbare Celluloseether sind insbesondere Alkalicarboxymethylcellulose, Methylcellulose, Ethylcellulose, Hydroxyethylcellulose und sogenannte Cellulosemischether, wie zum Beispiel Methylhydroxyethylcellulose und Methylhydroxy­ propylcellulose, sowie deren Mischungen. Besonders geeignete Mischungen sind aus Natrium-Carb­ oxymethylcellulose und Methylcellulose zusammengesetzt, wobei die Carboxymethylcellulose übli­ cherweise einen Substitutionsgrad von 0,5 bis 0,8 Carboxymethylgruppen pro Anhydroglukoseeinheit und die Methylcellulose einen Substitutionsgrad von 1,2 bis 2 Methylgruppen pro Anhydroglukose­ einheit aufweist. Die Gemische enthalten vorzugsweise Alkalicarboxymethylcellulose und nichtioni­ schen Celluloseether in Gewichtsverhältnissen von 80 : 20 bis 40 : 60, insbesondere von 75 : 25 bis 50 : 50. Als Träger ist auch native Stärke geeignet, die aus Amylose und Amylopectin aufgebaut ist. Als native Stärke wird Stärke bezeichnet, wie sie als Extrakt aus natürlichen Quellen zugänglich ist, bei­ spielsweise aus Reis, Kartoffeln, Mais und Weizen. Native Stärke ist ein handelsübliches Produkt und damit leicht zugänglich. Als Trägermaterialien können einzeln oder mehrere der vorstehend genannten Verbindungen eingesetzt werden, insbesondere ausgewählt aus der Gruppe der Alkalicarbonate, Alka­ lisulfate, Alkaliphosphate, Zeolithe, wasserlösliche Schichtsilikate, Alkalisilikate, Polycarboxylate, Cel­ luloseether, Polyacrylat/Polymethacrylat und Stärke. Besonders geeignet sind Mischungen von Alkali­ carbonaten, insbesondere Natriumcarbonat, Alkalisilikaten, insbesondere Natrlumsilikat, Alkalisulfaten, insbesondere Natriumsulfat und Zeolithen.
Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung wird als Entschäumer eine Mi­ schung aus mindestens einem wachsartigen Entschäumer, vorzugsweise ein Paraffinwachs, und einer entschäumenden Silikonverbindung eingesetzt. Im Sinne der vorliegenden Erfindung sind geeignete Silikone übliche Organopolysiloxane, die einen Gehalt an feinteiliger Kieselsäure, die wiederum auch silaniert sein kann, aufweisen können. Derartige Organopolysiloxane sind beispielsweise in der euro­ päischen Patentanmeldung EP 0496510 A1 beschrieben. Besonders bevorzugt sind Polydiorgano­ siloxane, die aus dem Stand der Technik bekannt sind. Geeignete Polydiorganosiloxane können eine nahezu lineare Kette aufweisen und sind gemäß folgender Formel (III) gekennzeichnet,
wobei R4 unabhängig voneinander für einen Alkyl- oder einen Arylrest und z für Zahlen im Bereich von 40 bis 1500 stehen kann. Beispiele für geeignete Substituenten R4 sind Methyl, Ethyl, Propyl, Isobutyl, tert. Butyl und Phenyl. Es können aber auch über Siloxan vernetzte Verbindungen eingesetzt werden, wie sie dem Fachmann unter der Bezeichnung Silikonharze bekannt sind. In der Regel enthalten die Polydiorganosiloxane feinteilige Kieselsäure, die auch silaniert sein kann. Insbesondere geeignet sind kieselsäurehaltige Dimethylpolysiloxane. Vorteilhafterweise haben die Polydiorganosiloxane eine Vis­ kosität nach Brookfield bei 25°C im Bereich von 5000 mPas bis 30.000 mPas, insbesondere von 15.000 bis 25.000 mPas. Die Silikone sind vorzugsweise auf Trägermaterialien aufgebracht. Geeignete Trägermaterialien sind bereits im Zusammenhang mit den Paraffinen beschrieben worden. Die Träger­ materialien sind in der Regel in Mengen von 40 bis 90 Gew.-%, vorzugsweise in Mengen von 45 bis 75 Gew.-% - bezogen auf Entschäumer - enthalten.
Wasserlösliche Verbindungen
Die erfindungsgemäßen Waschmittelzusatzstoffe enthalten die das Entschäumerkorn umhüllenden Substanzen - bezogen auf Feststoff - vorzugsweise in Gesamtmengen von 1 bis 25 Gew.-%, bevorzugt von 5 bis 20 und insbesondere von 10 bis 15 Gew.-%. Vorzugsweise handelt es sich bei diesen Hüll­ substanzen um wasserlösliche Verbindungen, welche weiter bevorzugt eine Wasserlöslichkeit bei 20°C von mindestens 10 g/l, vorzugsweise mindestens 50 g/l und insbesondere 100 g/l aufweisen und dabei vorteilhafterweise weitere, für die Gesamtrezeptur nützliche Eigenschaften aufweisen, wie bei­ spielsweise die Komplexierung von Härtebildnern und Schwermetallionen. Alternativ kann die Be­ schichtung auch aus der Schmelze erfolgen, d. h. anstelle der wasserlöslichen kommen grundsätzlich auch schmelzbare Verbindungen in Frage.
In einer ersten Ausführungsform der Erfindung kann es sich bei diesen Stoffen um die Salze anorgani­ scher Mineralsäuren handeln. Typische Beispiele sind die Alkali- und/oder Erdalkalisalze, Aluminium- oder Zinksalze der Salzsäure, Schwefelsäure, Salpetersäure, Phosphorsäure, Borsäure und Kieselsäu­ re, wobei insbesondere die Alkalisulfat, Alkaliborate und -perborate, die verschiedenen Alkalisilicate ("Wassergläser") und Alkaliphosphate genannt werden sollen. Typische Beispiele sind Magnesiumsul­ fat-Heptahydrat oder Borax.
Ferner kommen auch die Salze organischer Carbonsäuren in Frage. Typische Beispiele sind die Alkali- und/oder Erdalkalisalze, Aluminium- oder Zinksalze von Monocarbonsäuren mit 1 bis 22 Kohlen­ stoffatomen, als da sind Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Valeriansäure, Ca­ pronsäure, Caprylsäure, 2-Ethylhexansäure. Besonders bevorzugt ist der Einsatz von Natriumacetat. Anstelle der Monocarbonsäuren können auch entsprechende C2-C6-Dicarbonsäuren eingesetzt wer­ den, so daß als geeignete Hüllsubstanzen in gleicher Weise wie oben auch die entsprechenden Salze der Bernsteinsäure, Maleinsäure, Fumarsäure, Glutarsäure und Adipinsäure in Frage kommen.
Schließlich können auch Salze hydroxyfunktionalisierter mehrwertiger Carbonsäuren eingesetzt wer­ den, wie z. B. die oben genannten Salze von Äpfelsäure, Weinsäure und insbesondere Citronensäure. Hier ist ganz besonders der Einsatz von Alkalicitraten bevorzugt.
Als dritte Gruppe geeigneter Hüllsubstanzen seien die wasserlöslichen Polymeren genannt, bei de­ nen es sich beispielsweise um Proteinhydrolysate, Polyamide, Polyacrylate und Polyurethane handeln kann. Auch Harnstoff und Polyharnstoff sind geeignet. Weiterhin in Frage kommen Saccharide und Polysaccharide, wie z. B. Saccharose, Maltose oder Stärkehydrolysate.
Herstellverfahren
Die erfindungsgemäßen Waschmittelzusatzstoffe lassen sich nach Verfahren herstellen, die bereits für die Produktion von Waschmitteln bekannt sind. Grundsätzlich wird dabei zunächst das Entschäumer­ korn durch Trocknung und gegebenenfalls Granulierung einer entsprechenden Emulsion bzw. Disper­ sion hergestellt, welches dann mit einer wäßrigen Lösung der Hüllsubstanz in Kontakt gebracht wird. Dies geschieht vorzugsweise bei höheren Temperaturen, wobei sich die Hüllsubstanz auf dem Korn niederschlägt und es ganz wesentlich dabei einschließt. Verallgemeinert erfolgt die Herstellung der neuen Waschmittelzusatzstoffe also dergestalt, daß man zunächst eine wäßrige Emulsion oder Disper­ sion eines Entschäumers trocknet und auf dem sich dabei bildenden Korn aus einer wäßrigen Lösung oder Schmelze eine Hüllsubstanz niederschlägt, gegebenenfalls während das Wasser verdampft. Es ist dabei natürlich sofort klar, daß sich das Verfahren einstufig oder auch zweistufig durchführen läßt. Im letzteren Fall wird man zunächst eine entsprechende Entschäumeremulsion bzw. -dispersion trocknen und das getrocknete Pulver, bei dem es sich dann seinerseits auch um ein konventionelles Marktpro­ dukt handeln kann, anschließend beschichten. Im einstufigen, vorzugsweise kontinuierlichen Verfahren werden entweder die wäßrigen Entschäumeremulsionen bzw. -dispersionen oder aber die getrockne­ ten Entschäumerpulver zusammen mit den Beschichtungsmitteln eingesetzt.
Bei der Trockeneinrichtung, in die die Entschäumeremulsionen bzw. -dispersionen eingebracht, vor­ zugsweise versprüht werden, kann es sich um beliebige Trockenapparaturen handeln. In einer Verfah­ rensführung wird die Trocknung als Sprühtrocknung in einem Trockenturm durchgeführt. Dabei wer­ den die vorzugsweise wäßrigen Emulsionen bzw. Dispersionen in bekannter Weise einem Trocknungs­ gasstrom in feinverteilter Form ausgesetzt. Es werden Entschäumerpulver erhalten, die dann in einem zweiten Schritt mit der erforderlichen Menge der Hüllsubstanzen in Form einer wäßrigen Lösung innig vermischt werden. Für diesen Vorgang sind Bauteile wie beispielsweise Schaufelmischer der Firma Lödige oder insbesondere Sprühmischer der Firma Schugi von Vorteil, bei denen man das Entschäu­ merpulver in der Mischkammer vorlegt und die wäßrigen Lösungen der Hüllstoffe aufdüst. Ferner ist es möglich, die Trocknung der Entschäumeremulsionen bzw. -dispersionen und das Vermischen gleich­ zeitig in einem Wirbelschichttrockner durchzuführen.
Eine besonders bevorzugte Möglichkeit besteht darin, die gegebenenfalls wäßrigen Entschäumervor­ produkte einer Wirbelschichtgranulierung ("SKET"-Granulierung) zu unterwerfen. Hierunter ist eine Granulierung unter gleichzeitiger Trocknung zu verstehen, die vorzugsweise batchweise oder kontinu­ ierlich erfolgt. Dabei können die Entschäumer sowohl in getrocknetem Zustand als auch als wäßrige Zubereitung eingesetzt werden. Die wäßrigen Lösungen oder Schmelzen der Hüllstoffe werden gleich­ zeitig oder aber nacheinander über eine oder mehrere Düsen in die Wirbelschicht eingebracht. Vor­ zugsweise wird man über eine Düse in eine mit Keimmaterial annähernd gefüllte Wirbelschicht konti­ nuierlich Entschäumerpulver einblasen und über eine zweite Düse die Hüllstoffe dosieren. Dies ent­ spricht einer kontinuierlichen fest/flüssig-Herstellung, setzt jedoch voraus, daß entsprechend getrock­ netes Entschäumerpulver schon vorliegt. Man kann das Verfahren auch kontinuierlich flüssig/flüssig durchführen. In diesem Fall ist jedoch darauf zu achten, daß die wäßrige Entschäumerzubereitung bei einer so hohen Temperatur eingebracht wird, daß die Tröpfchen unmittelbar nach Verlassen der Düse getrocknet werden, ohne daß sich der Entschäumer jedoch zersetzt. Umgekehrt müssen die Hüllstoffe, zumal die wäßrigen Lösungen, bei einer solch niedrigen Temperatur eingedüst werden, daß sie nicht unmittelbar nach Verlassen der Düse abtrocknen, sondern sich auf dem Entschäumerkorn niederschla­ gen können. Die dafür erforderlichen Bedingungen hängen insbesondere vom Querschnitt der Anlage ab und können vom Fachmann durch routinemäßiges Optimieren gefunden werden.
Bevorzugt eingesetzte Wirbelschicht-Apparate besitzen Bodenplatten mit Abmessungen von 0,4 bis 5 m. Vorzugsweise wird die Granulierung bei Wirbelluftgeschwindigkeiten im Bereich von 1 bis 8 m/s durchgeführt. Der Austrag der Granulate aus der Wirbelschicht erfolgt vorzugsweise über eine Größen­ klassierung der Granulate. Die Klassierung kann beispielsweise mittels einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, daß erst Teilchen ab einer bestimmten Teilchengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbel­ schicht zurückgehalten werden. Üblicherweise setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei zwischen 80 und 400, vorzugsweise 90 und 350°C. Vorteilhafterweise wird zu Beginn der Granulie­ rung eine Startmasse, beispielsweise ein Entschäumergranulat aus einem früheren Versuchsansatz, vorgelegt. In der Wirbelschicht verdampft das Wasser aus den Emulsionen bzw. Dispersionen, wobei angetrocknete bis getrocknete Keime entstehen, die mit weiteren Mengen Entschäumer umhüllt, granu­ liert und wiederum gleichzeitig getrocknet werden. Wie schon erläutert, kann man die wäßrigen Lösun­ gen der Hüllsubstanzen auch zusammen mit den Entschäumervorprodukten einsetzen, dies kann je­ doch dazu führen, daß ein Teil der Hüllstoffe im Korn landen und die Umhüllung des Korns unvollstän­ dig ist. Dies mag in manchen Fällen durchaus für die beabsichtigte Wirkung ausreichen, es ist jedoch vorteilhafter die wäßrigen Lösungen erst gegen Ende des Trocknungsprozesses der Granulierung zu­ zuführen, um sicherzustellen, daß das Korn ganz wesentlich beschichtet ist. In diesem Zusammenhang wird auf die Lehre der Deutschen Patentanmeldungen DE 43 03 211 A1 und DE 43 03 176 A1 verwiesen, deren Inhalt hiermit ausdrücklich eingeschlossen wird. Im Sinne der Erfindung können auch Agglome­ rate eingesetzt werden, die durch Zusammenbacken der Granulate entstehen.
Gewerbliche Anwendbarkeit
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung der erfindungsgemäßen Waschmittelzusatzstoffe als Entschäumer zur Herstellung von Waschmitteln, vorzugsweise solchen, die über einen hohen Aniontensidgehalt (z. B. 5 bis 25 Gew.-%) verfügen und dabei in Form von Pulvern, Granulaten, Extrudaten oder Tabletten vorliegen. Weitere bevorzugte Inhaltsstoffe der Waschmittel, die unter Verwendung der erfindungsgemäßen Zusatzstoffe erhalten werden, sind anorganische und orga­ nische Buildersubstanzen, wobei als anorganische Buildersubstanzen hauptsächlich Zeolithe, kristalline Schichtsilikate und amorphe Silikate mit Buildereigenschaften sowie - wo zulässig - auch Phosphate wie Tripolyphosphate zum Einsatz kommen. Die Buildersubstanzen sind vorzugsweise in den erfin­ dungsgemäßen Waschmitteln in Mengen von 10 bis 60 Gew.-% - bezogen auf Waschmittel - enthalten. Sofern die Stoffe wasserlöslich sind, kommen sie gleichzeitig auch als Hüllstoffe zum Einschluß des Entschäumerkorns in Frage. Dies trifft beispielsweise für die im folgenden beschriebenen Silicate, Dex­ trine, Polyacrylate und dergleichen zu.
Der als Waschmittelbuilder häufig eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P wie auch Y. Von besonderem Interesse ist auch ein cokristal­ lisiertes Natrium/Kalium-Aluminiumsilikat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für Phosphate und Zeolithe sind kristalline, schichtförmige Natriumsilikate der allgemeinen Formel NaMSixO2x+1.yH2O, wobei M Natrium oder Wasserstoff be­ deutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für × 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP 0164514 A1 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind sol­ che, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO 91/08171 beschrie­ ben ist. Weitere geeignete Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE 23 34 899 A1, EP 0026529 A1 und DE 35 26 405 A1 bekannt. Ihre Verwendbarkeit ist nicht auf eine spe­ zielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbe­ sondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z. B. solche der allgemeinen Formeln
(OH)4Si8-yAly(MgxAl4-x)Ozo Montmorrilonit
(OH)4Si8-yAly(Mg6-zLiz)Ozo Hectorit
(OH)4Si8-yAly(Mg6-zAlz)Ozo Saponit
mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer ionenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew.-% und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Brauchbare Schichtsilicate sind bei­ spielsweise aus US 3,966,629, US 4,062,647, EP 0026529 A1 und EP 0028432 A1 bekannt. Vorzugs­ weise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal­ ciumionen und stark färbenden Eisenionen sind.
Zu den bevorzugten Buildersubstanzen gehören auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3, 3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung ge­ genüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispiels­ weise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Über­ trocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinhei­ ten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builder­ eigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesonde­ re bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielswei­ se in der deutschen Patentanmeldung DE 44 00 024 A1 beschrieben. Insbesondere bevorzugt sind ver­ dichtetelkompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgen­ amorphe Silikate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Ge­ eignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt beträgt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze ein­ setzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Wein­ säure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Wein­ säure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungs­ komponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Po­ lymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500.000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30.000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung GB 9419091 A1 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP 0232202 A1, EP 0427349 A1, EP 04T2042 A1 und EP 0542496 A1 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Pa­ tentanmeldung DE 196 00 018 A1. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugs­ weise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glyce­ rindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patent­ schriften US 4,524,009, US 4,639,325, in der europäischen Patentanmeldung EP 0150930 A1 und der japanischen Patentanmeldung JP 931339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silikathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 be­ schrieben.
Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150.000 (auf Säure bezogen und jeweils gemessen gegen Polystyrolsulfonsäure). Geeignete copolymere Poly­ carboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200.000, vor­ zugsweise 10.000 bis 120.000 und insbesondere 50.000 bis 100.000 (jeweils gemessen gegen Po­ lystyrolsulfonsäure). Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden, wobei 20 bis 55 Gew.-%ige wäßrige Lösungen bevorzugt sind. Granulare Polymere werden zumeist nachträglich zu einem oder mehreren Basisgranulaten zugemischt. Insbe­ sondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Mono­ mereinheiten, beispielsweise solche, die gemäß der DE 43 00 772 A1 als Monomere Salze der Acrylsäu­ re und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE 42 21 381 C2 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE 43 03 320 A1 und DE 44 17 734 A1 beschrieben werden und als Monomere vorzugsweise Acrolein und Acryl­ säure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, bei­ spielsweise wie in der europäischen Patentanmeldung EP 0280223 A1 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalalde­ hyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäu­ re erhalten.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett-Auswaschbarkeit aus Textilien positiv beeinflussen. Zu den bevorzugten Öl- und fettlösenden Komponenten zählen bei­ spielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche anorganische Salze wie Bicarbonate, Carbonate, amorphe Silikate, normale Wassergläser, welche keine herausragenden Buildereigen­ schaften aufweisen, oder Mischungen aus diesen; insbesondere werden Alkalicarbonat und/oder amorphes Alkalisilikat, vor allem Natriumsilikat mit einem molaren Verhältnis Na2O : SiO2 von 1 : 1 bis 1 : 4,5, vorzugsweise von 1 : 2 bis 1 : 3,5, eingesetzt. Der Gehalt in den erfindungsgemäßen Waschmit­ teln an Natriumcarbonat beträgt dabei vorzugsweise bis zu 40 Gew.-%, vorteilhafterweise zwischen 2 und 35 Gew.-%. Der Gehalt der Mittel an Natriumsilikat (ohne besondere Buildereigenschaften) beträgt im allgemeinen bis zu 10 Gew.-% und vorzugsweise zwischen 1 und 8 Gew.-%.
Außer den genannten Inhaltsstoffen können die Mittel weitere bekannte, in Waschmitteln üblicherweise eingesetzte Zusatzstoffe, beispielsweise Salze von Polyphosphonsäuren, optische Aufheller, Enzyme, Enzymstabilisatoren, geringe Mengen an neutralen Füllsalzen sowie Farb- und Duftstoffe, Trübungs­ mittel oder Perglanzmittel enthalten.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natrium­ perborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vor­ zugsweise 5 bis 35 Gew.-% und insbesondere bis 30 Gew.-%, wobei vorteilhafterweise Per­ boratmonohydrat oder Percarbonat eingesetzt wird.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Per­ oxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder ge­ gebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoyl­ gruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylen­ diamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyl­ oxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5- dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 A1 und DE 196 16 767 A1 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäi­ schen Patentanmeldung EP 0525239 A1 beschriebene Mischungen (SORMAN), acylierte Zucker­ derivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaa­ cetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N- acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldun­ gen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE 196 16 769 A1 bekannten hydrophil sub­ stituierten Acylacetale und die in der deutschen Patentanmeldung DE 196 16 770 sowie der internatio­ nalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt einge­ setzt. Auch die aus der deutschen Patentanmeldung DE 44 43 177 A1 bekannten Kombinationen kon­ ventioneller Bleichaktivatoren können eingesetzt werden. Derartige Bleichaktivatoren sind im üblichen Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf gesamtes Mittel, enthalten. Zusätzlich zu den oben aufgeführten konventionel­ len Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0446982 B1 und EP 0453 003 B1 bekannten Sulfonimine und/oder bleichverstärkende Über­ gangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 195 29 905 A1 bekannten Mangan-, Eisen-, Kobalt-, Rutheni­ um- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20 267 A1 bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 195 36 082 A1 bekann­ ten Mangan-, Eisen-, Kobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Kobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 196 20 411 A1 bekannten Kobalt-, Eisen-, Kupfer- und Ruthenium-Aminkomplexe, die in der deutschen Patentanmeldung DE 44 16 438 A1 beschriebenen Mangan-, Kupfer- und Kobalt- Komplexe, die in der europäischen Patentanmeldung EP 0272030 A1 beschriebenen Kobalt- Komplexe, die aus der europäischen Patentanmeldung EP 0693550 A1 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0392592 A1 bekannten Mangan-, Eisen-, Kobalt- und Kup­ fer-Komplexe und/oder die in der europäischen Patentschrift EP 0443651 B1 oder den europäischen Patentanmeldungen EP 0458397 A1, EP 0458398 A1, EP 0549271 A1, EP 0549272 A1, EP 0544490 A1 und EP 0544519 A1 beschriebenen Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE 196 13 103 A1 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Proteasen, Estera­ sen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. andere Glyko­ sylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen, wie protein-, fett- oder stärkehaltigen Verfleckungen, und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise wer­ den Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen wer­ den, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Pro­ tease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipoly­ tisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als ge­ eignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pul­ lulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und β-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich die verschiedenen Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterschei­ den, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzym­ granulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich zu den mono- und polyfunktionellen Alkoholen können die Mittel weitere Enzymstabilisa­ toren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vor­ zugsweise etwa 1,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Außer Calciumsalzen dienen auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbin­ dungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2BaO7).
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind was­ serlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze poly­ merer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin las­ sen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z. B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarb­ oxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkali­ metallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6- amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpho­ lino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2- Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylsty­ ryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfo­ styryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Einheitlich weiße Granulate werden erhalten, wenn die Mittel au­ ßer den üblichen Aufhellern in üblichen Mengen, beispielsweise zwischen 0,1 und 0,5 Gew.-%, vor­ zugsweise zwischen 0,1 und 0,3 Gew.-%, auch geringe Mengen, beispielsweise 10-6 bis 10-3 Gew.-%, vorzugsweise um 10-5 Gew.-%, eines blauen Farbstoffs enthalten. Ein besonders bevorzugter Farbstoff ist Tinolux® (Handelsprodukt der Ciba-Geigy).
Als schmutzabweisende Polymere ("soll repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d. h., der Ethoxylierungsgrad der polyethylenglycolgruppenhaltigen Polymere kann ca. 15 bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/Polyethylen­ glycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiter­ hin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Mole­ kulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhône-Poulenc).
Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Pro­ dukte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet wer­ den. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa­ licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alka­ nale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitro­ nellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylke­ ton, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpi­ neol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevor­ zugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine anspre­ chende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, welche die Haftung des Parfüms auf der Wä­ sche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sor­ gen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclo­ dextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Falls gewünscht können die erfindungsgemäßen Waschmittel noch anorganische Salze als Füll- bzw. Stellmittel enthalten, wie beispielsweise Natriumsulfat, welches vorzugsweise in Mengen von 0 bis 10, insbesondere 1 bis 5 Gew.-% - bezogen auf Mittel - enthalten ist.
Herstellung
Die unter Einsatz der erfindungsgemäßen Zusatzstoffe erhältlichen Waschmittel können in Form von Pulvern, Extrudaten, Granulaten oder Tabletten hergestellt bzw. eingesetzt werden. Zur Herstellung solcher Mittel sind die entsprechenden, aus dem Stand der Technik bekannten Verfahren, geeignet. Bevorzugt werden die Mittel dadurch hergestellt, daß verschiedene teilchenförmige Komponenten, die Waschmittelinhaltsstoffe enthalten, miteinander vermischt werden.
Dabei können die teilchenförmigen Komponenten durch Sprühtrocknung, einfaches Mischen oder kom­ plexe Granulationsverfahren, beispielsweise Wirbelschichtgranulation, hergestellt werden. Bevorzugt ist dabei insbesondere, daß mindestens eine tensidhaltige Komponente durch Wirbelschichtgranulation hergestellt wird. Weiter kann es insbesondere bevorzugt sein, wenn wäßrige Zubereitungen des Alkali­ silicats und des Alkalicarbonats gemeinsam mit anderen Waschmittelinhaltsstoffen in einer Trockenein­ richtung versprüht werden, wobei gleichzeitig mit der Trocknung eine Granulation stattfinden kann.
Bei der Trockeneinrichtung, in die die wäßrige Zubereitung versprüht wird, kann es sich um beliebige Trockenapparaturen handeln. In einer bevorzugten Verfahrensführung wird die Trocknung als Sprüh­ trocknung in einem Trockenturm durchgeführt. Dabei werden die wäßrigen Zubereitungen in be­ kannter Weise einem Trocknungsgasstrom in feinverteilter Form ausgesetzt. In Patentveröffentlichun­ gen der Firma Henkel wird eine Ausführungsform der Sprühtrocknung mit überhitztem Wasserdampf beschrieben. Das dort offenbarte Arbeitsprinzip wird hiermit ausdrücklich auch zum Gegenstand der vorliegenden Erfindungsoffenbarung gemacht. Verwiesen wird hier insbesondere auf die nachfol­ genden Druckschriften: DE 40 30 688 A1 sowie die weiterführenden Veröffentlichungen gemäß DE 42 04 035 A1; DE 42 04 090 A1; DE 42 06 050 A1; DE 42 06 521 A1; DE 42 06 495 A1; DE 42 08 773 A1; DE 42 09 432 A1 und DE 42 34 376 A1. Dieses Verfahren wurde schon im Zusammenhang mit der Herstel­ lung des Entschäumerkorn vorgestellt.
In einer anderen, insbesondere wenn Mittel hoher Schüttdichte erhalten werden sollen, bevorzugten Variante werden die Gemische anschließend einem Kompaktierungsschritt unterworfen, wobei weitere Inhaltsstoffe den Mitteln erst nach dem Kompaktierungsschritt zugemischt werden. Die Kompaktierung der Inhaltsstoffe findet in einer bevorzugten Ausführungsform der Erfindung in einem Preßagglomerati­ onsverfahren statt. Der Preßagglomerationsvorgang, dem das feste Vorgemisch (getrocknetes Basis­ waschmittel) unterworfen wird, kann dabei in verschiedenen Apparaten realisiert werden. Je nach dem Typ des verwendeten Agglomerators werden unterschiedliche Preßagglomerationsverfahren unter­ schieden. Die vier häufigsten und im Rahmen der vorliegenden Erfindung bevorzugten Preßagglome­ rationsverfahren sind dabei die Extrusion, das Walzenpressen bzw. -kompaktieren, das Lochpressen (Pelletieren) und das Tablettieren, so daß im Rahmen der vorliegenden Erfindung bevorzugte Preßag­ glomerationsvorgänge Extrusions-, Walzenkompaktierungs-, Pelletierungs- oder Tablettierungsvorgän­ ge sind.
Allen Verfahren ist gemeinsam, daß das Vorgemisch unter Druck verdichtet und plastifiziert wird und die einzelnen Partikel unter Verringerung der Porosität aneinandergedrückt werden und aneinander haften. Bei allen Verfahren (bei der Tablettierung mit Einschränkungen) lassen sich die Werkzeuge dabei auf höhere Temperaturen aufheizen oder zur Abführung der durch Scherkräfte entstehenden Wärme kühlen.
In allen Verfahren kann als Hilfsmittel zur Verdichtung ein oder mehrere Bindemittel eingesetzt werden. Dabei soll jedoch klargestellt sein, daß an sich immer auch der Einsatz von mehreren, verschiedenen Bindemitteln und Mischungen aus verschiedenen Bindemitteln möglich ist. In einer bevorzugten Aus­ führungsform der Erfindung wird ein Bindemittel eingesetzt, daß bei Temperaturen bis maximal 130°C, vorzugsweise bis maximal 100°C und insbesondere bis 90°C bereits vollständig als Schmelze vor­ liegt. Das Bindemittel muß also je nach Verfahren und Verfahrensbedingungen ausgewählt werden oder die Verfahrensbedingungen, insbesondere die Verfahrenstemperatur, müssen - falls ein be­ stimmtes Bindemittel gewünscht wird - an das Bindemittel angepaßt werden.
Der eigentliche Verdichtungsprozeß erfolgt dabei vorzugsweise bei Verarbeitungstemperaturen, die zumindest im Verdichtungsschritt mindestens der Temperatur des Erweichungspunkts, wenn nicht so­ gar der Temperatur des Schmelzpunkts des Bindemittels entsprechen. In einer bevorzugten Aus­ führungsform der Erfindung liegt die Verfahrenstemperatur signifikant über dem Schmelzpunkt bzw. oberhalb der Temperatur, bei der das Bindemittel als Schmelze vorliegt. Insbesondere ist es aber be­ vorzugt, daß die Verfahrenstemperatur im Verdichtungsschritt nicht mehr als 20°C über der Schmelz­ temperatur bzw. der oberen Grenze des Schmelzbereichs des Bindemittels liegt. Zwar ist es technisch durchaus möglich, auch noch höhere Temperaturen einzustellen; es hat sich aber gezeigt, daß eine Temperaturdifferenz zur Schmelztemperatur bzw. zur Erweichungstemperatur des Bindemittels von 20°C im allgemeinen durchaus ausreichend ist und noch höhere Temperaturen keine zusätzlichen Vor­ teile bewirken. Deshalb ist es - insbesondere auch aus energetischen Gründen - besonders bevorzugt, zwar oberhalb, jedoch so nah wie möglich am Schmelzpunkt bzw. an der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels zu arbeiten. Eine derartige Temperaturführung besitzt den wei­ teren Vorteil, daß auch thermisch empfindliche Rohstoffe, beispielsweise Peroxybleichmittel wie Perbo­ rat und/oder Percarbonat, aber auch Enzyme, zunehmend ohne gravierende Aktivsubstanzverluste ver­ arbeitet werden können. Die Möglichkeit der genauen Temperatursteuerung des Binders insbesondere im entscheidenden Schritt der Verdichtung, also zwischen der Vermischung/Homogenisierung des Vorgemisches und der Formgebung, erlaubt eine energetisch sehr günstige und für die temperatur­ empfindlichen Bestandteile des Vorgemisches extrem schonende Verfahrensführung, da das Vor­ gemisch nur für kurze Zeit den höheren Temperaturen ausgesetzt ist. In bevorzugten Preßagglomerati­ onsverfahren weisen die Arbeitswerkzeuge des Preßagglomerators (die Schnecke(n) des Extruders, die Walze(n) des Walzenkompaktors sowie die Preßwalze(n) der Pelletpresse) eine Temperatur von maximal 150°C, vorzugsweise maximal 100°C und insbesondere maximal 75°C auf und die Verfah­ renstemperatur liegt bei 30°C und insbesondere maximal 20°C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels. Vorzugsweise beträgt die Dauer der Temperatureinwirkung im Kompressionsbereich der Preßagglomeratoren maximal 2 Minuten und liegt insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Bevorzugte Bindemittel, die allein oder in Mischung mit anderen Bindemitteln eingesetzt werden kön­ nen, sind Polyethylenglykole, 1,2-Polypropylenglykole sowie modifizierte Polyethylenglykole und Poly­ propylenglykole. Zu den modifizierten Polyalkylenglykolen zählen insbesondere die Sulfate und/oder die Disulfate von Polyethylenglykolen oder Polypropylenglykolen mit einer relativen Molekülmasse zwi­ schen 600 und 12 000 und insbesondere zwischen 1000 und 4000. Eine weitere Gruppe besteht aus Mono- und/oder Disuccinaten der Polyalkylenglykole, welche wiederum relative Molekülmassen zwi­ schen 600 und 6000, vorzugsweise zwischen 1000 und 4000 aufweisen. Für eine genauere Be­ schreibung der modifizierten Polyalkylenglykolether wird auf die Offenbarung der internationalen Pa­ tentanmeldung WO 93/02176 verwiesen. Im Rahmen dieser Erfindung zählen zu Polyethylenglykolen solche Polymere, bei deren Herstellung neben Ethylenglykol ebenso C3-C5-Glykole sowie Glycerin und Mischungen aus diesen als Startmoleküle eingesetzt werden. Ferner werden auch ethoxylierte Derivate wie Trimethylolpropan mit 5 bis 30 EO umfaßt. Die vorzugsweise eingesetzten Polyethylenglykole kön­ nen eine lineare oder verzweigte Struktur aufweisen, wobei insbesondere lineare Polyethylenglykole bevorzugt sind. Zu den insbesondere bevorzugten Polyethylenglykolen gehören solche mit relativen Molekülmassen zwischen 2000 und 12000, vorteilhafterweise um 4000, wobei Polyethylenglykole mit relativen Molekülmassen unterhalb 3500 und oberhalb 5000 insbesondere in Kombination mit Poly­ ethylenglykolen mit einer relativen Molekülmasse um 4 000 eingesetzt werden können und derartige Kombinationen vorteilhafterweise zu mehr als 50 Gew.-%, bezogen auf die gesamte Menge der Poly­ ethylenglykole, Polyethylenglykole mit einer relativen Molekülmasse zwischen 3500 und 5000 aufwei­ sen. Als Bindemittel können jedoch auch Polyethylenglykole eingesetzt werden, welche an sich bei Raumtemperatur und einem Druck von 1 bar in flüssigem Stand vorliegen; hier ist vor allem von Poly­ ethylenglykol mit einer relativen Molekülmasse von 200, 400 und 600 die Rede. Allerdings sollten diese an sich flüssigen Polyethylenglykole nur in einer Mischung mit mindestens einem weiteren Bindemittel eingesetzt werden, wobei diese Mischung wieder den erfindungsgemäßen Anforderungen genügen muß, also einen Schmelzpunkt bzw. Erweichungspunkt von mindestens oberhalb 45°C aufweisen muß. Ebenso eignen sich als Bindemittel niedermolekulare Polyvinylpyrrolidone und Derivate von die­ sen mit relativen Molekülmassen bis maximal 30.000. Bevorzugt sind hierbei relative Mo­ lekülmassenbereiche zwischen 3000 und 30.000, beispielsweise um 10.000. Polyvinylpyrrolidone wer­ den vorzugsweise nicht als alleinige Bindemittel, sondern in Kombination mit anderen, insbesondere in Kombination mit Polyethylenglykolen, eingesetzt.
Das verdichtete Gut weist direkt nach dem Austritt aus dem Herstellungsapparat vorzugsweise Tempe­ raturen nicht oberhalb von 90°C auf, wobei Temperaturen zwischen 35 und 85°C besonders bevor­ zugt sind. Es hat sich herausgestellt, daß Austrittstemperaturen - vor allem im Extrusionsverfahren - von 40 bis 80°C, beispielsweise bis 70°C, besonders vorteilhaft sind.
In einer bevorzugten Ausführungsform wird das erfindungsgemäße Waschmittel mittels einer Extrusion hergestellt, wie sie beispielsweise in dem europäischen Patent EP 0486592 B1 oder den interna­ tionalen Patentanmeldungen WO 93/02176 und WO 94/09111 bzw. WO 98/12299 beschrieben wer­ den. Dabei wird ein festes Vorgemisch unter Druck strangförmig verpreßt und der Strang nach Austritt aus der Lochform mittels einer Schneidevorrichtung auf die vorbestimmbare Granulatdimension zuge­ schnitten. Das homogene und feste Vorgemisch enthält ein Plastifizier- und/oder Gleitmittel, welches bewirkt, daß das Vorgemisch unter dem Druck bzw. unter dem Eintrag spezifischer Arbeit plastisch erweicht und extrudierbar wird. Bevorzugte Plastifizier- und/oder Gleitmittel sind Tenside und/oder Po­ lymere. Zur Erläuterung des eigentlichen Extrusionsverfahrens wird hiermit ausdrücklich auf die oben­ genannten Patente und Patentanmeldungen verwiesen. Vorzugsweise wird dabei das Vorgemisch vorzugsweise einem Planetwalzenextruder oder einem 2-Wellen-Extruder bzw. 2-Schnecken-Extruder mit gleichlaufender oder gegenlaufender Schneckenführung zugeführt, dessen Gehäuse und dessen Extruder-Granulierkopf auf die vorbestimmte Extrudiertemperatur aufgeheizt sein können. Unter der Schereinwirkung der Extruderschnecken wird das Vorgemisch unter Druck, der vorzugsweise minde­ stens 25 bar beträgt, bei extrem hohen Durchsätzen in Abhängigkeit von dem eingesetzten Apparat aber auch darunter liegen kann, verdichtet, plastifiziert, in Form feiner Stränge durch die Lochdüsen­ platte im Extruderkopf extrudiert und schließlich das Extrudat mittels eines rotierenden Abschlag­ messers vorzugsweise zu etwa kugelförmigen bis zylindrischen Granulatkörnern verkleinert. Der Loch­ durchmesser der Lochdüsenplatte und die Strangschnittlänge werden dabei auf die gewählte Granulat­ dimension abgestimmt. So gelingt die Herstellung von Granulaten einer im wesentlichen gleichmäßig vorherbestimmbaren Teilchengröße, wobei im einzelnen die absoluten Teilchengrößen dem beabsich­ tigten Einsatzzweck angepaßt sein können. Im allgemeinen werden Teilchendurchmesser bis höch­ stens 0,8 cm bevorzugt. Wichtige Ausführungsformen sehen hier die Herstellung von einheitlichen Gra­ nulaten im Millimeterbereich, beispielsweise im Bereich von 0,5 bis 5 mm und insbesondere im Bereich von etwa 0,8 bis 3 mm vor. Das Länge/Durchmesser-Verhältnis der abgeschlagenen primären Granu­ late liegt dabei vorzugsweise im Bereich von etwa 1 : 1 bis etwa 3 : 1. Weiterhin ist es bevorzugt, das noch plastische Primärgranulat einem weiteren formgebenden Verarbeitungsschritt zuzuführen; dabei werden am Rohextrudat vorliegende Kanten abgerundet, so daß letztlich kugelförmig bis annähernd kugelförmige Extrudatkörner erhalten werden können. Falls gewünscht können in dieser Stufe geringe Mengen an Trockenpulver, beispielsweise Zeolithpulver wie Zeolith NaA-Pulver, mitverwendet werden. Diese Formgebung kann in marktgängigen Rondiergeräten erfolgen. Dabei ist darauf zu achten, daß in dieser Stufe nur geringe Mengen an Feinkornanteil entstehen. Eine Trocknung, welche in den obenge­ nannten Dokumenten des Standes der Technik als bevorzugte Ausführungsform beschrieben wird, ist anschließend möglich, aber nicht zwingend erforderlich. Es kann gerade bevorzugt sein, nach dem Kompaktierungsschritt keine Trocknung mehr durchzuführen. Alternativ können Extrusio­ nen/Verpressungen auch in Niedrigdruckextrudern, in der Kahl-Presse (Fa. Amandus Kahl) oder im Bextruder der Fa. Bepex durchgeführt werden. Bevorzugt ist die Temperaturführung im Übergangsbe­ reich der Schnecke, des Vorverteilers und der Düsenplatte derart gestaltet, daß die Schmelztemperatur des Bindemittels bzw. die obere Grenze des Schmelzbereichs des Bindemittels zumindest erreicht, vorzugsweise aber überschritten wird. Dabei liegt die Dauer der Temperatureinwirkung im Kompressi­ onsbereich der Extrusion vorzugsweise unterhalb von 2 Minuten und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute.
Die erfindungsgemäßen Waschmittel können auch mittels einer Walzenkompaktierung hergestellt werden. Hierbei wird das Vorgemisch gezielt zwischen zwei glatte oder mit Vertiefungen von definierter Form versehene Walzen eindosiert und zwischen den beiden Walzen unter Druck zu einem blattförmi­ gen Kompaktat, der sogenannten Schülpe, ausgewalzt. Die Walzen üben auf das Vorgemisch einen hohen Liniendruck aus und können je nach Bedarf zusätzlich geheizt bzw. gekühlt werden. Bei der Verwendung von Glattwalzen erhält man glatte, unstrukturierte Schülpenbänder, während durch die Verwendung strukturierter Walzen entsprechend strukturierte Schülpen erzeugt werden können, in denen beispielsweise bestimmte Formen der späteren Waschmittelteilchen vorgegeben werden kön­ nen. Das Schülpenband wird nachfolgend durch einen Abschlag- und Zerkleinerungsvorgang in kleine­ re Stücke gebrochen und kann auf diese Weise zu Granulatkörnern verarbeitet werden, die durch wei­ tere an sich bekannte Oberflächenbehandlungsverfahren veredelt, insbesondere in annähernd kugel­ förmige Gestalt gebracht werden können. Auch bei der Walzenkompaktierung liegt die Temperatur der pressenden Werkzeuge, also der Walzen, bevorzugt bei maximal 150°C, vorzugsweise bei maximal 100°C und insbesondere bei maximal 75°C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Walzenkompaktierung mit Verfahrenstemperaturen, die 10°C, insbesondere maximal 5°C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Binde­ mittels liegen. Hierbei ist es weiter bevorzugt, daß die Dauer der Temperatureinwirkung im Kompressi­ onsbereich der glatten oder mit Vertiefungen von definierter Form versehenen Walzen maximal 2 Mi­ nuten beträgt und insbesondere in einem Bereich zwischen 30 Sekunden und 1 Minute liegt.
Das erfindungsgemäße Waschmittel kann auch mittels einer Pelletierung hergestellt werden. Hierbei wird das Vorgemisch auf eine perforierte Fläche aufgebracht und mittels eines druckgebenden Körpers unter Plastifizierung durch die Löcher gedrückt. Bei üblichen Ausführungsformen von Pelletpressen wird das Vorgemisch unter Druck verdichtet, plastifiziert, mittels einer rotierenden Walze in Form feiner Stränge durch eine perforierte Fläche gedrückt und schließlich mit einer Abschlagvorrichtung zu Gra­ nulatkörnern zerkleinert. Hierbei sind die unterschiedlichsten Ausgestaltungen von Druckwalze und perforierter Matrize denkbar. So finden beispielsweise flache perforierte Teller ebenso Anwendung wie konkave oder konvexe Ringmatrizen, durch die das Material mittels einer oder mehrerer Druckwalzen hindurchgepreßt wird. Die Preßrollen können bei den Tellergeräten auch konisch geformt sein, in den ringförmigen Geräten können Matrizen und Preßrolle(n) gleichläufigen oder gegenläufigen Drehsinn besitzen. Ein zur Durchführung des Verfahrens geeigneter Apparat wird beispielsweise in der deut­ schen Offenlegungsschrift DE 38 16 842 A1 beschrieben. Die in dieser Schrift offenbarte Ringmatrizen­ presse besteht aus einer rotierenden, von Preßkanälen durchsetzten Ringmatrize und wenigstens einer mit deren Innenfläche in Wirkverbindung stehenden Preßrolle, die das dem Matrizenraum zugeführte Material durch die Preßkanäle in einen Materialaustrag preßt. Hierbei sind Ringmatrize und Preßrolle gleichsinnig antreibbar, wodurch eine verringerte Scherbelastung und damit geringere Temperaturer­ höhung des Vorgemischs realisierbar ist. Selbstverständlich kann aber auch bei der Pelletierung mit heiz- oder kühlbaren Walzen gearbeitet werden, um eine gewünschte Temperatur des Vorgemischs einzustellen. Auch bei der Pelletierung liegt die Temperatur der pressenden Werkzeuge, also der Druckwalzen oder Preßrollen, bevorzugt bei maximal 150°C, vorzugsweise bei maximal 100°C und insbesondere bei maximal 75°C. Besonders bevorzugte Herstellungsverfahren arbeiten bei der Wal­ zenkompaktierung mit Verfahrenstemperaturen, die 10°C, insbesondere maximal 5°C oberhalb der Schmelztemperatur bzw. der oberen Temperaturgrenze des Schmelzbereichs des Bindemittels liegen.
Ein weiteres Preßagglomerationsverfahren, das zur Herstellung der erfindungsgemäßen Waschmittel eingesetzt werden kann, ist die Tablettierung. Aufgrund der Größe der hergestellten Formkörper kann es bei der Tablettierung sinnvoll sein, zusätzlich zum oben beschriebenen Bindemittel übliche Desinte­ grationshilfsmittel, beispielsweise Cellulose und ihre Derivate, insbesondere in vergröberter Form, oder quervernetztes PVP zuzusetzen, die die Desintegration der Preßlinge in der Waschflotte erleichtern. Die erhaltenen teilchenförmigen Preßagglomerate können entweder direkt als Waschmittel eingesetzt oder zuvor nach üblichen Methoden nachbehandelt und/oder aufbereitet werden. Zu den üblichen Nachbehandlungen zählen beispielsweise Abpuderungen mit feinteiligen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, wodurch das Schüttgewicht im allgemeinen weiter erhöht wird. Eine bevor­ zugte Nachbehandlung stellt jedoch auch die Verfahrensweise gemäß den deutschen Pa­ tentanmeldungen DE 195 24 287 A1 und DE 195 47 457 A1 dar, wobei staubförmige oder zumindest feinteilige Inhaltsstoffe (die sogenannten Feinanteile) an die erfindungsgemäß hergestellten teilchen­ förmigen Verfahrensendprodukte, welche als Kern dienen, angeklebt werden und somit Mittel ent­ stehen, welche diese sogenannten Feinanteile als Außenhülle aufweisen. Vorteilhafterweise geschieht dies wiederum durch eine Schmelzagglomeration. Zur Schmelzagglomerierung der Feinanteile an wird ausdrücklich auf die Offenbarung in den deutschen Patentanmeldungen DE 195 24 287 A1 und DE 195 47 457 A1 verwiesen. In der bevorzugten Ausführungsform der Erfindung liegen die festen Wasch­ mittel in Tablettenform vor, wobei diese Tabletten insbesondere aus lager- und transporttechnischen Gründen vorzugsweise abgerundete Ecken und Kanten aufweisen. Die Grundfläche dieser Tabletten kann beispielsweise kreisförmig oder rechteckig sein. Mehrschichtentabletten, insbesondere Tabletten mit 2 oder 3 Schichten, welche auch farblich verschieden sein können, sind vor allem bevorzugt. Blau- weiße oder grün-weiße oder blaugrün-weiße Tabletten sind dabei besonders bevorzugt. Wasch­ mitteltabletten beinhalten im allgemeinen ein Sprengmittel, welches die schnelle Auflösung der Tablette bzw. den schnellen Zerfall der Tablette in der wäßrigen Flotte bewirken soll. In diesem Zusammenhang wird ausdrücklich auf den Inhalt der deutschen Patentanmeldungen DE 197 09 991 A1 und DE 197 10 254 A1 verwiesen, in welchen bevorzugte Sprengmittelgranulate auf Cellulose-Basis beschrie­ ben werden.
Beispiele Herstellbeispiel H1
Eine Wirbelschicht wurde mit bis zu 70% der Fließbettkapazität mit einem ge­ trockneten Silikon/Paraffin-Entschäumermischung des Handels (Dehydran® 760) als Keimmaterial gefüllt. Anschließend wurde bei einer Bodenlufttemperatur von 160°C (d. h. einer Temperatur von ca. 95°C in der Wirbelschicht) weiteres Entschäumerpulver mittels einer ersten Düse kontinuierlich einge­ bracht. Durch eine zweite Düse wurde zur Beschichtung des Entschäumerkorns eine 56 Gew.-%ige wäßrige Harnstofflösung eingebracht. Die Stoffströme wurden durch regelmäßige Kontrolle des ausge­ tragenen und klassierten beschichteten Granulates aus der Wirbelschicht so eingestellt, daß der Harn­ stoffanteil im Endprodukt 25 Gew.-% betrug.
Herstellbeispiel H2
Beispiel H1 wurde unter Einsatz eines pulverförmigen Silikonentschäumers des Marktes (Dow Coming Powdered Antifoam®) wiederholt. Die Beschichtung erfolgte mit einer 60 Gew.-%igen wäßrige Lösung von Natriumcitrat-dihydrat. Die Stoffströme wurden so eingestellt, daß der Ge­ halt an Natriumcitrat im Endprodukt 15 Gew.-% betrug.
Anwendungstechnische Prüfungen. Die beiden erfindungsgemäßen beschichteten Entschäumergra­ nulate H1 und H2 sowie der beiden unbeschichteten Ausgangsstoffe Dehydran® 760 und Dow Cor­ ning Powdered Antifoam® wurden in Waschmittelrezepturen eingesetzt. Die Zubereitungen wurden zu Tabletten (Gewicht 40 g) verpreßt, luftdicht verpackt und anschließend für 2 Wochen bei 40°C gela­ gert. Die Zusammensetzung der Waschmitteltabletten ist Tabelle 1 zu entnehmen. Die Rezepturen 1 und 2 sind erfindungsgemäß, die Rezepturen V1 und V2 dienen zum Vergleich.
Die Waschmitteltabletten wurden anschließend in Waschversuchen getestet. Dazu wurden in einer Waschmaschine (Miele W 918) 3,5 kg Standard-Wäsche in einem Vollwaschgang bei 90°C gewa­ schen. Zwei Waschmitteltabletten werden unmittelbar vor dem Versuch ausgepackt und innerhalb ei­ nes Netzes zur Wäsche gelegt. Während des Waschganges wurde alle 10 Minuten die Schaumhöhe in der Trommel bestimmt. Hierbei bedeutet: (1) = sehr wenig Schaum, (3) = gerade noch akzeptable Schaummenge, (5) = gesamte Trommel mit Schaum gefüllt, (6) Maschine schäumt über. Die Ergebnis­ se der Waschversuche sind ebenfalls Tabelle 1 zu entnehmen. Tabelle 2 enthält eine Reihe von For­ mulierungsbeispiele.
Tabelle 1
Testrezeptur für Waschmitteltabletten und Waschversuche (Angaben in Gew.-%, Wasser ad 100%)
Tabelle 2
Waschmittelzubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)

Claims (20)

1. Waschmittelzusatzstoffe in fester Form, dadurch gekennzeichnet, daß sie aus einer entschäu­ menden Verbindungen als Kern und einer sie umhüllenden Schicht bestehen.
2. Stoffe nach Anspruch 1, dadurch gekennzeichnet, sie als entschäumende Verbindung eine wachsartige Verbindung und/oder eine Silikonverbindung enthalten.
3. Stoffe nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß sie als Entschäumer mindestens eine wachsartige Verbindung auf Paraffinbasis enthalten.
4. Stoffe nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Ent­ schäumer mindestens eine wachsartige Verbindung auf Basis hydrierter oder partiell hydrierter Paraffine enthalten.
5. Stoffe nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie als Ent­ schäumer mindestens eine wachsartige Verbindung aus der Gruppe der Ketone, Dialkylether, Fettalkohole, Fettsäuren, Fettalkylester, Dialkylcarbonatester, Fettsäureethylenglykolester, Hy­ droxystearinsäureester enthalten.
6. Stoffe nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie als Ent­ schäumer mindestens eine wachsartige Verbindung auf Basis von Amidwachsen enthalten.
7. Stoffe nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie als Ent­ schäumer mindestens eine wachsartige Verbindung auf Basis von Bisstearylethylenamid enthal­ ten.
8. Stoffe nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie als Ent­ schäumer mindestens eine wachsartige Verbindung und eine entschäumende Silikonverbindung enthalten.
9. Stoffe nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die umhül­ lende Schicht von mindestens einer wasserlöslichen oder schmelzbaren Verbindung gebildet wird.
10. Stoffe nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Verbin­ dungen, die die umhüllende Schicht bilden, bei 20°C eine Wasserlöslichkeit von wenigstens 10 g/l aufweisen.
11. Stoffe nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie als wasserlöslichen Verbindungen Salze von Mineralsäuren enthalten.
12. Stoffe nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß sie als wasserlöslichen Verbindungen Salze organischer Carbonsäuren enthalten.
13. Stoffe nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß sie als wasserlösliche Verbindungen wasserlösliche Polymere enthalten.
14. Stoffe nach mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß sie als wasserlösliche Verbindungen Saccharide und/oder Polysaccharide enthalten.
15. Verfahren zur Herstellung von Waschmittelzusatzstoffen in fester Form, dadurch gekennzeich­ net, daß man zunächst eine wäßrige Emulsion oder Dispersion eines Entschäumers trocknet und auf dem sich dabei bildenden Korn aus einer wäßrigen Lösung oder Schmelze eine Hüllsubstanz niederschlägt, während das Wasser verdampft.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß man die wäßrigen Emulsionen oder Dispersionen der Entschäumer einer Sprühtrocknung unterwirft, die resultierenden Pulver mit den wäßrigen Lösungen oder Schmelzen der Hüllsubstanzen innig vermischt und gegebenenfalls das Wasser dabei entfernt.
17. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß man die wäßrigen Emulsionen oder Dispersionen der Entschäumer und die wäßrigen Lösungen der Hüllsubstanzen einer gleichzeiti­ gen Trocknung und Granulierung in der Wirbelschicht unterwirft.
18. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß man Entschäumerpulver und wäßri­ gen Lösungen oder Schmelzen der Hüllsubstanzen einer gleichzeitigen Trocknung und Granulie­ rung in der Wibelschicht unterwirft.
19. Verwendung von Waschmittelzusatzstoffen nach Anspruch 1 als Entschäumer zur Herstellung von Waschmitteln.
20. Verwendung nach Anspruch 1 zur Herstellung von Waschmitteln in Form von Pulvern, Granulaten, Extrudaten, Agglomeraten oder Tabletten.
DE1999140262 1999-08-25 1999-08-25 Waschmittelzusatzstoffe in fester Form Ceased DE19940262A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE1999140262 DE19940262A1 (de) 1999-08-25 1999-08-25 Waschmittelzusatzstoffe in fester Form
EP00117604A EP1081217A3 (de) 1999-08-25 2000-08-16 Waschmittelzusatzstoffe in fester Form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999140262 DE19940262A1 (de) 1999-08-25 1999-08-25 Waschmittelzusatzstoffe in fester Form

Publications (1)

Publication Number Publication Date
DE19940262A1 true DE19940262A1 (de) 2001-03-01

Family

ID=7919520

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999140262 Ceased DE19940262A1 (de) 1999-08-25 1999-08-25 Waschmittelzusatzstoffe in fester Form

Country Status (2)

Country Link
EP (1) EP1081217A3 (de)
DE (1) DE19940262A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108573A1 (de) * 2001-02-22 2002-09-12 Cognis Deutschland Gmbh Feste Waschmittelzusatzstoffe, deren Herstellung und Verwendung
DE10155568A1 (de) * 2001-11-13 2003-05-28 Cognis Deutschland Gmbh Entschäumerzusammensetzung und deren Verwendung
DE112006001146B4 (de) 2005-05-09 2018-09-20 Kegel, Llc Reinigungszusammensetzung, Dispersion oder Lösung der Zusammensetzung und Verfahren zum Reinigen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942287A1 (de) * 1999-09-04 2001-03-15 Cognis Deutschland Gmbh Formkörper mit verbesserter Wasserlöslichkeit
CN109589651B (zh) * 2018-12-13 2021-07-27 吉林省电力科学研究院有限公司 湿法烟气脱硫工艺用水为再生水的脱硫专用消泡剂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1407997A (en) * 1972-08-01 1975-10-01 Procter & Gamble Controlled sudsing detergent compositions
EP0040091A1 (de) * 1980-05-12 1981-11-18 Unilever Plc Schaumunterdrückende Granulate zur Verwendung in Reinigungsmischungen
DE3128631A1 (de) * 1981-07-20 1983-02-03 Henkel Kgaa "verfahren zur herstellung eines schaumgedaempften, silikone enthaltenden waschmittels"
DE3224135A1 (de) * 1982-06-29 1983-12-29 Th. Goldschmidt Ag, 4300 Essen Pulverfoermiger entschaeumer und verfahren zu seiner herstellung
EP0336710A1 (de) * 1988-04-07 1989-10-11 Dow Corning Corporation Antischaum-Zusatzstoffe mit verzögerter Freisetzung
EP0339958A2 (de) * 1988-04-27 1989-11-02 Dow Corning Corporation Eingekapselte Silicon-Antischaummittel
EP0636684A2 (de) * 1993-07-29 1995-02-01 Dow Corning S.A. Teilchenförmige Schaumkontrollmittel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8513074D0 (en) * 1985-05-23 1985-06-26 Unilever Plc Antifoam ingredient
SE462599B (sv) * 1987-04-06 1990-07-23 Berol Kemi Ab Foerpackning som foerhindrar skumbildning, saett att framstaella saadan foerpackning samt skumdaempande medel
GB9114195D0 (en) * 1991-07-01 1991-08-21 Unilever Plc Antifoam ingredient

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1407997A (en) * 1972-08-01 1975-10-01 Procter & Gamble Controlled sudsing detergent compositions
EP0040091A1 (de) * 1980-05-12 1981-11-18 Unilever Plc Schaumunterdrückende Granulate zur Verwendung in Reinigungsmischungen
DE3128631A1 (de) * 1981-07-20 1983-02-03 Henkel Kgaa "verfahren zur herstellung eines schaumgedaempften, silikone enthaltenden waschmittels"
DE3224135A1 (de) * 1982-06-29 1983-12-29 Th. Goldschmidt Ag, 4300 Essen Pulverfoermiger entschaeumer und verfahren zu seiner herstellung
EP0336710A1 (de) * 1988-04-07 1989-10-11 Dow Corning Corporation Antischaum-Zusatzstoffe mit verzögerter Freisetzung
EP0339958A2 (de) * 1988-04-27 1989-11-02 Dow Corning Corporation Eingekapselte Silicon-Antischaummittel
EP0636684A2 (de) * 1993-07-29 1995-02-01 Dow Corning S.A. Teilchenförmige Schaumkontrollmittel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108573A1 (de) * 2001-02-22 2002-09-12 Cognis Deutschland Gmbh Feste Waschmittelzusatzstoffe, deren Herstellung und Verwendung
DE10155568A1 (de) * 2001-11-13 2003-05-28 Cognis Deutschland Gmbh Entschäumerzusammensetzung und deren Verwendung
DE112006001146B4 (de) 2005-05-09 2018-09-20 Kegel, Llc Reinigungszusammensetzung, Dispersion oder Lösung der Zusammensetzung und Verfahren zum Reinigen

Also Published As

Publication number Publication date
EP1081217A2 (de) 2001-03-07
EP1081217A3 (de) 2003-07-02

Similar Documents

Publication Publication Date Title
EP1235897B1 (de) Waschmitteltabletten
DE19962886A1 (de) Tensidgranulate mit verbesserter Auflösegeschwindigkeit
EP1232242B1 (de) Tensidgranulate mit verbesserter auflösegeschwindigkeit
DE19958398A1 (de) Verwendung von Partialgyceridpolyglycolethern
DE19953796A1 (de) Feste Wasch-, Spül- und Reinigungsmittel
DE10120263A1 (de) Feste Tensidzusammensetzungen, deren Herstellung und Verwendung
DE19953793A1 (de) Tensidgranulate mit verbesserter Auflösegeschwindigkeit
EP1081219B1 (de) Detergentien in fester Form
DE19940262A1 (de) Waschmittelzusatzstoffe in fester Form
DE19942539A1 (de) Waschmittel
DE19939806A1 (de) Schaumkontrollierte feste Waschmittel
WO2001034756A1 (de) Waschmitteltabletten
DE19928923A1 (de) Schaumkontrollierte feste Waschmittel
DE19944221C2 (de) Tensidgranulate
EP1090979A1 (de) Entschäumergranulate
DE10108573A1 (de) Feste Waschmittelzusatzstoffe, deren Herstellung und Verwendung
DE19946342A1 (de) Formkörper mit verbesserter Wasserlöslichkeit
DE19939804A1 (de) Schaumkontrollierte feste Waschmittel
DE19939805A1 (de) Schaumkontrollierte feste Waschmittel
EP1375633A1 (de) Waschmittel mit Polymeren
DE10162645A1 (de) Tensidgranulate mit verbesserter Auflösegeschwindigkeit durch Zusatz von modifizierten Polyacrylsäure-Salzen
DE19942287A1 (de) Formkörper mit verbesserter Wasserlöslichkeit
DE19953026A1 (de) Sprengmittelgranulate
DE19928924A1 (de) Schaumkontrollierte feste Waschmittel
EP1090982A1 (de) Formkörper mit verbesserter Wasserlöslichkeit

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG, 40589 DUESSELDOR

8131 Rejection