DE19914437A1 - Determination of volume blood flow into aortic section over heart beat cycle from impedance curve of cardiogram by derivation of equation from Seifert and Kubieck's equation - Google Patents

Determination of volume blood flow into aortic section over heart beat cycle from impedance curve of cardiogram by derivation of equation from Seifert and Kubieck's equation

Info

Publication number
DE19914437A1
DE19914437A1 DE19914437A DE19914437A DE19914437A1 DE 19914437 A1 DE19914437 A1 DE 19914437A1 DE 19914437 A DE19914437 A DE 19914437A DE 19914437 A DE19914437 A DE 19914437A DE 19914437 A1 DE19914437 A1 DE 19914437A1
Authority
DE
Germany
Prior art keywords
equation
curve
impedance
seifert
tau
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19914437A
Other languages
German (de)
Inventor
Hans Karl Seifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19914437A priority Critical patent/DE19914437A1/en
Publication of DE19914437A1 publication Critical patent/DE19914437A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0535Impedance plethysmography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

A mathematical equation is derived from an equation of H. Seifert and D. Kubieck for calculation of the heart beat volume from the impedance ( DELTA Z) curve. The derived equation is: SV = \=RL2\=DZmax/Z02 \* (1 - exp (-Ts\/ tau 0))\/(exp (-T0\/ tau 1) - exp (- T0\/ tau 0)), where SV is the heart rate volume, rho is the specific blood resistance, L the distance between inner band electrodes, DELTA Zmax the maximum of the DELTA Z curve, Z0 the base impedance in the thorax, Ts time at closure of aortic valve, T0 time until the maximum of the DELTA Z curve, tau 0 is the rising time constant and tau 1 the falling time constant.

Description

Die Erfindung betrifft eine mathematische Formel zur Berechnung des Herzschlagvolumens aus der ΔZ-Kurve des Impedanzkardiogramms nach dem Oberbegriff des Hauptanspruchs.The invention relates to a mathematical formula for calculation of the heartbeat volume from the ΔZ curve of the Impedance cardiogram according to the preamble of the main claim.

Bei der Berechnung des Herzschlagvolumens aus dem Impedanzkardiogramm wird überwiegend die Formel von Kubicek angewendet, die lautet:
When calculating the heartbeat volume from the impedance cardiogram, the Kubicek formula is mainly used, which reads:

SVKubicek = ρL2/Zo2.LVET dZ/dtmax
SVKubicek = ρL2 / Zo2.LVET dZ / dtmax

mit
ρ dem spezifischen Blutwiderstandswert
L der Distanz zwischen den inneren Bandelektroden
Zo der thorakalen Grundimpedanz
LVET der Austreibungszeit (left ventricular ejection period)
dZ/dtmax Maximum der ersten Ableitung der ΔZ-Kurve.
With
ρ the specific blood resistance value
L the distance between the inner band electrodes
Zo of basic thoracic impedance
LVET of the expulsion period (left ventricular ejection period)
dZ / dt max Maximum of the first derivative of the ΔZ curve.

Die Formel nach Kubicek hat den Nachteil, daß eine Validierung mit anderen anerkannten Meßmethoden wie dem Fick'schen Prinzip oder der Thermodilutionsmethode umstritten ist, da es sich um eine heuristische Formel handelt. Auch zeigt sich eine signifikante Änderung des so errechneten Herzschlagvolumens, wenn zwischen die beiden inneren Bandelektroden ein diskreter Widerstand geschaltet wird, wo das errechnete Herzschlagvolumen davon eigentlich unbeeinflußt sein müßte.The Kubicek formula has the disadvantage of being validated with other recognized measurement methods such as Fick's principle or the thermodilution method is controversial since it is is a heuristic formula. One also shows up significant change in the heartbeat volume calculated in this way, if a discrete between the two inner band electrodes Resistance is switched where the calculated heartbeat volume should actually be unaffected by this.

Aus der Diplomarbeit von Seifert, gefertigt am Institut für Biomedizinische Technik der Universität Stuttgart geht eine Formel zur Berechnung des Herzschlagvolumens aus der ΔZ-Kurve des Impedanzkardiogramms hervor, die diese Nachteile nicht hat, die aus einem vereinfachten Modell für die Kontinuitätsgleichung abgeleitet ist und die lautet:
From the diploma thesis by Seifert, produced at the Institute for Biomedical Engineering at the University of Stuttgart, a formula for calculating the heartbeat volume from the ΔZ curve of the impedance cardiogram emerges, which does not have these disadvantages, which is derived from a simplified model for the continuity equation and is as follows :

mit
ρ dem spezifischen Blutwiderstandswert
L dem Abstand der inneren Bandelektroden
ZTo dem Impedanzwert im Maximum der ΔZ-Kurve
Zo der thorakalen Grundimpedanz
Ts der Zeit bis zum Aortenklappenschluß
To der Zeit bis zum Maximum der ΔZ-Kurve
το der Anstiegszeitkonstanten
τ1 der Abfallszeitkonstanten.
With
ρ the specific blood resistance value
L the distance between the inner band electrodes
ZTo the impedance value in the maximum of the ΔZ curve
Zo of basic thoracic impedance
Ts of time until aortic valve closure
To the time to the maximum of the ΔZ curve
το the rise time constant
τ1 the fall time constant.

Die Formel von Seifert geht davon aus, daß die ΔZ-Kurve als eine Überlagerung zweier Exponentialfunktionen mit zwei unterschiedlichen Zeitkonstanten τo und τ1 interpretierbar ist, wobei die Anstiegszeitkonstante τo kleiner als die Abfallszeitkonstante τ1 ist.Seifert's formula assumes that the ΔZ curve as a superposition of two exponential functions with two different time constants τo and τ1 can be interpreted, where the rise time constant τo is smaller than that Fall time constant τ1.

Die aus der Diplomarbeit von Seifert hervorgehende Formel enthält den Term 1/ZTo - 1/Zo, der die Differenz von Leitwerten widergibt, wobei nach dem physikalischen Modell der Fig. 4 und dem elektrischen Ersatzschaltbild der Fig. 5 die den Aortenabschnitt umgebende Gewebeimpedanz auf diese Differenz keinen Einfluß hat.The formula resulting from the diploma thesis by Seifert contains the term 1 / ZTo - 1 / Zo, which reflects the difference of the conductance values, whereby according to the physical model of FIG. 4 and the electrical equivalent circuit diagram of FIG. 5, the tissue impedance surrounding the aortic section on these Difference has no influence.

Der Term 1/ZTo - 1/Zo ist aber etwas "unhandlich".The term 1 / ZTo - 1 / Zo is somewhat "unwieldy".

Deshalb liegt der vorliegenden Erfindung die Aufgabe zugrunde eine Formel zur Berechnung des Herzschlagvolumens aus der ΔZ- Kurve des Impedanzkardiogramms anzugeben, die leichter handhabbar ist und die trotzdem den Vorteil hat, daß die den Aortenabschnitt umgebende Gewebeimpedanz nahezu keinen Einfluß auf das so berechnete Herzschlagvolumen hat.The present invention is therefore based on the object a formula for calculating the heartbeat volume from the ΔZ Curve of the impedance cardiogram to indicate the lighter  is manageable and which still has the advantage that the Tissue impedance surrounding the aortic section has almost no influence on the calculated heartbeat volume.

Diese Aufgabe wird durch den kennzeichnenden Teil des Hauptanspruchs gelöst.This task is carried out by the characteristic part of the Main claim solved.

Die erfindungsgemäße Formel hat den Vorteil, daß sie leicht handhabbar ist und einen Analogieschluß zur Formel nach Kubicek zuläßt.The formula according to the invention has the advantage that it is light is manageable and an analogy to the formula according to Kubicek allows.

Die dabei auftretende Abweichung gegenüber der aus der Diplomarbeit von Seifert hervorgehenden Formel liegt im Prozentbereich.The deviation that arises from that from the Diploma thesis of Seifert resulting formula lies in Percentage range.

Die erfindungsgemäße Formel lautet:
The formula according to the invention is:

mit
ρ dem spezifischen Blutwiderstandswert
L der Distanz zwischen den inneren Bandelektroden
ΔZmax dem maximalen Differenzbetrag der ΔZ-Kurve
Zo der thorakalen Grundimpedanz
Ts der Zeit bis zum Aortenklappenschluß
To der Zeit bis zum Maximum der ΔZ-Kurve
τo der Anstiegszeitkonstanten
τ1 der Abfallszeitkonstanten.
With
ρ the specific blood resistance value
L the distance between the inner band electrodes
ΔZmax is the maximum difference in the ΔZ curve
Zo of basic thoracic impedance
Ts of time until aortic valve closure
To the time to the maximum of the ΔZ curve
τo the rise time constant
τ1 the fall time constant.

Aus der Tatsache, daß die absoluten ΔZ-Werte im Bereich um 0,2 bis 0,4 Ohm liegen, kann für den Term 1/ZTo - 1/Zo gebildet werden:
From the fact that the absolute ΔZ values are in the range of 0.2 to 0.4 ohms, the following can be formed for the term 1 / ZTo - 1 / Zo:

(Zo - ZTo)/(ZTo.Zo) = ΔZmax/Zo2(Zo - ZTo) / (ZTo.Zo) = ΔZmax / Zo2

Erläuterungen zum Meßprinzip und den mathematischen Formeln können den Figuren entnommen werden.Explanations of the measuring principle and the mathematical formulas can be seen in the figures.

Es zeigen:Show it:

Fig. 1 das Prinzip der Impedanzmessung Fig. 1 shows the principle of impedance measurement

Fig. 2 den Verlauf der ΔZ-Kurve mit den Meßgrößen für die Formel nach Kubicek Fig. 2 shows the course of the ΔZ curve with the measured variables for the formula according to Kubicek

Fig. 3 den Verlauf der ersten Ableitung dZ/dt mit den Meß­ größen für die Formel nach Kubicek Fig. 3 shows the course of the first derivative dZ / dt with the measurands for the formula according to Kubicek

Fig. 4 ein physikalisch vereinfachtes Modell als Grundlage für für die Impedanzkardiographie Fig. 4 is a physically simplified model as a basis for the impedance cardiography

Fig. 5 ein elektrisches Ersatzschaltbild zum Modell der Fig. 4 Fig. 5 is an electrical equivalent circuit diagram for the model of Fig. 4

Fig. 6 den approximierten Verlauf des einfließenden Volumens mit der Anstiegszeitkonstanten τo Fig. 6 shows the approximate course of the influent volume with the rise time constants τo

Fig. 7 den approximierten Verlauf des ausfließenden Volumens mit der Abfallszeitkonstanten τ1 Fig. 7 shows the approximate course of the effluent volume with the fall time constants τ1

Fig. 8 die Überlagerung der Kurven der Fig. 6 und 7 Fig. 8 shows the superposition of the curves of FIGS. 6 and 7

Die Fig. 1 zeigt das Prinzip der Impedanzmessung. Dabei wird eine Wechselspannungsquelle von ca. 100 kHz und einer konstanten Stromstärke von ca. 5 mA an die Elektroden 1 und 4 angelegt, welche einen Strom mit einer konstanten Stromstärke durch das biologische Material treibt. Die Meßelektroden 2 und 3 sind in dem definierten Abstand L zwischen den Elektroden 1 und 4 angebracht. Der Spannungsabfall an den Meßelektroden 2 und 3 wird einem Differenzverstärker mit sehr hohem Eingangswiderstand zugeführt. Aus dem konstanten Wechselstrom und dem Spannungsabfall an den Meßelektroden 2 und 3 kann die Impedanz des biologischen Materials bestimmt werden. Durch die Frequenz von ca. 100 kHz hat die Impedanz, gemessen am menschlichen Körper, nahezu rein ohmschen Charakter. Fig. 1 shows the principle of the impedance measurement. An AC voltage source of approximately 100 kHz and a constant current of approximately 5 mA is applied to electrodes 1 and 4 , which drives a current with a constant current through the biological material. The measuring electrodes 2 and 3 are attached at the defined distance L between the electrodes 1 and 4 . The voltage drop across the measuring electrodes 2 and 3 is fed to a differential amplifier with a very high input resistance. The impedance of the biological material can be determined from the constant alternating current and the voltage drop at the measuring electrodes 2 and 3 . Due to the frequency of approx. 100 kHz, the impedance, measured on the human body, has an almost purely ohmic character.

Die Fig. 2 zeigt einen typischen Impedanzverlauf der ΔZ-Kurve mit den für die Berechnung des Herzschlagvolumens nach Kubicek charakteristischen Größen. FIG. 2 shows a typical impedance curve of the ΔZ curve with the quantities characteristic for the calculation of the heartbeat volume according to Kubicek.

Die Fig. 3 zeigt die erste Ableitung dz/dt des Impedanzverlaufs mit den für die Berechnung des Herzschlagvolumens nach Kubicek charakteristischen Größen. FIG. 3 shows the first derivative dz / dt of the impedance curve with the quantities characteristic for the calculation of the heartbeat volume according to Kubicek.

Die Fig. 4 zeigt ein vereinfachtes physikalisches Röhrenmodell des Thorax und des von Blut durchströmten Aortenabschnitts. FIG. 4 shows a simplified physical tube model of the thorax and the aortic section through which blood flows.

Die Fig. 5 zeigt das zu Fig. 4 gehörige elektrische Ersatzschaltbild mit Z1 der Blutimpedanz, Z2 der Gewebeimpedanz und Zt der Thoraximpedanz. FIG. 5 shows the corresponding to Fig. 4 electrical equivalent circuit diagram with the blood impedance Z1, Z2 of the tissue impedance Zt and the thoracic impedance.

Die Fig. 6 zeigt den approximierten angenommenen Verlauf des in den Aortenabschnitt einfließenden Volumens mit der Anstiegszeitkonstanten τo. FIG. 6 shows the approximated assumed course of the volume flowing into the aortic section with the rise time constant τo.

Fig. 7 zeigt den Verlauf des approximierten angenommenen Verlaufs des aus dem Aortenabschnitt ausfließenden Volumens mit der Abfallszeitkonstanten τ1. Fig. 7 shows the course of the approximated curve assumed the effluent from the aortic volume with the fall time constants τ1.

Fig. 8 zeigt die Überlagerung der Kurven der Fig. 6 und 7 sowie einen typischen gemessenen Impedanzverlauf der ΔZ-Kurve mit den für die Berechnung des Herzschlagvolumens nach Seifert charakteristischen Größen. FIG. 8 shows the superimposition of the curves of FIGS. 6 and 7 and a typical measured impedance curve of the ΔZ curve with the variables characteristic of the calculation of the heartbeat volume according to Seifert.

BezugszeichenlisteReference list

ρ spezifischer Blutwiderstandswert
L Distanz zwischen den inneren Bandelektroden
ΔZmax Maximum der ΔZ-Kurve
Zo thorakale Grundimpedanz
Ts Zeit bis zum Aortenklappenschluß
To Zeit bis zum Maximum der ΔZ-Kurve
τo Anstiegszeitkonstante
τ1 Abfallszeitkonstante
ZTo
ρ specific blood resistance value
L Distance between the inner band electrodes
ΔZmax maximum of the ΔZ curve
Zo thoracic basic impedance
Ts time until aortic valve closure
To time to the maximum of the ΔZ curve
τo rise time constant
τ1 fall time constant
Z To

Impedanzwert im Maximum der ΔZ-Kurve
Impedance value in the maximum of the ΔZ curve

Claims (1)

Mathematische Formel zur Berechnung des Herzschlagvolumens aus der ΔZ-Kurve des Impedanzkardiogramms nach H. Seifert und D. Kubicek, dadurch gekennzeichnet, daß gilt:
wobei ist:
SV das Herzschlagvolumen
ρ spezifischer Blutwiderstandswert
L Distanz zwischen den inneren Bandelektroden
ΔZmax Maximum der ΔZ-Kurve
Zo thorakale Grundimpedanz
Ts Zeit bis zum Aortenklappenschluß
To Zeit bis zum Maximum der ΔZ-Kurve
τo Anstiegszeitkonstante
τ1 Abfallszeitkonstante
Mathematical formula for calculating the heartbeat volume from the ΔZ curve of the impedance cardiogram according to H. Seifert and D. Kubicek, characterized in that:
where is:
SV the heartbeat volume
ρ specific blood resistance value
L Distance between the inner band electrodes
ΔZmax maximum of the ΔZ curve
Zo thoracic basic impedance
Ts time until aortic valve closure
To time to the maximum of the ΔZ curve
τo rise time constant
τ1 fall time constant
DE19914437A 1999-03-30 1999-03-30 Determination of volume blood flow into aortic section over heart beat cycle from impedance curve of cardiogram by derivation of equation from Seifert and Kubieck's equation Withdrawn DE19914437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19914437A DE19914437A1 (en) 1999-03-30 1999-03-30 Determination of volume blood flow into aortic section over heart beat cycle from impedance curve of cardiogram by derivation of equation from Seifert and Kubieck's equation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19914437A DE19914437A1 (en) 1999-03-30 1999-03-30 Determination of volume blood flow into aortic section over heart beat cycle from impedance curve of cardiogram by derivation of equation from Seifert and Kubieck's equation

Publications (1)

Publication Number Publication Date
DE19914437A1 true DE19914437A1 (en) 2000-10-05

Family

ID=7902969

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19914437A Withdrawn DE19914437A1 (en) 1999-03-30 1999-03-30 Determination of volume blood flow into aortic section over heart beat cycle from impedance curve of cardiogram by derivation of equation from Seifert and Kubieck's equation

Country Status (1)

Country Link
DE (1) DE19914437A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247487A1 (en) * 2001-04-03 2002-10-09 Osypka Medical GmbH Apparatus and method for determining an approximate value of the stroke volume and the cardiac output of the heart
WO2003003920A2 (en) * 2001-07-05 2003-01-16 Gennady Gedevanishvili Method and device for non-invasive research of blood distribution and its circulatory characteristics in warm-blooded organism
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
US10470718B2 (en) 2005-08-17 2019-11-12 Osypka Medical Gmbh Method for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in a human subject

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247487A1 (en) * 2001-04-03 2002-10-09 Osypka Medical GmbH Apparatus and method for determining an approximate value of the stroke volume and the cardiac output of the heart
WO2003003920A2 (en) * 2001-07-05 2003-01-16 Gennady Gedevanishvili Method and device for non-invasive research of blood distribution and its circulatory characteristics in warm-blooded organism
WO2003003920A3 (en) * 2001-07-05 2003-04-17 Gennady Gedevanishvili Method and device for non-invasive research of blood distribution and its circulatory characteristics in warm-blooded organism
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
US7904141B2 (en) 2001-10-11 2011-03-08 Osypka Medical Gmbh System and apparatus for determining the left-ventricular ejection time TLVE of a heart of a subject
US8562538B2 (en) 2001-10-11 2013-10-22 Osypka Medical Gmbh System for determining the left-ventricular ejection time TLVE of a heart of a subject
US10470718B2 (en) 2005-08-17 2019-11-12 Osypka Medical Gmbh Method for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in a human subject
US11642088B2 (en) 2005-08-17 2023-05-09 Osypka Medical Gmbh Method and apparatus for digital demodulation and further processing of signals obtained in the measurement of electrical bioimpedance or bioadmittance in an object

Similar Documents

Publication Publication Date Title
AT413189B (en) MEDICAL ELECTRODE ELEMENT
DE60224315T2 (en) Apparatus and method for determining estimates of heartbeat volume and cardiac output
DE60115907T2 (en) DEVICE FOR THE SEGMENTARY BIOIMPEDANCE MEASUREMENT OF A DIALYSIS PATE
EP1596938B1 (en) Assembly for carrying out magnetotherapy and method for providing a current for magnetotherapy
DE69530207T2 (en) DEVICE FOR IMPEDANCE CARDIOGRAPHY
DE102004059082A1 (en) Device for determining the thorax impedance
EP0249825B1 (en) Device for impedance measurement at body tissues
DE2910944C2 (en)
EP2533827B1 (en) Device and method for monitoring a vascular access for an extracorporeal blood treatment
DE19533663A1 (en) Method and device for determining cardiac output
DE3829456A1 (en) METHOD AND DEVICE FOR NON-INVASIVELY EXAMINING THE BLOOD CIRCUIT OF A LIVING ORGANISM
AT516499B1 (en) Body impedance meter
DE102010028902A1 (en) Method and device for determining cellular and / or extracellular, in particular macromolecular portions of liquids, preferably of body fluids of living beings
CN106572800B (en) Simultaneous impedance testing method and apparatus
EP2473101B1 (en) Device for the non-invasive determination of arterial blood pressure
EP0794729A2 (en) Process and device for determining cerebral blood flow and intracerebral blood volume
DE19914437A1 (en) Determination of volume blood flow into aortic section over heart beat cycle from impedance curve of cardiogram by derivation of equation from Seifert and Kubieck's equation
DE102007006229A1 (en) Implantable medical device
DE10061189A1 (en) Method for continuous determination of mean, systolic and diastolic arterial blood pressure by measurement of the pulse transition time using electrodes measuring impedance of separate body regions
Yamamoto et al. The measurement principle for evaluating the performance of drugs and cosmetics by skin impedance
AT518929B1 (en) Sensor band for multi-parametric cardiopulmonary diagnosis
DE69732854T2 (en) CATHETER WITH REDUCED NOISE
DE19914433A1 (en) Determination of the volume blood flow into an aortic section over a heart beat cycle from the impedance curve of a cardiogram by derivation of an equation from Seifert's equation
DE19914434A1 (en) Determination of time constants t0 and t1 (rates of rise and fall constants for volume of blood flowing in and out of aorta section) for calculating heartbeat volume
DE19914435A1 (en) Calculation of heartbeat volume from impedance cardiogram

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee