DE19904082A1 - Process for the production of solar cells - Google Patents

Process for the production of solar cells

Info

Publication number
DE19904082A1
DE19904082A1 DE19904082A DE19904082A DE19904082A1 DE 19904082 A1 DE19904082 A1 DE 19904082A1 DE 19904082 A DE19904082 A DE 19904082A DE 19904082 A DE19904082 A DE 19904082A DE 19904082 A1 DE19904082 A1 DE 19904082A1
Authority
DE
Germany
Prior art keywords
layer
thickness
plasma
coating
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19904082A
Other languages
German (de)
Inventor
Klaus Peter Crone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Priority to DE19904082A priority Critical patent/DE19904082A1/en
Priority to EP00904935A priority patent/EP1159765A1/en
Priority to JP2000597846A priority patent/JP2002536835A/en
Priority to PCT/EP2000/000397 priority patent/WO2000046861A1/en
Publication of DE19904082A1 publication Critical patent/DE19904082A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

An economical method of coating organic-polymeric carrier materials with at least one film and tempering the thus coated materials, wherein the carrier material has a thickness of at least 60 mu m and consists of a polymeric material with a glass transition temperature of at least 90 DEG C, the applied film has a thickness of a maximum of 30 mu m, the coating is performed at temperatures below the glass transition temperature and the tempering is performed at temperatures of at least 250 DEG C by means of a plasma.

Description

Die Erfindung betrifft ein ökonomisch verbessertes Verfahren zur Herstellung von Dünnschicht-Solarzellen, z. B. CdTe-Solarzellen (CdTe = Cadmiumtellurid). Im fol­ genden dient CdTe nur als Beispiel für alle Dünnschicht-Solarzellen.The invention relates to an economically improved process for the production of Thin-film solar cells, e.g. B. CdTe solar cells (CdTe = cadmium telluride). In fol CdTe only serves as an example for all thin-film solar cells.

CdTe- und CdTe/CdS-Solarzellen können nach unterschiedlichen Verfahren herge­ stellt werden (US-5 304 499), denen eine Wärmebehandlung bei wenigstens 575°C gemeinsam ist, damit eine ausreichende Effizienz erzielt wird. Diese Temperaturen erlauben nur die Verwendung von teuren Glassorten als Träger. Glas als Träger hat den Nachteil, daß die Beschichtung mit CdTe nur diskontinuierlich auf Glasplatten vorgenommen werden kann, unabhängig davon, welche Beschichtungsmethode ge­ wählt wird.CdTe and CdTe / CdS solar cells can be produced using different methods are (US-5 304 499), which heat treatment at least 575 ° C. is common in order to achieve sufficient efficiency. These temperatures only allow the use of expensive types of glass as supports. Has glass as a support the disadvantage that the coating with CdTe is only discontinuous on glass plates can be made regardless of which coating method is chosen.

US-5 304 499 beschreibt ein Verfahren, bei dem die Beschichtungstemperaturen nur noch 480 bis 520°C betragen und somit die Verwendung von preiswerten Glassorten ("Fensterglas") erlauben.US 5,304,499 describes a method in which the coating temperatures only still be 480 to 520 ° C and thus the use of inexpensive types of glass Allow ("window glass").

Dazu ist erforderlich, daß das Glas zunächst mit einer transparenten, elektrisch leit­ fähigen Schicht, z. B. aus dotiertem Zinnoxid, versehen wird. Es folgt eine dünne Cadmiumsulfid-Schicht (CdS), auf die dann die lichtempfindliche CdTe-Schicht bei 480 bis 520°C aufsublimiert wird.For this it is necessary that the glass first with a transparent, electrically conductive capable layer, e.g. B. from doped tin oxide. A thin follows Cadmium sulfide layer (CdS), on which the photosensitive CdTe layer is added 480 to 520 ° C is sublimed.

Die zum Aufbringen der CdTe-Schicht erforderliche Apparatur ist kompliziert und aufwendig: Trägermaterial und CdTe-Quelle werden von gegenüberliegenden Gra­ phitblöcken, die auf die notwendige Temperatur aufgeheizt sind, derart gehalten, daß die CdTe-Quelle sich nur 2 bis 3 mm von der Trägeroberfläche entfernt befindet. Es folgt dann die Sublimation bei 0,1 mbar Inertgasatmosphäre, z. B. Stickstoff-, He­ lium-, Argon- oder Wasserstoffatmosphäre. Große Flächen von CdTe-beschichtetem Material für die Herstellung von Solarzellen können so nicht preisgünstig erzeugt werden.The equipment required to apply the CdTe layer is complicated and elaborate: carrier material and CdTe source are from opposite Gra phit blocks, which are heated to the necessary temperature, held such that the CdTe source is only 2 to 3 mm from the carrier surface. It then follows the sublimation at 0.1 mbar inert gas atmosphere, e.g. B. nitrogen, He lium, argon or hydrogen atmosphere. Large areas of CdTe coated  Material for the production of solar cells can not be produced cheaply become.

Dieses und die anderen bekannten Verfahren erlauben nicht die Verwendung von Trägerfolien aus polymeren organischen Materialien.This and the other known methods do not allow the use of Backing films made from polymeric organic materials.

Aufgabe der Erfindung war die preisgünstige Herstellung eines Trägers mit photo­ voltaisch aktiver Schicht, z. B. CdTe-Schicht.The object of the invention was the inexpensive production of a carrier with photo voltaically active layer, e.g. B. CdTe layer.

Es wurde nun überraschend ein Verfahren gefunden, das die Verwendung flexibler polymerer Folien für die Beschichtung mit CdTe und Temperung gestattet, ohne daß das polymere Trägermaterial durch die hohen Temperaturen geschädigt wird. Auf diese Weise wird ein Ausgangsmaterial für Solarzellen hoher Effizienz erhalten.Surprisingly, a method has now been found that makes the use more flexible polymeric films for coating with CdTe and tempering allowed without the polymeric carrier material is damaged by the high temperatures. On in this way, a raw material for high efficiency solar cells is obtained.

Das Verfahren ist auch für die Beschichtung mit anderen Substanzen und Temperung geeignet, beispielsweise zur Herstellung transparenter, leitfähiger Schichten aus Indium-Zinnoxid (ITO).The process is also for coating with other substances and tempering suitable, for example for the production of transparent, conductive layers Indium tin oxide (ITO).

Gegenstand der Erfindung ist daher ein Verfahren zur Beschichtung organisch-poly­ merer Trägermaterialien mit wenigstens einer Substanz, insbesondere wenigstens einer anorganischen Substanz, vorzugsweise mit CdTe und Temperung der aufgetra­ genen Schicht der so beschichteten Materialien, dadurch gekennzeichnet, daß das Trägermaterial eine Dicke von mindestens 60 µm, insbesondere 90 bis 120 µm auf­ weist, aus einem polymeren Material mit einer Glasübergangstemperatur von min­ destens 90°C besteht, die aufgetragene Schicht eine Dicke von höchstens 30 µm, insbesondere 2 bis 7 µm hat, die Beschichtung bei Temperaturen unterhalb der Glas­ übergangstemperatur und die Temperung bei Temperaturen von mindestens 250°C, insbesondere 400 bis 600°C mittels eines Plasmas vorgenommen wird.The invention therefore relates to a method for coating organic-poly merer carrier materials with at least one substance, in particular at least an inorganic substance, preferably with CdTe and tempering the surface gene layer of the materials coated, characterized in that the Backing material has a thickness of at least 60 microns, in particular 90 to 120 microns points out of a polymeric material with a glass transition temperature of min at least 90 ° C, the applied layer has a maximum thickness of 30 µm, has in particular 2 to 7 microns, the coating at temperatures below the glass transition temperature and tempering at temperatures of at least 250 ° C, in particular 400 to 600 ° C is carried out by means of a plasma.

Als Plasma wird jener Aggregatzustand der Materie verstanden, der, einem Gase ähnlich, nach außen neutral ist, jedoch nur aus geladenen Teilchen besteht, wobei die negativen Elektronen der Atomhülle von den positiven Atomkernen getrennt sind. Die Erzeugung eines Plasmas bei sehr hohen Temperaturen ist bekannt.Plasma is understood to mean that physical state of matter, that of a gas is similar, is externally neutral, but consists only of charged particles, the  negative electrons of the atomic shell are separated from the positive atomic nuclei. The generation of a plasma at very high temperatures is known.

Das erfindungsgemäße Verfahren, als Plasmasintern bezeichnet, wird so durchge­ führt, daß man einen hinreichend starken Laser fokussiert, so daß im Brennpunkt die elektrische Feldstärke so groß wird, daß die Elektronen der Luftmoleküle, vorzugs­ weise aber eines Schutzgases, wie Stickstoff oder Argon, von ihren Atomrümpfen abreißen, wodurch das Plasma entsteht. Dieses Plasma ist heiß und dehnt sich aus. Wenn der Laser gepulst ist, bekommt man im Fokus mit der Pulsfrequenz des Lasers ein pulsierendes Plasma mit entsprechend häufigen Druckstößen auf seine Nachbar­ schaft. Dieses pulsierende Plasma kann man über die zu sinternde Schicht führen, wobei dann dreierlei passiert:
The process according to the invention, referred to as plasma sintering, is carried out in such a way that a sufficiently strong laser is focused, so that the electric field strength becomes so great in the focal point that the electrons of the air molecules, but preferably a protective gas such as nitrogen or argon tear off their atomic cores, which creates the plasma. This plasma is hot and expanding. When the laser is pulsed, the pulsing frequency of the laser gives you a pulsating plasma with correspondingly frequent pressure surges on your neighborhood. This pulsating plasma can be passed over the layer to be sintered, in which case three things happen:

  • - die Schicht absorbiert den Laser direkt und wird dadurch aufgeheizt,The layer absorbs the laser directly and is thereby heated,
  • - die Schicht wird durch das an ihrer Oberfläche entlanggleitende, heiße Plasma zusätzlich geheizt,- The layer is caused by the hot plasma sliding along its surface additionally heated,
  • - das pulsierende Plasma erzeugt Druckstöße, die die Schicht mechanisch ver­ dichten.- The pulsating plasma generates pressure surges that mechanically ver the layer poetry.

Ein geeigneter Laser ist z. B. ein Neodym-YAG-Laser mit 100 mJ Pulsenergie und 50 Hz Pulsfrequenz.A suitable laser is e.g. B. a neodymium-YAG laser with 100 mJ pulse energy and 50 Hz pulse frequency.

Die Beschichtung wird beispielsweise mit einer wäßrigen oder lösungsmittelhaltigen CdTe-Suspension vorgenommen.The coating is, for example, with an aqueous or solvent-based CdTe suspension made.

Anschließend wird das Material getrocknet. Geeignete Beschichtungsmethoden sind z. B. Gießen und Rakeln.The material is then dried. Suitable coating methods are e.g. B. pouring and knife coating.

Die Temperung kann mehrfach vorgenommen werden; zwischen zwei Temperungs­ schritten werden vorzugsweise Abkühlphasen vorgesehen. The tempering can be carried out several times; between two tempering cooling phases are preferably provided.  

Als Polymere eignen sich Polyethylenterephthalat (PET) und Polyethylennaphthalat (PEN). Das polymere Trägermaterial kann vor der Beschichtung mit einer Substrat­ schicht, z. B. aus Indium-Zinn-Oxid, versehen sein, die die Haftung der CdTe-Schicht verbessert. Die Substratschicht sollte transparent und elektrisch leitfähig sein.Polyethylene terephthalate (PET) and polyethylene naphthalate are suitable as polymers (PEN). The polymeric carrier material can be coated with a substrate layer, e.g. B. from indium tin oxide, provided the adhesion of the CdTe layer improved. The substrate layer should be transparent and electrically conductive.

Organisch polymere Trägermaterialien sind flexibel und gestatten so die kontinuier­ liche Beschichtung nach einer geeigneten Beschichtungsmethode, beispielsweise einem kontinuierlichen Beschichtungsverfahren mittels eines Gießers, beispielsweise eines Meniskus- oder Vorhanggießers, wie sie von der Beschichtung fotografischer Filme bekannt sind.Organically polymeric carrier materials are flexible and thus allow continuous use Liche coating by a suitable coating method, for example a continuous coating process using a caster, for example a meniscus or curtain caster, as seen from the coating of photographs Films are known.

Es ist besonders vorteilhaft, wenn die CdTe-Teilchen besonders feinteilig sind, insbe­ sondere in Form sogenannter Nanoteilchen vorliegen, d. h. als Teilchen, deren mitt­ lerer Durchmesser im Nanometerbereich liegt und beispielsweise 3 bis 5 nm beträgt.It is particularly advantageous if the CdTe particles are particularly fine, especially especially in the form of so-called nanoparticles, d. H. as particles whose mean The diameter is in the nanometer range and is, for example, 3 to 5 nm.

In diesem Fall ist es zweckmäßig, daß bereits bei der Herstellung der Nano-Teilchen ein Mittel zugegen ist, das eine Agglomeration der Nanoteilchen verhindert, z. B. Tributylphospan.In this case, it is advisable that already in the manufacture of the nano-particles an agent is present which prevents agglomeration of the nanoparticles, e.g. B. Tributylphospan.

Ein weiterer Gegenstand der Erfindung ist eine Solarzelle mit wenigstens einer CdTe-Schicht einer Stärke von höchstens 30 µm auf einem Träger, dadurch gekenn­ zeichnet, daß der Träger ein polymeres organisches Material mit einer Dicke von mindestens 60 µm und einer Glasübergangstemperatur von mindestens 90°C ist.Another object of the invention is a solar cell with at least one CdTe layer with a maximum thickness of 30 µm on a carrier, characterized by it records that the carrier is a polymeric organic material with a thickness of is at least 60 µm and a glass transition temperature of at least 90 ° C.

Beispielexample

Eine 100 µm starke Folie aus PEN mit der Breite 100 cm wird kontinuierlich mit einer Suspension beschichtet, die ein Dispergiermittel und pro Liter 31 g Cadmium­ tellurid enthält. Anschließend wird die beschichtete Folie getrocknet und weist eine Trockenschichtdicke der aufgebrachten Schicht von 5 µm auf.A 100 µm thick film made of PEN with a width of 100 cm is continuously used coated a suspension containing a dispersant and 31 g of cadmium per liter contains telluride. The coated film is then dried and has one Dry layer thickness of the applied layer of 5 µm.

Die Folie wird wie folgt getempert:
Ein Neodym-YAG-Laser mit 100 mJ Pulsenergie und 50 Hz Pulsfrequenz wird so fokussiert, daß sich dicht über der Folie ein pulsierendes Plasma bildet. Die Folie wird rasterförmig unter diesem Plasma bewegt, so daß sich die gesamte zu sinternde Oberfläche sukzessive aufheizt, jedoch so kurz, daß die Folie nicht geschädigt wird.
The film is annealed as follows:
A neodymium-YAG laser with 100 mJ pulse energy and 50 Hz pulse frequency is focused in such a way that a pulsating plasma forms just above the film. The film is moved in a grid pattern under this plasma, so that the entire surface to be sintered gradually heats up, but so briefly that the film is not damaged.

Nach der Temperung weist die Folie einen lichtabhängigen elektrischen Widerstand auf und eignet sich somit zur Herstellung einer fotovoltaischen Zelle.After tempering, the film has a light-dependent electrical resistance and is therefore suitable for the production of a photovoltaic cell.

Claims (9)

1. Verfahren zur Beschichtung organisch-polymerer Trägermaterialien mit we­ nigstens einer Schicht und Temperung der so beschichteten Materialien, dadurch gekennzeichnet, daß das Trägermaterial eine Dicke von mindestens 60 µm, insbesondere 90 bis 120 µm aufweist, aus einem polymeren Material mit einer Glasübergangstemperatur von mindestens 90°C besteht, die aufge­ tragene Schicht eine Dicke von höchstens 30 µm, insbesondere 2 bis 7 µm hat, die Beschichtung bei Temperaturen unterhalb der Glasübergangstempera­ tur und die Temperung bei Temperaturen von mindestens 250°C, insbeson­ dere 400 bis 600°C mittels eines Plasmas vorgenommen wird.1. A process for coating organic polymeric carrier materials with at least one layer and tempering of the materials coated in this way, characterized in that the carrier material has a thickness of at least 60 µm, in particular 90 to 120 µm, from a polymeric material with a glass transition temperature of at least 90 ° C, the applied layer has a thickness of at most 30 microns, in particular 2 to 7 microns, the coating at temperatures below the glass transition temperature and the tempering at temperatures of at least 250 ° C, in particular 400 to 600 ° C by means a plasma is made. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die aufgetragene Schicht eine photovoltaisch aktive Schicht ist.2. The method according to claim 1, characterized in that the applied Layer is a photovoltaically active layer. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die aufgetragene Schicht eine CdTe-Schicht ist.3. The method according to claim 1, characterized in that the applied Layer is a CdTe layer. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Plasma mittels eines Lasers erzeugt wird.4. The method according to claim 1, characterized in that the plasma means of a laser is generated. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Laser gepulst betrieben wird.5. The method according to claim 4, characterized in that the laser is pulsed is operated. 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Plasma aus Schutzgas erzeugt wird.6. The method according to claim 1, characterized in that the plasma Shielding gas is generated. 7. Solarzelle mit wenigstens einer photovoltaisch aktiven Schicht einer Stärke von höchstens 30 µm auf einem Träger, dadurch gekennzeichnet, daß der Trä­ ger ein polymeres organisches Material mit einer Dicke von wenigstens 60 µm und einer Glasübergangstemperatur von mindestens 90°C ist. 7. Solar cell with at least one photovoltaically active layer of a thickness of at most 30 µm on a carrier, characterized in that the Trä a polymeric organic material with a thickness of at least 60 microns and a glass transition temperature of at least 90 ° C.   8. Solarzelle nach Anspruch 7, dadurch gekennzeichnet, daß die photovoltaisch aktive Schicht Cadmiumtellurid enthält.8. Solar cell according to claim 7, characterized in that the photovoltaic contains active layer of cadmium telluride. 9. Solarzelle nach Anspruch 7, dadurch gekennzeichnet, daß der Träger aus Polyethylenterephthalat oder Polyethylennaphthalat besteht.9. Solar cell according to claim 7, characterized in that the carrier There is polyethylene terephthalate or polyethylene naphthalate.
DE19904082A 1999-02-02 1999-02-02 Process for the production of solar cells Withdrawn DE19904082A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19904082A DE19904082A1 (en) 1999-02-02 1999-02-02 Process for the production of solar cells
EP00904935A EP1159765A1 (en) 1999-02-02 2000-01-18 A method for the production of solar cells
JP2000597846A JP2002536835A (en) 1999-02-02 2000-01-18 Solar cell manufacturing method
PCT/EP2000/000397 WO2000046861A1 (en) 1999-02-02 2000-01-18 A method for the production of solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19904082A DE19904082A1 (en) 1999-02-02 1999-02-02 Process for the production of solar cells

Publications (1)

Publication Number Publication Date
DE19904082A1 true DE19904082A1 (en) 2000-08-03

Family

ID=7896136

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19904082A Withdrawn DE19904082A1 (en) 1999-02-02 1999-02-02 Process for the production of solar cells

Country Status (4)

Country Link
EP (1) EP1159765A1 (en)
JP (1) JP2002536835A (en)
DE (1) DE19904082A1 (en)
WO (1) WO2000046861A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041363A2 (en) * 2000-11-16 2002-05-23 Solarflex Technologies, Inc. System and methods for laser assisted deposition
WO2002049119A2 (en) * 2000-12-12 2002-06-20 Solarflex Technologies, Inc. Thin film flexible solar cell
DE102004060737B4 (en) * 2004-12-15 2007-03-08 Degussa Ag Process for the preparation of semiconducting or photovoltaically active films
WO2008124400A1 (en) * 2007-04-04 2008-10-16 Innovalight, Inc. Methods for optimizing thin film formation with reactive gases
US7776724B2 (en) 2006-12-07 2010-08-17 Innovalight, Inc. Methods of filling a set of interstitial spaces of a nanoparticle thin film with a dielectric material
US7851336B2 (en) 2008-03-13 2010-12-14 Innovalight, Inc. Method of forming a passivated densified nanoparticle thin film on a substrate
WO2011089023A3 (en) * 2010-01-19 2012-06-28 Institut Für Photonische Technologien E.V. Method for producing a cadmium telluride solar cell
US8247312B2 (en) 2008-04-24 2012-08-21 Innovalight, Inc. Methods for printing an ink on a textured wafer surface
US8968438B2 (en) 2007-07-10 2015-03-03 Innovalight, Inc. Methods and apparatus for the in situ collection of nucleated particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891782B2 (en) * 2011-12-27 2016-03-23 株式会社リコー Thin film manufacturing apparatus, thin film manufacturing method, liquid droplet ejection head, and ink jet recording apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231808A (en) * 1978-09-05 1980-11-04 Fuji Photo Film Co., Ltd. Thin film photovoltaic cell and a method of manufacturing the same
DE3510204A1 (en) * 1984-03-21 1985-10-03 Gianfranco Prof. Rom/Roma Vitali Improved process for the rearrangement of crystalline structures in alloyed or unalloyed semiconductors by means of laser pulses
DE4132882A1 (en) * 1991-10-03 1993-04-29 Battelle Institut E V METHOD FOR PRODUCING PN CDTE / CDS THIN-LAYER SOLAR CELLS
US5427961A (en) * 1992-02-21 1995-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
EP0744779A2 (en) * 1995-05-17 1996-11-27 Matsushita Electric Industrial Co., Ltd. A manufacturing method of compound semiconductor thinfilms and photoelectric device or solar cell using the same compound semiconductor thinfilms

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194377A (en) * 1982-05-07 1983-11-12 Agency Of Ind Science & Technol Manufacture of thin film solar battery
JPS61168271A (en) * 1985-01-21 1986-07-29 Sumitomo Bakelite Co Ltd Amorphous silicon solar battery
JPH0671091B2 (en) * 1985-10-08 1994-09-07 帝人株式会社 Thin film solar cell
US5389195A (en) * 1991-03-07 1995-02-14 Minnesota Mining And Manufacturing Company Surface modification by accelerated plasma or ions
JPH0590624A (en) * 1991-09-28 1993-04-09 Nissha Printing Co Ltd Adhesive material for solar battery
WO2000007250A1 (en) * 1998-07-30 2000-02-10 Agfa-Gevaert Naamloze Vennootschap Method of producing solar cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231808A (en) * 1978-09-05 1980-11-04 Fuji Photo Film Co., Ltd. Thin film photovoltaic cell and a method of manufacturing the same
DE3510204A1 (en) * 1984-03-21 1985-10-03 Gianfranco Prof. Rom/Roma Vitali Improved process for the rearrangement of crystalline structures in alloyed or unalloyed semiconductors by means of laser pulses
DE4132882A1 (en) * 1991-10-03 1993-04-29 Battelle Institut E V METHOD FOR PRODUCING PN CDTE / CDS THIN-LAYER SOLAR CELLS
US5304499A (en) * 1991-10-03 1994-04-19 Battelle-Institut E.V. Methods of making pn CdTe/CdS thin film solar cells
US5427961A (en) * 1992-02-21 1995-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
EP0744779A2 (en) * 1995-05-17 1996-11-27 Matsushita Electric Industrial Co., Ltd. A manufacturing method of compound semiconductor thinfilms and photoelectric device or solar cell using the same compound semiconductor thinfilms

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. Appl. Phys. 74, 1993, S.2543-2549 *
J. Vac. Sci. Technol. A 15 (4), 1997, S.2354- S.2358 *
Jap. Journ. of. Appl. Phys., Vol.27, No.1, 1988, S.145,146 *
Phys. stat. sol. (a) 166, 1998, S.629-634 *
Solar Energy Materials and Solar Cells 37, 1995, S.295-306 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002041363A3 (en) * 2000-11-16 2003-05-15 Solarflex Technologies Inc System and methods for laser assisted deposition
WO2002041363A2 (en) * 2000-11-16 2002-05-23 Solarflex Technologies, Inc. System and methods for laser assisted deposition
WO2002049119A2 (en) * 2000-12-12 2002-06-20 Solarflex Technologies, Inc. Thin film flexible solar cell
WO2002049119A3 (en) * 2000-12-12 2003-01-16 Solarflex Technologies Inc Thin film flexible solar cell
US6548751B2 (en) 2000-12-12 2003-04-15 Solarflex Technologies, Inc. Thin film flexible solar cell
DE102004060737B4 (en) * 2004-12-15 2007-03-08 Degussa Ag Process for the preparation of semiconducting or photovoltaically active films
US7776724B2 (en) 2006-12-07 2010-08-17 Innovalight, Inc. Methods of filling a set of interstitial spaces of a nanoparticle thin film with a dielectric material
WO2008124400A1 (en) * 2007-04-04 2008-10-16 Innovalight, Inc. Methods for optimizing thin film formation with reactive gases
US7572740B2 (en) 2007-04-04 2009-08-11 Innovalight, Inc. Methods for optimizing thin film formation with reactive gases
US8968438B2 (en) 2007-07-10 2015-03-03 Innovalight, Inc. Methods and apparatus for the in situ collection of nucleated particles
US7851336B2 (en) 2008-03-13 2010-12-14 Innovalight, Inc. Method of forming a passivated densified nanoparticle thin film on a substrate
US8273669B2 (en) 2008-03-13 2012-09-25 Innovalight, Inc. Method of forming a passivated densified nanoparticle thin film on a substrate
US8247312B2 (en) 2008-04-24 2012-08-21 Innovalight, Inc. Methods for printing an ink on a textured wafer surface
WO2011089023A3 (en) * 2010-01-19 2012-06-28 Institut Für Photonische Technologien E.V. Method for producing a cadmium telluride solar cell

Also Published As

Publication number Publication date
WO2000046861A1 (en) 2000-08-10
EP1159765A1 (en) 2001-12-05
JP2002536835A (en) 2002-10-29

Similar Documents

Publication Publication Date Title
JP6716637B2 (en) Transparent conductor and method for manufacturing the same
KR102071841B1 (en) Interconnected corrugated carbon-based network
Kwon et al. Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres
EP3347303B1 (en) Method for producing structured surfaces
DE19904082A1 (en) Process for the production of solar cells
CN109911888B (en) Preparation method and application of defect-free disordered-layer stacked graphene nano-film
DE102012107100A1 (en) Enhanced layered solar cell for use in control circuit of power source of e.g. portable, manually transportable apparatus, has upper side photovoltaic layer sequence connected to functional layer sequence of cell for improving current yield
DE102008051921A1 (en) Multilayer system with contact elements and method for creating a contact element for a multilayer system
Khademian et al. Synthesis of CuS nanoparticles by laser ablation method in DMSO media
Kadyrzhanov et al. Modification of structural and conductive properties of Zn nanotubes by irradiation with electrons with an energy of 5 MeV
DE102006005025A1 (en) Production of an electrically conducting transparent layer of sintered particles used for an electronic component in e.g. a display comprises using a liquid composition containing an electrically conducting metal oxide and a dispersant
Zhang et al. Microscale electrohydrodynamic printing of in situ reactive features for patterned ZnO nanorods
Shi et al. Synthesis and characterization of single-crystalline zinc tin oxide nanowires
DE102006005026A1 (en) Electrically conductive transparent coating production of sintered particles involves applying liquid composition with nanoparticles of electrically conductive metal oxide and dispersion agent to substrate
EP3198660B1 (en) Method for applying a protective layer for the fabrication of a semi-finished product
EP2774184A1 (en) Method and device for producing a laser-supported electrically conductive contact of an object surface
Yao et al. Effects of electrodeposition electrolyte concentration on microstructure, optical properties and wettability of ZnO nanorods
He et al. Preparation of vertically aligned two-dimensional SnS2 nanosheet film with strong saturable absorption to femtosecond laser
Abdeltwab et al. Structural, mechanical and electrical properties of sputter-coated copper thin films on polyethylene terephthalate
WO2007076745A1 (en) Method for producing nanostructures on a substrate
DE10321152A1 (en) Method for processing an electroluminescent element and electroluminescent element processed using this method
CN113744929B (en) Preparation method of silver nanowire flexible conductive transparent film
DE102008001578A1 (en) Producing transparent conductive layer, by applying dispersion from transparent conductive oxide nanoparticles on substrate e.g. glass, and partially removing solvent/dispersant from obtained layer and then irradiating with laser energy
DE102020112500A1 (en) Contactless preparation of a carrier film for an electrode of a lithium-ion battery
JP4124298B2 (en) Surface treatment method for conductive polymer material

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee