DE19843600A1 - Improved efficiency internal combustion engine - Google Patents

Improved efficiency internal combustion engine

Info

Publication number
DE19843600A1
DE19843600A1 DE19843600A DE19843600A DE19843600A1 DE 19843600 A1 DE19843600 A1 DE 19843600A1 DE 19843600 A DE19843600 A DE 19843600A DE 19843600 A DE19843600 A DE 19843600A DE 19843600 A1 DE19843600 A1 DE 19843600A1
Authority
DE
Germany
Prior art keywords
cylinder
water
internal combustion
injection
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19843600A
Other languages
German (de)
Inventor
Fritz Kunkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19843600A priority Critical patent/DE19843600A1/en
Publication of DE19843600A1 publication Critical patent/DE19843600A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • F02M25/03Adding water into the cylinder or the pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0227Control aspects; Arrangement of sensors; Diagnostics; Actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/15Heat inputs by exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2280/00Output delivery
    • F02G2280/20Rotary generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

The efficiency of an internal combustion engine is enhanced through two-stage water injection. A first amount of water is injected into a cylinder during the power stroke. This generates steam and increases the thrust on the piston. A second amount of water is injected into the cylinder during the exhaust stroke to cool the cylinder and the gasses in the cylinder. This increases the suction and improves the fuel intake into the cylinder. Additional efficiency is obtained by using the heat from the exhaust gasses to power a Stirling engine which drives a generator.

Description

Der im Patentanspruch 1 angegebenen Erfindung liegt folgendes Problem zugrunde. Der Wirkungsgrad von Verbrennungsmotoren ist sehr niedrig, da nur ein kleiner Teil der chemischen Energie in mechanische Energie umgewandelt wird.The invention specified in claim 1 is based on the following problem. The efficiency of internal combustion engines is very low because only a small part of the chemical energy is converted into mechanical energy.

Durch die Verbrennung des Kraftstoffs wird dem Motor Wärme zugeführt.The combustion of the fuel provides heat to the engine.

Die gesamte Wärmemenge kann nicht vollständig in effektive Leistung umgewandelt werden. Die Auspuffgase und das Kühlwasser enthalten auch bei den besten Maschinen mehr Wärmeenergie, als im Motor nutzbringend verwertet werden kann.The total amount of heat cannot be fully converted into effective power. Exhaust gases and cooling water contain more even on the best machines Thermal energy that can be used in the engine as useful.

Dieses Problem wird durch die im Patentanspruch 1 aufgeführten Merkmale gelöst.This problem is solved by the features listed in claim 1.

Direkt im Anschluß an die Kraftstoffverbrennung (Kolben zwischen oberem und unterem Totpunkt) wird über eine Hochdruckpumpe und ein elektromagnetisch gesteuertes Hochdruck- Einspritzventil, das sich im Zylinderkopf befindet, eine kleine Menge Wasser direkt in den heißen Verbrennungsraum eingesprüht, wodurch das Wasser sofort verdampft und durch Druckerhöhung im Zylinder die indizierte Leistung erhöht wird.Immediately after the fuel combustion (pistons between the upper and lower Dead center) is controlled by a high pressure pump and an electromagnetically controlled high pressure Injector, which is located in the cylinder head, a small amount of water directly into the sprayed into the hot combustion chamber, which causes the water to evaporate immediately Pressure increase in the cylinder the indicated power is increased.

Der Strahl darf nicht zu tief eindringen und nicht auf die Zylinderwand auftreffen, sonst sind Schmierölverdünnungen die Folge, außerdem sollte die Wassereinspritzung erst nach der Warmlaufphase voll einsetzen.The jet must not penetrate too deeply and must not hit the cylinder wall, otherwise Lubricating oil thinning the result, in addition, the water injection should only after the Fully warm-up phase.

Die für die Verdampfung des Wassers nötige Wärme wird örtlich der Ladung, dem Kolbenboden und der Brennraumwand entzogen.The heat necessary for the evaporation of the water is localized to the load, the Piston bottom and the combustion chamber wall removed.

Eine zweite Einspritzung erfolgt nach dem Arbeitstakt, (Kolben am unteren Totpunkt) wodurch sich das Gasgemisch zusammenzieht und somit den Gaswechsel beschleunigt, der Temperaturunterschied wird vergrößert und eine Kühlung des Zylinders wird erreicht. Dadurch wird für den nächsten Takt eine bessere Füllung erreicht. A second injection takes place after the work cycle, (piston at bottom dead center) whereby the gas mixture contracts and thus accelerates the gas exchange that The temperature difference is increased and cooling of the cylinder is achieved. This will result in better filling for the next bar.  

Die zweite Einspritzung dient als Klopfbremse, dadurch ist die Möglichkeit gegeben, die Verdichtung weiter zu erhöhen.The second injection serves as a knocking brake, which makes it possible to Further increase compression.

Ein weiterer Teil der Energie wird durch Wärme-Kraftkopplung mit einem in den Abgasstrom geschalteten Stirlingmotor, der die Lichtmaschine antreibt, in elektrische Energie umgewandelt.Another part of the energy is generated by thermal power coupling with an in the exhaust gas stream switched Stirling engine that drives the alternator into electrical energy converted.

Der Verbrennungsmotor treibt nur die Steuerungsaggregate an.The internal combustion engine only drives the control units.

Alle anderen Aggregate werden von je einem eigenen Elektromotor angetrieben.All other units are each driven by their own electric motor.

Die mit der Erfindung erzielten Vorteile bestehen darin, daß der Wirkungsgrad des Verbrennungsmotors erhöht wird und somit bei gleicher Leistung Kraftstoff eingespart wird. Die Nebenaggregate verbrauchen nicht ständig Antriebsenergie.The advantages achieved by the invention are that the efficiency of the Internal combustion engine is increased and thus fuel is saved with the same power. The auxiliary units do not constantly consume drive energy.

Das Verfahren läßt sich auch an konventionellen Otto- und Dieselmotoren nachträglich installieren.The process can also be retrofitted to conventional gasoline and diesel engines to install.

Claims (1)

Verfahren zur Verminderung des Kraftstoffverbrauchs von Verbrennungsmotoren mit Abwärmenutzung durch einen Stirlingmotor und zweifacher Wassereinspritzung, dadurch gekennzeichnet, daß direkt im Anschluß an die Kraftstoffverbrennung (Kolben zwischen oberem und unterem Totpunkt) über eine Hochdruckpumpe und ein elektromagnetisch gesteuertes Hochdruck-Einspritzventil, das sich im Zylinderkopf befindet, eine kleine Menge Wasser direkt in den heißen Verbrennungsraum eingesprüht wird, wodurch das Wasser sofort verdampft und durch Druckerhöhung im Zylinder die indizierte Leistung erhöht wird.
Die für die Verdampfung des Wassers nötige Wärme wird örtlich der Ladung, dem Kolbenboden und der Brennraumwand entzogen.
Die zweite Einspritzung erfolgt nach dem Arbeitstakt, (Kolben am unteren Totpunkt) wodurch sich das Gasgemisch zusammenzieht und somit den Gaswechsel beschleunigt, der Temperaturunterschied wird vergrößert und eine Kühlung des Zylinders wird erreicht.
Dadurch wird für den nächsten Takt eine bessere Füllung erreicht.
Die zweite Einspritzung dient als Klopfbremse.
Dadurch ist die Möglichkeit gegeben, die Verdichtung weiter zu erhöhen.
Ein weiterer Teil der Energie wird durch Wärme-Kraftkopplung mit einem in den Abgasstrom geschalteten Stirlingmotor, der die Lichtmaschine antreibt, in elektrische Energie umgewandelt.
Der Verbrennungsmotor treibt nur die Steuerungsaggregate an.
Alle anderen Aggregate werden von je einem eigenen Elektromotor angetrieben.
Process for reducing the fuel consumption of internal combustion engines with waste heat utilization by a Stirling engine and double water injection, characterized in that directly after the fuel combustion (piston between top and bottom dead center) via a high pressure pump and an electromagnetically controlled high pressure injection valve, which is located in the cylinder head , a small amount of water is sprayed directly into the hot combustion chamber, which means that the water evaporates immediately and the indicated power is increased by increasing the pressure in the cylinder.
The heat required for the evaporation of the water is extracted locally from the load, the piston crown and the combustion chamber wall.
The second injection takes place after the work cycle (piston at bottom dead center) which causes the gas mixture to contract and thus accelerate the gas exchange, the temperature difference is increased and cooling of the cylinder is achieved.
This will result in better filling for the next bar.
The second injection serves as a knocking brake.
This gives the possibility to further increase the compression.
Another part of the energy is converted into electrical energy by thermal power coupling with a Stirling engine connected to the exhaust gas stream, which drives the alternator.
The internal combustion engine only drives the control units.
All other units are each driven by their own electric motor.
DE19843600A 1998-09-23 1998-09-23 Improved efficiency internal combustion engine Withdrawn DE19843600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19843600A DE19843600A1 (en) 1998-09-23 1998-09-23 Improved efficiency internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19843600A DE19843600A1 (en) 1998-09-23 1998-09-23 Improved efficiency internal combustion engine

Publications (1)

Publication Number Publication Date
DE19843600A1 true DE19843600A1 (en) 1999-03-04

Family

ID=7881952

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19843600A Withdrawn DE19843600A1 (en) 1998-09-23 1998-09-23 Improved efficiency internal combustion engine

Country Status (1)

Country Link
DE (1) DE19843600A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617680B1 (en) 2006-08-28 2009-11-17 Cool Energy, Inc. Power generation using low-temperature liquids
US7694514B2 (en) 2007-08-08 2010-04-13 Cool Energy, Inc. Direct contact thermal exchange heat engine or heat pump
US7805934B1 (en) 2007-04-13 2010-10-05 Cool Energy, Inc. Displacer motion control within air engines
US7810330B1 (en) 2006-08-28 2010-10-12 Cool Energy, Inc. Power generation using thermal gradients maintained by phase transitions
US7877999B2 (en) 2007-04-13 2011-02-01 Cool Energy, Inc. Power generation and space conditioning using a thermodynamic engine driven through environmental heating and cooling
DE102009050583A1 (en) 2009-10-24 2011-08-04 Peter Prof. Dr. Ing. habil. 58708 Langbein Device for mechanical or electrical power production of thermal energy, particularly waste heat of gaseous mediums, has cabinet of device divided by partition wall into two different temperature ranges
DE102010032777A1 (en) 2010-07-29 2012-02-02 Peter Langbein Device for obtaining electrical or mechanical energy from thermal energy, particularly for using waste heat from internal combustion engine and power plant, has shape memory element connected with actuating element and arranged in housing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617680B1 (en) 2006-08-28 2009-11-17 Cool Energy, Inc. Power generation using low-temperature liquids
US7810330B1 (en) 2006-08-28 2010-10-12 Cool Energy, Inc. Power generation using thermal gradients maintained by phase transitions
US7805934B1 (en) 2007-04-13 2010-10-05 Cool Energy, Inc. Displacer motion control within air engines
US7877999B2 (en) 2007-04-13 2011-02-01 Cool Energy, Inc. Power generation and space conditioning using a thermodynamic engine driven through environmental heating and cooling
US8539771B2 (en) 2007-04-13 2013-09-24 Cool Energy, Inc. Power generation and space conditioning using a thermodynamic engine driven through environmental heating and cooling
US7694514B2 (en) 2007-08-08 2010-04-13 Cool Energy, Inc. Direct contact thermal exchange heat engine or heat pump
DE102009050583A1 (en) 2009-10-24 2011-08-04 Peter Prof. Dr. Ing. habil. 58708 Langbein Device for mechanical or electrical power production of thermal energy, particularly waste heat of gaseous mediums, has cabinet of device divided by partition wall into two different temperature ranges
DE102009050583B4 (en) * 2009-10-24 2015-05-28 Peter Langbein Device for mechanical or electrical energy production from thermal energy
DE102010032777A1 (en) 2010-07-29 2012-02-02 Peter Langbein Device for obtaining electrical or mechanical energy from thermal energy, particularly for using waste heat from internal combustion engine and power plant, has shape memory element connected with actuating element and arranged in housing

Similar Documents

Publication Publication Date Title
US6095100A (en) Combination internal combustion and steam engine
RU2082891C1 (en) Internal combustion engine and method of its operation
US5339632A (en) Method and apparatus for increasing the efficiency of internal combustion engines
US20070022977A1 (en) Method and apparatus for operating an internal combustion engine
US3918263A (en) Hydrogen-fueled internal-combustion and steam engine power plant
CN1258337A (en) Internal combustion engine
US4706462A (en) Method for driving an engine
US1384133A (en) Internal-combustion engine
DE19843600A1 (en) Improved efficiency internal combustion engine
WO2007118435A1 (en) Combustion engine with direct water injection
US4976226A (en) Method for increasing the heat efficiency of a piston combustion engine
WO1998021456A1 (en) Air-cooled self-supercharging four stroke internal combustion engine
US4599863A (en) Compound internal combustion and external combustion engine
DE2440659A1 (en) Reciprocating piston steam engine - has water injected in cylinder and steam generated within cylinder working space
US1830197A (en) Internal combustion engine
DE10257943A1 (en) Valve controller for 4-stroke axial piston internal combustion engine without valve adjustment, especially for force-heat coupling for power plant, has camshaft wheel with variable valve control times
DE19625449A1 (en) Combination connection method for diesel engines
JPH0759888B2 (en) Water-injected adiabatic ceramic diesel engine
US1119432A (en) Internal-combustion engine.
CN2467802Y (en) Two-piston one cylinder internal combustion engine for vehicle use
EP0142559A1 (en) Internal combustion engine
DE2402826A1 (en) Improving arrangement for I.C. engine efficiency - using steam cycles from waste heat from combustion, in additional cylinders
GB2361265A (en) I.c. engine with steam power stroke
RU2009339C1 (en) Method of operating internal combustion engine
KR20230073220A (en) Mono-Block Reciprocating Piston Combined ICE/ORC Power Plant

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licences declared
8130 Withdrawal