DE19650183A1 - Method for utilising high temperature waste heat in combined heat and power generation - Google Patents

Method for utilising high temperature waste heat in combined heat and power generation

Info

Publication number
DE19650183A1
DE19650183A1 DE19650183A DE19650183A DE19650183A1 DE 19650183 A1 DE19650183 A1 DE 19650183A1 DE 19650183 A DE19650183 A DE 19650183A DE 19650183 A DE19650183 A DE 19650183A DE 19650183 A1 DE19650183 A1 DE 19650183A1
Authority
DE
Germany
Prior art keywords
heat
waste heat
machine
absorber
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19650183A
Other languages
German (de)
Other versions
DE19650183C2 (en
Inventor
Herbert Prof Dr Ing Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technologie-Beratungs-Institut 19061 Schweri GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19650183A priority Critical patent/DE19650183C2/en
Publication of DE19650183A1 publication Critical patent/DE19650183A1/en
Application granted granted Critical
Publication of DE19650183C2 publication Critical patent/DE19650183C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The method augments the normal absorption circuit, comprising pump, absorber, expansion valve and extractor, by a parallel heat pump circuit recovering mechanical and electrical energy in block heating systems. The exhaust gas from a block heating system gas engine (2) passes through an extractor (3) of the absorption circuit and adds ammonia, through a pipe (b), to the condenser (7) expansion valve (9) and evaporator (10) of the heat pump circuit, as well as through pipe (c) to compressor (1). The absorption cycle is completed by passing the gas through an absorber (5) and condenser (6). Heat may be used through a heat exchanger (11), heating system (12) and circulation pump (13). In winter the compressor is not used and in summer electrical power is supplied by a generator (8) and the compressor is employed.

Description

Anwendungsgebiet der ErfindungField of application of the invention

Abwärme tritt in praktisch allen menschlichen Lebensbereichen auf, die Nutzung der Abwärme ist deshalb ein Hauptweg der rationellen Energieverwendung.Waste heat occurs in practically all areas of human life, the use of waste heat is therefore a main way of using energy efficiently.

Die Erfindung
The invention

  • - betrifft eine Anlage, die die der anfallenden höher temperierten Abwärme innewohnenden Nutzungspotenzen möglichst umfassend ausnutzen kann;- relates to a system that contains the waste heat generated at a higher temperature Can make full use of potential use;
  • - ist immer dann anwendbar, wenn stark schwankende Nutzungsbedingungen für Abwärme vorliegen, z. B. Sommer- und Wintersituation infolge der jahreszeitlichen Klimaschwankungen- is always applicable when there are strongly fluctuating conditions of use for waste heat are present, e.g. B. Summer and winter situation due to the seasonal Climate fluctuations
  • - ermöglicht vorteilhafte Rückwirkungen auf die abwärmeliefernde Hauptanlage, z. B. die Verlängerung derer Benutzungsdauer.- Allows advantageous repercussions on the main system supplying waste heat, e.g. B. the extension of their service life.

Diese Bedingungen treffen insbesondere zu, wenn die Abwärme im Rahmen der dezentralen Kraft-Wärme-Kopplung, z. B. mit Blockheizkraftwerken (BHKW) entsteht.These conditions apply in particular if the waste heat is decentralized Combined heat and power, e.g. B. with combined heat and power plants (CHP).

Charakteristik der bekannten technischen LösungenCharacteristic of the known technical solutions

Bekanntermaßen gibt es infolge des II. Hauptsatzes der Thermodynamik unterschiedliche Ab­ wärmenutzungsmethoden, vor allem sind zu nennen
As is known, there are different methods of heat use as a result of the II. Law of thermodynamics, especially to be mentioned

  • - die Nutzung von Wärmeübertragern (WÜ) bei sinkendem Temperaturniveau der zu nutzen­ den Wärme- The use of heat exchangers (WÜ) to use when the temperature level drops the warmth
  • - die Nutzung von Wärmepumpen (WPP) zwecks Erhöhung des Temperaturniveaus der zu nutzenden Abwärme- The use of heat pumps (WPP) to increase the temperature level of the utilizing waste heat
  • - die Nutzung von Wärmekraftprozessen zur (anteiligen) Umwandlung der Wärme in wertvol­ lere mechanische/elektrische Energie.- the use of thermal power processes for the (proportional) conversion of heat into valuable mechanical / electrical energy.

Der exergetische Wert der Abwärmenutzung steigt in der genannten Reihenfolge, deshalb ist die Rückgewinnung mechanischer/elektrischer Arbeit aus der Abwärme ein Schwerpunkt der erfinderischen Tätigkeit wie in US-Patent 43 42 201 am Beispiel der Verdichterabwärmenut­ zung umfassend dargestellt.The exergetic value of waste heat utilization increases in the order mentioned, which is why the recovery of mechanical / electrical work from the waste heat is a focus of the inventive activity as in US Patent 43 42 201 using the example of the compressor waste heat comprehensively presented.

Bekannt ist, daß Wärmekraftprozesse mit Wärme von niedriger Temperatur, wie bei Abwärme i. allg. vorliegend, nur schwer wirtschaftlich akzeptabel gestaltet werden können. Das liegt einerseits an den gegenüber Wasserdampf komplizierter handhabbaren Arbeitsmedien wie beim sog. ORC-Prozeß und anderseits an den verwendeten Arbeitsmaschinen, i. allg. Turbinen, was darauf hinweist, auch neuere Vorschläge für Wärmekraftanlagen wie z. B. nach OS DE 43 04 423 A1 zu betrachten.It is known that thermal power processes with heat of low temperature, such as waste heat i. generally present, can be designed only with difficulty economically acceptable. It lies on the one hand on the working media, which are more complicated to handle than water vapor, as with So-called ORC process and on the other hand on the machines used, i. general turbines what points out also recent proposals for thermal power plants such. B. according to OS DE 43 04 423 A1 consider.

Bekannt ist weiterhin, daß die Nutzung von Wärmeübertragern einfach und deshalb billig ist, der wegen des sinkenden Temperaturniveaus die Zahl der Nutzungsfalle für die Abwärme ebenfalls sinkt. Weiterhin ist bekannt, daß Wärmepumpen einen hohen apparativen wie auch Betriebsaufwand erfordern. Letzterer ist
It is also known that the use of heat exchangers is simple and therefore inexpensive, which also reduces the number of use cases for the waste heat because of the falling temperature level. It is also known that heat pumps require a high level of equipment and operation. The latter is

  • - im Falle der Kompressionswärmepumpen teure mechan. Antriebsenergie- In the case of compression heat pumps, expensive mechan. Drive energy
  • - im Falle der Absorptionswärmepumpen wertvolle Hochtemperaturwärme.- Valuable high-temperature heat in the case of absorption heat pumps.

Dieser Nachteil kann gemildert werden, wenn die mechan. oder thermische Antriebsenergie nicht als Fremdenergie von außerhalb gestellt werden muß, sondern in der Gesamtanlage selbst aufgebracht werden kann. Ein bekanntes Beispiel dafür ist der Antrieb von Wärmepumpen mit Gasmotoren. Der Einsatz aller genannten Abwärmenutzungsaggregate erhöht die Anlageko­ sten der Gesamtanlage. Es ist bekannt, daß die Rentabilität solcher Anlage wesentlich von der Benutzungsdauer abhängt, die ihrerseits bei klimaabhängigen Nutzungsanforderungen von die­ sen bestimmt wird. Ein bekanntes Beispiel ist der Betrieb von Blockheizkraftwerken zur dezen­ tralen Wärme- und Stromerzeugung. Bei Nutzung der Wärme für Raumheizprozesse entfällt diese Wärmenutzungsart im Sommer und macht dann eine alleinige dezentrale Stromerzeugung unwirtschaftlich.This disadvantage can be alleviated if the mechan. or thermal drive energy does not have to be provided as external energy from outside, but in the overall system itself can be applied. A well-known example of this is the drive of heat pumps Gas engines. The use of all the waste heat recovery units mentioned increases the system cost most of the entire system. It is known that the profitability of such a plant is significantly different from that Duration of use, which in turn depends on the climate-dependent usage requirements sen is determined. A well-known example is the operation of combined heat and power plants central heat and power generation. There is no need to use the heat for space heating processes this type of heat use in summer and then makes only decentralized electricity generation uneconomical.

Eine bekannte Maßnahme zur Abhilfe ist das Finden anderer Wärmenutzer im Sommer, z. B. durch Absorptionskühlung. Nachteilig ist hierbei, daß der Energieproduzent von externen Be­ dingungen abhängt, die er nicht selbst beeinflussen kann.A known measure to remedy this is to find other heat users in summer, e.g. B. by absorption cooling. The disadvantage here is that the energy producer from external loading depends on conditions that he cannot influence himself.

Darstellung der ErfindungPresentation of the invention

Der in den Patentansprüchen formulierten Erfindung liegt das Problem zugrunde, die Ausnut­ zung der Abwärme dadurch zu optimieren, daß bei hoher exergetischer Qualität der Abwärme­ nutzung die Anlagenbenutzungsdauer der Haupt und Hilfsaggregate gesteigert wird bei ver­ gleichsweise nur gering steigendem appativem Aufwand.The invention formulated in the claims is based on the problem, the groove optimization of the waste heat by the fact that with high exergetic quality of the waste heat usage the system service life of the main and auxiliary units is increased at ver likewise, only slightly increasing expenditure on equipment.

Zur Erreichung dieses Ziels folgt als Aufgabe die Gestaltung einer Abwärmenutzungsanlage, mit der unter verschiedenen Nutzungsbedingungen (z. B. Sommer- und Winterbetrieb) ver­ schiedene möglichst aus der Anlage selbst heraus formulierbare Nutzungszwecke erreicht wer­ den können, wobei apparative Anlagenbestandteile möglichst weitgehend in allen Nutzungsfäl­ len zum Einsatz kommen sollen.To achieve this goal, the task is to design a waste heat recovery system, with the under different conditions of use (e.g. summer and winter operation) Different uses that can be formulated as far as possible from the system itself that can, with equipment components as far as possible in all cases of use len should be used.

Erfindungsgemäß wird diese Aufgabe durch gekoppelte Einbeziehung des Absorptionswärme­ pumpen- und Wärmekraftmaschinenprinzips wie folgt gelöst:According to the invention, this object is achieved by coupling the absorption heat Pump and heat engine principles solved as follows:

Der Exergieanteil der Abwärme begründet die Nutzung der Abwärme als Austreiberenergie eines Exsorbers eines Absorptionskreislaufes, bestehend aus Absorber, Lösungspumpe, Exsor­ ber und Entspannungsventil.The exergy portion of the waste heat justifies the use of the waste heat as expulsion energy of an absorber of an absorption circuit, consisting of absorber, solution pump, exor About and relief valve.

Das auf diese Weise exsorbierte, verdichtete Arbeitsgas des Absorptionskreislaufes wird wahlweise
The compressed working gas of the absorption circuit that is thus absorbed becomes optional

  • I) dem Verflüssiger eines üblichen Wärmepumpenkreislaufes, bestehend aus Verflüssiger, Expansionsventil und Verdampfer,I) the condenser of a conventional heat pump cycle, consisting of a condenser, Expansion valve and evaporator,
  • II) der Expansionsmaschine zum mechanischen Antrieb eines Arbeitsaggregates, z. B. elektri­ schen Generators zugeführt.II) the expansion machine for the mechanical drive of a work unit, for. B. electrical generator fed.

Im Falle I erhöht sich durch den Wärmepumpeneffekt die nutzbare Wärme, die Anlage fungiert - gemessen an der Abwärmemenge - als Wärmemengenvervielfacher.In case I the usable heat increases due to the heat pump effect, the system functions - measured by the amount of waste heat - as a heat multiplier.

Im Fall II wird in praktischer Konsequenz die Abwärme in nutzbare mechan. Energie verwan­ delt.In case II, the waste heat is converted into usable mechan. Energy wasted delt.

Prinzipiell können die Fälle I und II zeitlich parallel oder in Folge zur Ausführung kommen. Im Interesse einer effektiven Energieumwandlung wird als Expansionsmaschine ein Flügelzel­ lenaggregat wie in OS DE 43 04 423 A1 vorgeschlagen.In principle, cases I and II can be carried out in parallel or in succession. In the interest of an effective energy conversion, a wing tent is used as an expansion machine lenaggregat as proposed in OS DE 43 04 423 A1.

Variationen in der technischen Detailgestaltung ergeben sich aus ggf. möglichen weiteren technischen Kopplungen mit dem Abwärmespenderaggregat ähnlich den Vorschlägen in US 43 42 201. Variations in the technical detail design result from possible further ones technical coupling with the waste heat donor unit similar to the suggestions in US 43 42 201.  

AusführungsbeispielEmbodiment

Fig. 1 Abwärmeverwertungsanlage zur Optimierung der Nutzung der Motorabwärme in BHKW. Fig. 1 waste heat recovery system to optimize the use of engine waste heat in CHP.

Das Ausführungsbeispiel zeigt eine erfindungsgemäße Anlage mit integrierter Expansionsma­ schine 1 und Absorptionskälteanlage zur Gewinnung von mechanischer/elektrischer Energie. Die heißen, durch die Verbindungsleitungen a transportierten Abgase eines BHKW-Gasmotors 2 werden dem Austreiber (Exsorber) 3 eines Absorptionskreislaufes zugeführt und bewirken in bekannter Weise eine Austreibung des gelösten Gas (z. B. Ammoniak NH3),
The embodiment shows a system according to the invention with integrated expansion machine 1 and absorption refrigeration system for the production of mechanical / electrical energy. The hot exhaust gases of a CHP gas engine 2 transported through the connecting lines a are fed to the expeller (exsorber) 3 of an absorption circuit and, in a known manner, cause the dissolved gas (eg ammonia NH 3 ) to be expelled,

  • - welches über die Leitungen b nach Passieren von Verflüssiger 7, Expansionsventil 9 und Verdampfer 10 (Fall I) und/oder- Which via lines b after passing through the condenser 7 , expansion valve 9 and evaporator 10 (case I) and / or
  • - das über die Leitungen c nach Passieren der Entspannungsmaschine 1 (Fall II)- This over the lines c after passing the relaxation machine 1 (case II)

zum Absorber to the absorber

55

des Absorptionskreislaufes zurückgeführt wird. Durch Entspannungsventil of the absorption cycle is returned. Through expansion valve

44th

und Lösungsmittelpumpe and solvent pump

66

wird der Absorptionskreislauf in bekannter Weise vervollständigt. Die im Absorber the absorption cycle is completed in a known manner. The one in the absorber

55

und Verflüssiger and condenser

77

gewinnbaren Wärmemengen können zusammen mit der im Wärmeübertrager recoverable amounts of heat can be combined with the in the heat exchanger

1111

gewinnbaren Wärme in einem Wärmeverbraucher bzw. Wärmever­ brauchersystem recoverable heat in a heat consumer or heat supply user system

1212th

genutzt werden. Durch Umwälzpumpe be used. By circulation pump

1313

wird der Wärmeträgerkreislauf d) geschlossen. Fall I entspricht dem reinen Winterbetrieb mit hohem Wärmebedarf, die Ent­ spannungsmaschine becomes the heat transfer circuit d) closed. Case I corresponds to pure winter operation with high heat requirements, the Ent voltage machine

11

ist außer Betrieb. Fall II entspricht dem reinen Sommerbetrieb mit dem Schwerpunkt der Erzeugung von elektrischer Energie über Generator is out of order. Case II corresponds to the pure summer operation with the Main focus of the generation of electrical energy via generator

88th

. Entsp. Maschine . Relax machine

11

ist jetzt in Betrieb, Apparate is now in operation, apparatus

77

, ,

99

, ,

1010th

sind außer Betrieb. Zur Absicherung der Motorkühlung (Öl, Kühlwasser) kann in bekannter Weise eine Rückkühlvorrichtung are out of order. To protect the engine cooling (oil, Cooling water) can be a recooling device in a known manner

1414

, parallel zu , parallel to

1212th

, erforderlich sein. Mischbetrieb zwischen I und II ist möglich und in der Übergangsjahreszeit dominierend. Für die Aggregate , required be. Mixed operation between I and II is possible and dominant in the transition season. For the aggregates

22nd

. . . . . .

88th

ergibt sich dadurch eine ganzjährige Nutzungsdauer sowie für die Ag­ gregate this results in a year-round useful life as well as for the Ag gregate

77

, ,

99

, ,

1010th

infolge des Parallelbetriebs ein hoher jährlicher Betriebsstundenanteil. Für wär­ megeführte BHKW bedeutet das, einen höheren Wärmeleistungsanteil des Gesamtwärmebe­ darfs über das BHKW abdecken zu können, im Extrem bis zum Wegfall sonst nötiger Spitzen­ heizkesselanlagen.due to the parallel operation, a high proportion of annual hours of operation. For would This leads to a higher heat output share of the total heat should be able to cover it via the CHP, in extreme cases until the otherwise necessary peaks are eliminated boiler systems.

Ergänzende Hinweise:
Der Wärmeübertrager 11 zur Nutzung der Kühlwasserwärme des Motors kann in den Kreislauf d in Reihe wie in Fig. 1 oder parallel zu Apparat 5 und 7 eingebaut werden.
Additional information:
The heat exchanger 11 for utilizing the cooling water heat of the engine can be installed in the circuit d in series as in FIG. 1 or parallel to apparatus 5 and 7 .

Eine Vergrößerung der gewinnbaren Arbeit bei Fehlen von Wärmeverbrauchern (Sommer!) durch Senkung des Kondensationsdruckes gegenüber Heizkraftbetrieb wie bei Dampfturbinen­ anlagen ist infolge der andersartigen Kraft-Wärme-Kopplung in BHKW nicht möglich, so daß Apparat 1 für einen entsprechenden Arbeitsgewinn unverzichtbar ist.An increase in the amount of work that can be achieved in the absence of heat consumers (summer!) By lowering the condensation pressure compared to heating power operation as in steam turbine systems is not possible due to the different type of combined heat and power in CHP units, so that apparatus 1 is essential for a corresponding gain in work.

Die Anlage nach Fig. 1 zeigt das Prinzipielle, für spezielle Ausführungsfalle sind bekannte Maßnahmen zur Steigerung der energetischen Effektivität, z. B. Einbau von Temperaturwechs­ lern in den Absorptionskreislauf oder stufenartige Aufteilung der Wärmeübertrager zur Reali­ sierung von Temperaturkaskaden, vorzusehen.The system of Fig. 1 shows the principle, for special execution cases known measures to increase the energy efficiency, z. B. Installation of temperature change learners in the absorption circuit or step-like distribution of the heat exchanger for realizing temperature cascades.

Claims (3)

1. Abwärmeverwertungsanlage zur exergetisch optimierten Nutzung von höher temperierter Abwärme, enthaltend einen in bekannter Weise konfigurierten kältetechnischen Absorpti­ onskreislauf, dadurch gekennzeichnet, daß eine Expansionsmaschine zur Gewinnung von mechanischer Energie und eine kältetechnische Aggregatekette aus Verflüssiger, Expansi­ onsventil und Verdampfer zueinander parallel an den mit der Abwärme beheizten Desorber (Exsorber) und an den Absorber des Absorptionskreislaufs angeschlossen werden, so daß ein gleichzeitiges oder alternierendes Durchfließen beider Stränge durch das kältetechnische Arbeitsmedium möglich wird.1. waste heat recovery system for the exergetically optimized use of higher temperature waste heat, containing a refrigeration absorption circuit configured in a known manner, characterized in that an expansion machine for the extraction of mechanical energy and a refrigeration aggregate chain from condenser, expansion valve and evaporator to each other in parallel with the Waste heat heated desorber (Exsorber) and connected to the absorber of the absorption circuit, so that a simultaneous or alternating flow of both strands through the refrigeration working medium is possible. 2. Anlage nach Anspruch 1 und 2 sowie gekoppelt mit einem nach der Kraft-Wärme-Kopplung arbeitenden Abwärmespender, dadurch gekennzeichnet, daß die Kraftabnahme von der Expansionsmaschine getrennt oder mechanisch starr gekoppelt mit der des Kraft-Wärme- Kopplungsaggregates erfolgt.2. Plant according to claim 1 and 2 and coupled with one after the cogeneration working waste heat dispenser, characterized in that the decrease in power from the Expansion machine separately or mechanically rigidly coupled with that of the combined heat and power Coupling unit takes place. 3. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß die Expansionsmaschine als Tur­ bine oder als Kolbenmaschine, insbes. Flügelzellenmaschine ausgeführt sein kann.3. Plant according to claim 1, characterized in that the expansion machine as a door bine or as a piston machine, esp. Vane machine.
DE19650183A 1996-12-04 1996-12-04 Waste heat recovery system for higher temperature waste heat Expired - Fee Related DE19650183C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19650183A DE19650183C2 (en) 1996-12-04 1996-12-04 Waste heat recovery system for higher temperature waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19650183A DE19650183C2 (en) 1996-12-04 1996-12-04 Waste heat recovery system for higher temperature waste heat

Publications (2)

Publication Number Publication Date
DE19650183A1 true DE19650183A1 (en) 1998-06-10
DE19650183C2 DE19650183C2 (en) 2003-07-17

Family

ID=7813550

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19650183A Expired - Fee Related DE19650183C2 (en) 1996-12-04 1996-12-04 Waste heat recovery system for higher temperature waste heat

Country Status (1)

Country Link
DE (1) DE19650183C2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845739A1 (en) * 1998-10-05 2000-04-06 Abb Patent Gmbh Thermal power station with liquid or gas solution, has heat exchangers in pressure buffer, collection containers with media for alternate solution heating, heating solution as required, and cooling solution
WO2001015240A2 (en) * 1999-08-26 2001-03-01 Gesalfina Ag Power-heat-cold-coupling method and power unit for carrying out said method
EP1281856A1 (en) 2001-08-03 2003-02-05 ELZET ELEKTROTECHNIK GmbH Process for producing electrical energy
DE10231265A1 (en) * 2002-07-10 2004-01-22 Enginion Ag absorption heat pump
WO2004077586A2 (en) * 2003-02-27 2004-09-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and installation for the combined generation of power, heat and/or cold from pollutant-laden hot gases with integrated gas purification
US7017357B2 (en) * 2003-11-18 2006-03-28 Carrier Corporation Emergency power generation system
DE102011122271A1 (en) * 2011-12-23 2013-06-27 Interimo GmbH Power plant arrangement for producing energy for building, has low temperature or cooling power plant operating with cyclic process and including evaporator thermally coupled with low caloric waste heat flow of combined heat and power plant
DE202014003201U1 (en) 2014-04-15 2015-04-16 Stefan Ritscher Device for cooling
DE102020205166B3 (en) * 2020-04-23 2021-05-06 Bayerisches Zentrum für Angewandte Energieforschung e.V. Heat exchange device with sorption device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361318A1 (en) * 2003-12-19 2005-07-28 Engelmann, Solar Seawater desalination unit has a mechanical vapor condenser working in conjunction with an expansion chamber and condenser
CN104930748B (en) * 2015-07-14 2017-07-28 华电分布式能源工程技术有限公司 A kind of fume hot-water type lithium bromide heat-exchange system
CN105905873A (en) * 2016-04-22 2016-08-31 中国瑞林工程技术有限公司 Technology for producing water by using low temperature waste heat and for recycling low temperature waste heat

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2703551A1 (en) * 1977-01-27 1978-08-03 Energy saving for compressor stations in gas pipelines - uses absorption refrigerator in front of IC engine driven compressor
DE2710533A1 (en) * 1977-03-10 1978-09-14 Motorheizung Gmbh Diesel generator set with exhaust gas turbine - has screw compressor driven in heat pump circuit
EP0003980A1 (en) * 1978-03-13 1979-09-19 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Thermal energy storage device
DE2923049A1 (en) * 1979-06-07 1980-12-11 Brunn Gmbh & Co Kg Waste heat recovery system for IC engine - has absorption refrigerator combined with hot air turbine for space economy
US4342201A (en) * 1980-02-19 1982-08-03 Kawasaki Jukogyo Kabushiki Kaisha Energy recovery apparatus for a gas compressor plant
DE3140013C2 (en) * 1981-10-08 1986-06-19 Fried. Krupp Gmbh, 4300 Essen Method and device for utilizing exhaust steam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4304423C2 (en) * 1993-02-13 2001-11-29 Irm Antriebstech Gmbh Heat engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2703551A1 (en) * 1977-01-27 1978-08-03 Energy saving for compressor stations in gas pipelines - uses absorption refrigerator in front of IC engine driven compressor
DE2710533A1 (en) * 1977-03-10 1978-09-14 Motorheizung Gmbh Diesel generator set with exhaust gas turbine - has screw compressor driven in heat pump circuit
EP0003980A1 (en) * 1978-03-13 1979-09-19 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Thermal energy storage device
DE2923049A1 (en) * 1979-06-07 1980-12-11 Brunn Gmbh & Co Kg Waste heat recovery system for IC engine - has absorption refrigerator combined with hot air turbine for space economy
US4342201A (en) * 1980-02-19 1982-08-03 Kawasaki Jukogyo Kabushiki Kaisha Energy recovery apparatus for a gas compressor plant
DE3140013C2 (en) * 1981-10-08 1986-06-19 Fried. Krupp Gmbh, 4300 Essen Method and device for utilizing exhaust steam

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845739A1 (en) * 1998-10-05 2000-04-06 Abb Patent Gmbh Thermal power station with liquid or gas solution, has heat exchangers in pressure buffer, collection containers with media for alternate solution heating, heating solution as required, and cooling solution
WO2001015240A2 (en) * 1999-08-26 2001-03-01 Gesalfina Ag Power-heat-cold-coupling method and power unit for carrying out said method
WO2001015240A3 (en) * 1999-08-26 2001-12-27 Gesalfina Ag Power-heat-cold-coupling method and power unit for carrying out said method
EP1281856A1 (en) 2001-08-03 2003-02-05 ELZET ELEKTROTECHNIK GmbH Process for producing electrical energy
DE10138181A1 (en) * 2001-08-03 2003-02-27 Elzet Elektrotechnik Gmbh Process for generating electric current
DE10231265A1 (en) * 2002-07-10 2004-01-22 Enginion Ag absorption heat pump
WO2004077586A2 (en) * 2003-02-27 2004-09-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and installation for the combined generation of power, heat and/or cold from pollutant-laden hot gases with integrated gas purification
WO2004077586A3 (en) * 2003-02-27 2004-11-18 Fraunhofer Ges Forschung Method and installation for the combined generation of power, heat and/or cold from pollutant-laden hot gases with integrated gas purification
US7017357B2 (en) * 2003-11-18 2006-03-28 Carrier Corporation Emergency power generation system
DE102011122271A1 (en) * 2011-12-23 2013-06-27 Interimo GmbH Power plant arrangement for producing energy for building, has low temperature or cooling power plant operating with cyclic process and including evaporator thermally coupled with low caloric waste heat flow of combined heat and power plant
DE202014003201U1 (en) 2014-04-15 2015-04-16 Stefan Ritscher Device for cooling
DE102020205166B3 (en) * 2020-04-23 2021-05-06 Bayerisches Zentrum für Angewandte Energieforschung e.V. Heat exchange device with sorption device
EP3901535A1 (en) 2020-04-23 2021-10-27 Bayerisches Zentrum für Angewandte Energieforschung e. V. Heat exchange device with sorption device

Also Published As

Publication number Publication date
DE19650183C2 (en) 2003-07-17

Similar Documents

Publication Publication Date Title
DE60315823T2 (en) METHOD AND DEVICE FOR GENERATING ELECTRICITY FROM THE HEAT AT THE CORE OF AT LEAST ONE HIGH-TEMPERATURE CORE REACTOR
EP1591644B1 (en) Device for the exploitation of waste heat from compressors
DE4410440C2 (en) Compressed air energy storage process and system
DE19650183C2 (en) Waste heat recovery system for higher temperature waste heat
DE10335143B4 (en) Method for increasing the efficiency of a gas turbine plant and suitable gas turbine plant
EP0079624A2 (en) Gas turbine power station with an air storage system
DD149251A5 (en) METHOD AND DEVICE FOR RECOVERING THE HEAT ENERGY IN A CHARGED INTERNAL COMBUSTION ENGINE
DE102010042792A1 (en) System for generating mechanical and / or electrical energy
DE2838389A1 (en) METHOD FOR GENERATING HEAT ENERGY BY COMBINING THE POWER AND HEAT COUPLING WITH THE HEAT PUMP
DE102009026302A1 (en) A waste heat recovery system for a turbomachine and method for operating a steam waste heat recovery system for a turbomachine
EP1038094B1 (en) Multistep steam power operating method for generating electric power in a cycle and device for the implementation thereof
DE3447879A1 (en) METHOD FOR CARRYING OUT A COUPLED HEAT AND POWER GENERATION, ESPECIALLY IN INDUSTRIAL POWER PLANTS
DE2605527A1 (en) Thermal power station using fossil fuel - has steam turbine and storage tank in hot water circuit parallel to heat consumer
EP2561276A2 (en) Rankine cycle (rc) or organic rankine cycle (orc)-method for utilizing waste heat from biomass combustion for generating electricity and corresponding system
DE2726924A1 (en) PLANT FOR CENTRAL GENERATION OF USEFUL THERMAL ENERGY
EP2470755A2 (en) Method for utilizing the waste heat of internal combustion engines
DE2506333C2 (en) Plant for the evaporation and heating of liquid natural gas
DE102012222414A1 (en) Method and device for energy conversion and water extraction
DE1149573B (en) Thermal power plant with a gas turbine system consisting of a compressor, combustion chamber and gas turbine
DE2847365C2 (en) Plant for generating electrical and thermal energy by means of an internal combustion engine
DE2946074C2 (en) Energy supply system
DE2700737A1 (en) ARRANGEMENT FOR THE SIMULTANEOUS GENERATION OF ELECTRICAL POWER AND DESALINATED WATER
DE3001315A1 (en) Heat-pump or energy management system - uses energy recovered from environment to drive heat pump by turbine
DE2543569A1 (en) Heat pump with thermal drive - uses IC engine driven compressor in combination with heat converting equipment
DE2847873A1 (en) ARRANGEMENT FOR GASIFYING LIQUIDED NATURAL GAS FOR A HEATING ENERGY SYSTEM

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8127 New person/name/address of the applicant

Owner name: TECHNOLOGIE-BERATUNGS-INSTITUT GMBH, 19061 SCHWERI

8181 Inventor (new situation)

Free format text: MUELLER, HERBERT,PROF.DR.-ING.HABIL.,, 23968 WISMAR, DE

8110 Request for examination paragraph 44
8304 Grant after examination procedure
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee