DE19545291A1 - Spiral field detector computer tomography - Google Patents

Spiral field detector computer tomography

Info

Publication number
DE19545291A1
DE19545291A1 DE19545291A DE19545291A DE19545291A1 DE 19545291 A1 DE19545291 A1 DE 19545291A1 DE 19545291 A DE19545291 A DE 19545291A DE 19545291 A DE19545291 A DE 19545291A DE 19545291 A1 DE19545291 A1 DE 19545291A1
Authority
DE
Germany
Prior art keywords
detector
field
spiral
enables
field detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19545291A
Other languages
German (de)
Inventor
Hans-Martin Dr Med Klein
Rolf W Prof Dr Med Guenther
Mathias Dr Med Prokop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE29515454U external-priority patent/DE29515454U1/en
Application filed by Individual filed Critical Individual
Priority to DE19545291A priority Critical patent/DE19545291A1/en
Publication of DE19545291A1 publication Critical patent/DE19545291A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The tomograph features a field shaped detector geometry. It uses displacement of the examined object during data capture. By means of switching the detector elements, a number of detector element sections are used to realise a detector layer or plane. By means of the field detector with a spiral CT displacement the examined volume is increased and the spatial resolution is increased. Fourier transformer on the image data is also possible.

Description

Die erste Generation von Computertomographen erstellte eine Schnittbildprojektion durch Erzeugung einer Projektionszeile mit schrittweiser Verschiebung eines Detektorelementes tan­ gential zum Untersuchungsobjekt. Das Röhren-Detektorsytem wurde anschließend um ein de­ finiertes Winkelinkrement rotiert uns so sukzessive eine Serie von Projektionsprofilen erzeugt (sog. Translations-Rotationsscanner).The first generation of computer tomographs created a slice projection Generation of a projection line with gradual displacement of a detector element tan potential for the object under investigation. The tube detector system was then expanded by a de Finished angular increment rotates us successively a series of projection profiles (so-called translational rotation scanner).

Die 2. Generation verwendete statt eines Einzelelementes eine Detektorzeile (Mehrelement Translations-Rotationsscanner), die dritte Gerätegeneration wies eine feste Kombination von Röhre und fächerförmigem Detektor auf, die um den Patienten rotiert wurde. Hierdurch wur­ den Zykluszeiten von ca. 9 s bei einer Akquisitionszeit von minimal ca. 4 s möglich.Instead of a single element, the 2nd generation used a detector line (multi-element Translations-Rotationsscanner), the third generation of devices showed a fixed combination of Tube and fan-shaped detector, which was rotated around the patient. As a result the cycle times of approx. 9 s are possible with an acquisition time of at least approx. 4 s.

Durch eine kontinuierliche Bewegung des Patienten während der Datenaufnahme kann eine wendelförmige Abtastgeometrie erzeugt werden, die eine Erfassung eines Organvolumens in wenigen Sekunden ermöglicht (W. Kalender et al., Radiology 1989). Diese sog. Spiral-CT stellt derzeit den aktuellen Stand der Technik dar.Continuous movement of the patient during data acquisition can cause a helical scanning geometry can be generated, the detection of an organ volume in enables a few seconds (W. Kalender et al., Radiology 1989). This so-called spiral CT provides currently represents the current state of the art.

Die Verwendung eines feldförmigen Strahlendetektors wurde bereits beschrieben (R.E. Sturm et al., Cardiovascular Imaging and image processing, theory and practice, Vol. 72, 1975, 103-122; G 295 03 278.2; P 27 26 635.9-35; US-Patent Nr. 52 93 312, 53 55 309, 53 90 112). Pro­ blematisch war in der technischen Realisierung jedoch die Dynamik der Detektoren sowie de­ ren Größe, die eine räumlich hochaufgelöste und ausreichend empfindliche Detektorkonstruk­ tion verhinderte.The use of a field-shaped radiation detector has already been described (R.E. Sturm et al., Cardiovascular Imaging and image processing, theory and practice, vol. 72, 1975, 103-122; G 295 03 278.2; P 27 26 635.9-35; U.S. Patent No. 52 93 312, 53 55 309, 53 90 112). Per However, the dynamics of the detectors as well as de ren size, which is a spatially high-resolution and sufficiently sensitive detector construction tion prevented.

In den letzten Jahren ist durch die Etablierung von Halbleiterdetektoren die Steigerung der Empfindlichkeit von Röntgendetektoren möglich geworden. Hierdurch konnte z. B. eine Spiral-CT Konfiguration mit zwei Detektorbahnen realisiert werden. Durch geeignete Detektorkonfi­ gurationen kann nun eine primär dreidimensionale (volumetrische) Datenerfassung erfolgen. In recent years, the establishment of semiconductor detectors has increased the Sensitivity of X-ray detectors has become possible. This could, for. B. a spiral CT Configuration with two detector tracks can be realized. By suitable detector confi gurations, a three-dimensional (volumetric) data acquisition is now possible.  

Aufgabentasks

Durch die Erfindung soll erreicht werden, daßThe invention is intended to achieve that

  • 1. durch Kombination des Felddetektors mit einer Translationseinrichtung (Spiral-CT)1. by combining the field detector with a translation device (spiral CT)
  • a) der untersuchte Bereich vergrößert und/odera) the examined area is enlarged and / or
  • b) die räumliche Auflösung erhöht wird.b) the spatial resolution is increased.
  • Hierdurch wird ein Felddetektor-Spiral-CT ermöglicht.This enables a field detector spiral CT.
  • 2. durch Fourier-Transformation der Bilddaten eine selektive Neuerfassung von Dichteände­ rungen (niedrige Ortsfrequenz) mit reduzierter Strahlenbelastung ermöglicht wird. Hierdurch kann die dynamische Dichteänderung von Organvolumina nach Kontrastmittelgabe mit gerin­ ger Dosisbelastung gemessen werden.2. by Fourier transformation of the image data, a selective re-acquisition of density levels stations (low spatial frequency) with reduced radiation exposure. Hereby the dynamic change in density of organ volumes after administration of contrast medium can be reduced low dose exposure can be measured.
  • 3. durch Projektion der volumetrischen Schnittbilddaten die Erzeugung eines virtuellen Rönt­ genprojektionsbildes ermöglicht wird. Hierdurch ist die Kombination eines Schnittbild-(CT)-ge­ rätes mit einem Röntgengerät (Durchleuchtung, Angiographie) möglich.3. the generation of a virtual X-ray by projection of the volumetric slice image data projection map is made possible. This is the combination of a sectional image (CT) ge advisable with an X-ray machine (fluoroscopy, angiography).
  • 4. die Erfassung eines Körpervolumens in einer einzelnen Detektor-/Röhrenrotation ermöglicht wird.4. enables the detection of a body volume in a single detector / tube rotation becomes.
AusführungsbeispieleEmbodiments

Die Erfindung wird nachstehend in den Ausführungsbeispielen sowie den zugehörigen Figurenbeispielen erläutert:The invention is described below in the exemplary embodiments and the associated ones Figure examples explained:

Fig. 1 Eine Röntgenröhre (1) wird mit einem feldförmigen Röntgendetektor (2) gekoppelt. Diese Einheit wird während der Aufnahme um den Patienten rotiert. Fig. 1 An X-ray tube ( 1 ) is coupled to a field-shaped X-ray detector ( 2 ). This unit is rotated around the patient during the admission.

Fig. 2 In Abhängigkeit von der Expositionsgeometrie kann die Größe des einzelnen Detektor­ feldes (1, 2) durch Zu- oder Abschalten von Detektorelementen variabel festgelegt werde, wo­ bei in aller Regel eine kleinere Feldgröße in den zentralen Detektorfeldanteilen vorliegt. Fig. 2 Depending on the exposure geometry, the size of the individual detector field ( 1 , 2 ) can be variably determined by switching detector elements on or off, where there is usually a smaller field size in the central detector field components.

Fig. 3 Ein konventionelles computertomographisches Schnittbild kann durch Addition mehre­ rer Detektorelementzeilen (1) erzeugt werden, wobei die Schichtdicke vom gewünschten Ver­ hältnis zwischen verwendeter Dosis und Auflösung bestimmt ist. Fig. 3 A conventional computed tomography sectional image can be generated by adding several detector element rows ( 1 ), the layer thickness being determined by the desired ratio between the dose used and the resolution.

Fig. 4 Durch die Verschiebung des Patienten (1) während der Datenaufnahme kann das unter­ suchte Volumen und/oder die räumliche Auflösung im Untersuchungsbereich erhöht werden. Fig. 4 By moving the patient ( 1 ) during the data acquisition, the volume examined and / or the spatial resolution in the examination area can be increased.

Fig. 5 Durch 2-dimensionale Fouriertransformation kann das Schnittbildvolumen vom Orts­ raum in den Frequenzraum (k-Raum) transferiert werden. Hierdurch wird eine selektive Neu­ bestimmung der Röntgendichteverteilung (1, zentrale k-Raumanteile) bei Erhaltung der Kon­ turinformation (2, periphere k-Raumanteile) möglich. Fig. 5 By 2-dimensional Fourier transformation, the slice image volume can be transferred from the spatial area to the frequency space (k-space). This enables a selective redetermination of the X-ray density distribution ( 1 , central k-space components) while maintaining the contour information ( 2 , peripheral k-space components).

Zur Bestimmung des Kontrastmittelanreicherungsverhaltens in einem interessierenden Organ­ volumen über die Zeit kann eine initiale Akquisition mit höherer Dosis, gefolgt von Rotationen mit niedrigerer Dosis erfolgen. Die Ortsinformation (periphere k-Raumanteile) wird durch die initiale Rotation erzeugt, während die folgenden Rotationen lediglich die Änderung der Dichte (zentrale k-Raumanteile) beeinflussen.To determine the contrast agent enrichment behavior in an organ of interest Volume over time can be an initial acquisition with a higher dose, followed by rotations with a lower dose. The location information (peripheral k-space components) is given by the initial rotation produces, while subsequent rotations only change the density (central k-space components) influence.

Claims (5)

1. Spiral-Felddetektor-Computertomograph, dadurch gekennzeichnet, daß er eine feldförmige Detektorgeometrie aufweist und eine Verschiebung des untersuchten Objektes während der Datenaufnahme ermöglicht.1. Spiral field detector computer tomograph, characterized in that it has a field-shaped detector geometry and enables a displacement of the examined object during data acquisition. 2. System nach Anspruch 1, dadurch gekennzeichnet, es eine Verschaltung der einzelnen Detektorelemente aufweist, die eine Integration mehrerer Detektorelementzeilen zur Erzeugung einer Detektorschicht definierter Dicke ermöglicht.2. System according to claim 1, characterized, it has an interconnection of the individual detector elements which integrates several Detector element rows for generating a detector layer of defined thickness enables. 3. System nach Anspruch 1, dadurch gekennzeichnet, daß es eine Verschaltung des Detektorfeldes aufweist, die eine Veränderung der effektiven lokalen Detektorelementgröße ermöglicht.3. System according to claim 1, characterized, that it has an interconnection of the detector field, which changes the effective local detector element size allows. 4. System nach Anspruch 1, dadurch gekennzeichnet, daß es ein Projektionssystem aufweist, welches die Integration der Dichtewerte der Schnitt­ bilddichtewerte zu einem virtuellen Röntgenbild ermöglicht.4. System according to claim 1, characterized, that it has a projection system that integrates the density values of the cut image density values for a virtual X-ray image. 5. System nach Anspruch 1, dadurch gekennzeichnet, daß es die Möglichkeit zur Fourier-Transformation der Rückprojektionsdaten und Segmentie­ rung des k-Raumes (Fourier-Raumes) aufweist.5. System according to claim 1, characterized, that there is the possibility of Fourier transforming the back projection data and segmentation tion of the k-space (Fourier space).
DE19545291A 1995-02-27 1995-12-05 Spiral field detector computer tomography Ceased DE19545291A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19545291A DE19545291A1 (en) 1995-02-27 1995-12-05 Spiral field detector computer tomography

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE29503278 1995-02-27
DE29515454U DE29515454U1 (en) 1995-02-27 1995-09-19 Spiral field detector computer tomograph
DE19545291A DE19545291A1 (en) 1995-02-27 1995-12-05 Spiral field detector computer tomography

Publications (1)

Publication Number Publication Date
DE19545291A1 true DE19545291A1 (en) 1996-08-29

Family

ID=26057638

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19545291A Ceased DE19545291A1 (en) 1995-02-27 1995-12-05 Spiral field detector computer tomography

Country Status (1)

Country Link
DE (1) DE19545291A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254786A (en) * 2011-10-03 2014-12-31 Fei公司 A computed tomography imaging process and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2005955A (en) * 1977-10-11 1979-04-25 Philips Nv Device for determining local absorption values in a body section and an array of detectors for such a device
DE4218637C1 (en) * 1992-06-05 1993-11-04 Siemens Ag Computer tomography appts. providing real-time display - combines each real-time shadow image with conventional shadow image obtained initially
DE4223430C1 (en) * 1992-06-24 1993-11-11 Siemens Ag Computer tomograph with means for displaying silhouettes
US5355309A (en) * 1992-12-30 1994-10-11 General Electric Company Cone beam spotlight imaging using multi-resolution area detector
DE4438988A1 (en) * 1993-11-08 1995-05-11 Gen Electric Projection-region reconstruction method for a helically sampling computer tomography device with a multigap detector field which uses overlapping beams

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2005955A (en) * 1977-10-11 1979-04-25 Philips Nv Device for determining local absorption values in a body section and an array of detectors for such a device
DE4218637C1 (en) * 1992-06-05 1993-11-04 Siemens Ag Computer tomography appts. providing real-time display - combines each real-time shadow image with conventional shadow image obtained initially
DE4223430C1 (en) * 1992-06-24 1993-11-11 Siemens Ag Computer tomograph with means for displaying silhouettes
US5355309A (en) * 1992-12-30 1994-10-11 General Electric Company Cone beam spotlight imaging using multi-resolution area detector
DE4438988A1 (en) * 1993-11-08 1995-05-11 Gen Electric Projection-region reconstruction method for a helically sampling computer tomography device with a multigap detector field which uses overlapping beams

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MÜLLER, G., Dr.-Ing.: Die Fouriertransformation in der Bildverarbeitung, Elektronik 3/2.2.1990, S. 50, 55-59 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254786A (en) * 2011-10-03 2014-12-31 Fei公司 A computed tomography imaging process and system

Similar Documents

Publication Publication Date Title
DE69831742T2 (en) SYSTEM FOR RECONSTRUCTION IN CONCEALING TORCHOGRAPHY
JP3449561B2 (en) X-ray CT system
US8705822B2 (en) Method for creating images indicating material decomposition in dual energy, dual source helical computed tomography
US7561659B2 (en) Method for reconstructing a local high resolution X-ray CT image and apparatus for reconstructing a local high resolution X-ray CT image
DE10127269B4 (en) Method for computed tomography and computed tomography (CT) device
DE10302565A1 (en) Computer tomography unit has at least two beam detector combinations the measurement field areas of which can be set to different sizes
DE2657895A1 (en) METHOD AND ARRANGEMENT FOR GENERATING A REPRESENTATION OF RADIATION ABSORBED BY AN OBJECT
JPH07178079A (en) Computerized method and device for tomographic image pickup
JP2004180715A (en) X-ray computed tomography apparatus
DE102005047420A1 (en) Method and system for multi-energy tomosynthesis
DE10244180B4 (en) Method for imaging in computed tomography of a periodically moving examination subject and CT apparatus for performing the method
JP3682308B2 (en) Computer tomography apparatus and method for generating an image of an object to be imaged
DE10133237A1 (en) Procedures for computed tomography as well as computed tomography (CT) device
DE102004004295A1 (en) Method for image data acquisition and evaluation with a tomography device
JP4519434B2 (en) Super-resolution processing apparatus and medical image diagnostic apparatus
DE19800946A1 (en) Volume computer tomography system
WO2004070661A1 (en) Voxel-driven spiral reconstruction for cone-beam computer tomography
DE19854438B4 (en) Image reconstruction method for a computer tomograph
JP2000037379A (en) Method for reconstituting image from measured value obtained by spiral scanning of examination object by using ct apparatus and ct instrument for executing such method
US20030142778A1 (en) Computed tomography apparatus
EP0989521B1 (en) Fluoroscopy image reconstruction
WO2001080740A1 (en) Method for operating a computed tomogram (ct) device
JP2001212133A (en) Synthetic tomographic image generating method
DE19545291A1 (en) Spiral field detector computer tomography
DE102004003367B4 (en) Method for generating tomographic slice images of a periodically moving object with a focus-detector combination

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection