DE1268600B - Method for epitaxially depositing a single-crystal, in particular doped, semiconductor layer - Google Patents

Method for epitaxially depositing a single-crystal, in particular doped, semiconductor layer

Info

Publication number
DE1268600B
DE1268600B DE19641268600 DE1268600A DE1268600B DE 1268600 B DE1268600 B DE 1268600B DE 19641268600 DE19641268600 DE 19641268600 DE 1268600 A DE1268600 A DE 1268600A DE 1268600 B DE1268600 B DE 1268600B
Authority
DE
Germany
Prior art keywords
semiconductor
carrier body
reaction gas
dopant
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19641268600
Other languages
German (de)
Inventor
Dipl-Chem Dr Julius Nickl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19641268600 priority Critical patent/DE1268600B/en
Publication of DE1268600B publication Critical patent/DE1268600B/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/08Reaction chambers; Selection of materials therefor
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

Verfahren zum epitaktischen Abscheiden einer einkristallinen, insbesondere dotierten Halbleiterschicht Zum Herstellen von Halbleiterbauelementen wird häufig das als Epitaxie bekannte Verfahren angewendet. Dieses besteht darin, daß man scheibenförmige Halbleiterkristalle, insbesondere Einkristalle auf eine hohe, jedoch unterhalb des Schmelzpunktes des Halbleiters liegende Temperatur aufheizt und gleichzeitig über die Scheiben ein Reaktionsgas hinwegleitet, aus welchem bei der Temperatur der Scheiben der betreffende Halbleiter auf den Scheiben in einkristallinem Zustand abgeschieden wird. Die Beheizung der als Träger dienenden Halbleiterkristallscheiben erfolgt vornehmlich auf elektrischem Weg, indem diese Scheiben während des Abscheidevorganges mit einem aus leitendem, hitzebeständigem Material bestehenden Support, der während des Betriebes von einem ihn durchfließenden elektrischen Strom beheizt wird, in Berührung gehalten werden.Method for the epitaxial deposition of a monocrystalline, in particular doped semiconductor layer For the production of semiconductor components is often used the process known as epitaxy. This consists in the fact that one is disc-shaped Semiconductor crystals, in particular single crystals, to a high but below the Melting point of the semiconductor lying temperature heats up and at the same time over the panes conducts a reaction gas from which at the temperature of the panes the semiconductor in question is deposited on the wafers in a monocrystalline state will. The semiconductor crystal wafers serving as carriers are heated mainly by electrical means by removing these discs during the deposition process with a support made of conductive, heat-resistant material, which during of the company is heated by an electric current flowing through it, in Touch to be held.

Als Reaktionsgas verwendet man im Interesse der Reinheit des zu erhaltenden Produktes nur solche Verbindungen des Halbleiters, in denen dieser an ein Element der Halogengruppe und/oder an Wasserstoff gebunden ist. Weitere, insbesondere metallische Bestandteile soll die zu verwendende Halbleiterverbindung nicht enthalten. Dasselbe gilt für eine dem Reaktionsgas in vielen Fällen beizumischende Verbindung eines Dotierungsstoffes. Die Verwendung reiner Wasserstoffverbindungen, z. B. von SH4, führt zwar zu einer besonders hohen Reinheit des abgeschiedenen Halbleiters; die hohe Zersetzlichkeit dieser Verbindungen, die leicht zu Explosionen führen kann, verlangt große Vorsicht in der Handhabung.The reaction gas used is in the interest of the purity of the product to be obtained Product only those connections of the semiconductor in which this is connected to an element the halogen group and / or is bonded to hydrogen. Others, especially metallic The semiconductor compound to be used should not contain any components. The same thing applies to a compound to be admixed with the reaction gas in many cases Dopant. The use of pure hydrogen compounds, e.g. B. from SH4, Although this leads to a particularly high degree of purity of the deposited semiconductor; the high decomposition of these compounds, which can easily lead to explosions, requires great care in handling.

Dieser Nachteil entfällt, wenn man halogenhaltige Verbindungen des Halbleiters und des Dotierungsstoffes als Ausgangsverbindungen verwendet. Im allgemeinen führt die Verwendung solcher Halbleiterverbindungen auch zu einer besseren Kristallgüte als die Verwendung von reinen Wasserstoffverbindungen, weil die Reversibilität der Umsetzungen der Halogenverbindungen zur Verhinderung ungleichmäßigen Wachstums der entstehenden Schichten ausgenutzt werden kann, was bei den nur noch Wasserstoff enthaltenden Halbleiterverbindungen nicht möglich ist. Andererseits sind Halbleiterhalogenide gegen Einwirkung von Luft, Feuchtigkeit usw. empfindlich. Infolge dieser Eigenschaften können auf Grund Alterungserscheinungen leicht Verunreinigungen in das erhaltene Halbleitermaterial eingeschleppt werden, welche unter anderem auch das angestrebte einkristalline Wachstum der abzuscheidenden Halbleiterschichten empfindlich stören können. Es empfiehlt sich deshalb, möglichst frisches Halbleiterhalogenid für die Epitaxie zu verwenden. Diese Nachteile können bei einem Verfahren zum epitaktischen Abscheiden einer einkristallinen, insbesondere dotierten Halbleiterschicht auf einen als Substrat dienenden Trägerkörper aus dem gleichen Halbleitermaterial vermieden werden, wobei das Reaktionsgas eine Verbindung des Halbleiters und gegebenenfalls auch des Dotierungsstoffes mit Halogen und höchstens noch mit Wasserstoff sowie Wasserstoff oder ein inertes Gas enthält, wobei gleichzeitig mit der epitaktischen Abscheidung eine laufende Erzeugung der Halbleiter- und gegebenenfalls der Dotierstoffverbindung vorgenommen wird, indem gasförmiges Halogen und/oder gasförmiger Halogenwasserstoff über einen erhitzten Vorrat des Halbleiterstoffes und gegebenenfalls des Dotierstoffes geleitet wird, wobei das Reaktionsgas über den Trägerkörper geführt und dabei die Temperatur des Trägerkörpers auf die Temperatur des Halbleitervorrates derart abgestimmt wird, daß Halbleiter- und gegebenenfalls Dotierungsmaterial des Vorrats auf den Weg über gasförmige Halogenverbindungen auf dem Trägerkörper einkristallin niedergeschlagen werden und als Störkeime wirksame Bestandteile des Reaktionsgases können ausgeschaltet werden, wenn erfindungsgemäß das Reaktionsgas durch eine poröse Wand dem zu beschichtenden Trägerkörper zugeführt wird.This disadvantage does not apply if you use halogen-containing compounds of the Semiconductor and the dopant used as starting compounds. In general the use of such semiconductor compounds also leads to better crystal quality than the use of pure hydrogen compounds because the reversibility of the Reactions of the halogen compounds to prevent uneven growth of the resulting layers can be exploited, which is only possible with hydrogen containing semiconductor compounds is not possible. On the other hand, there are semiconductor halides sensitive to the effects of air, moisture, etc. As a result of these properties Due to signs of aging, impurities can easily get into the received Semiconductor material are introduced, which among other things is also the desired Disrupt single-crystal growth of the semiconductor layers to be deposited sensitively can. It is therefore advisable to use the freshest possible semiconductor halide for the To use epitaxy. These disadvantages can be found in a method for epitaxial Deposition of a monocrystalline, in particular doped, semiconductor layer on a Avoided serving as a substrate carrier body made of the same semiconductor material be, the reaction gas being a compound of the semiconductor and optionally also of the dopant with halogen and at most with hydrogen as well Contains hydrogen or an inert gas, being simultaneously with the epitaxial Deposition is a continuous generation of the semiconductor and possibly the dopant compound is made by adding gaseous halogen and / or gaseous hydrogen halide Via a heated supply of the semiconductor material and optionally the dopant is passed, the reaction gas being passed over the carrier body and thereby the Temperature of the carrier body matched to the temperature of the semiconductor supply in such a way is that semiconductor and optionally doping material of the supply on the Precipitated in monocrystalline form via gaseous halogen compounds on the carrier body and components of the reaction gas that act as interfering germs can be switched off if, according to the invention, the reaction gas is to be coated through a porous wall Carrier body is supplied.

Dieses Verfahren führt zu störungsfreien Einkristallen.This process leads to undisturbed single crystals.

In der Zeichnung ist eine zur Ausübung des erfindungsgemäßen Verfahrens besonders geeignete Apparatur dargestellt. Sie besteht aus einem vertikalen Quarzrohr 1, das durch eine horizontale, poröse Zwischenwand 2, in zwei Abschnitte 3 und 8 unterteilt ist. Im unteren Abschnitt 3 befindet sich ein Vorrat 4 aus dotiertem, z. B. pulverförmigem Silicium, das durch eine Heizwicklung 5 oder eine andere Heizvorrichtung auf etwa 1300° C erhitzt und von an der Stelle 6 eintretendem Halogen oder Halogenwasserstoff (z. B. CHI, C12, Br2) durchströmt und dabei allmählich aufgelöst wird. Dabei findet z. B. Entstehung von SiHC13 oder SiC14 statt. Die Abgase dieser Reaktion werden an der Stelle 7, mit Wasserstoff vermischt und gelangen über die poröse Wand 2 von unten her in den Abschnitt 8 des Reaktionsgefäßes 1. In diesem befindet sich ein aus leitendem, hitzebeständigem Material, z. B. auch aus Silicium bestehender Support 9, auf dem sich die zu beschichtende Halbleiterscheibe 10 aus Silicium, befindet. Die Abgase verlassen bei 11 das Reaktionsgefäß. Eine Beheizung 12, z. B. eine Hochfrequenzspule, sorgt für die Erhitzung des Trägers und damit der Halbleiterscheibe 10. Sie wird beispielsweise auf 1150° C erhitzt.The drawing shows an apparatus which is particularly suitable for carrying out the method according to the invention. It consists of a vertical quartz tube 1, which is divided into two sections 3 and 8 by a horizontal, porous partition 2. In the lower section 3 there is a supply 4 of doped, z. B. powdered silicon, which is heated by a heating coil 5 or another heating device to about 1300 ° C and is flowed through by entering 6 halogen or hydrogen halide (z. B. CHI, C12, Br2) and is gradually dissolved. Here z. B. Formation of SiHC13 or SiC14 takes place. The exhaust gases from this reaction are mixed with hydrogen at point 7 and pass through the porous wall 2 from below into section 8 of the reaction vessel 1. In this there is a conductive, heat-resistant material, e.g. B. also made of silicon support 9 on which the silicon semiconductor wafer 10 to be coated is located. The exhaust gases leave the reaction vessel at 11. A heater 12, e.g. B. a high-frequency coil ensures the heating of the carrier and thus the semiconductor wafer 10. It is heated to 1150 ° C., for example.

Claims (1)

Patentanspruch: Verfahren zum epitaktischen Abscheiden einer einkristallinen, insbesondere dotierten Halbleiterschicht auf einen als Substrat dienenden Trägerkörper aus dem gleichen Halbleitermaterial, bei dem das Reaktionsgas eine Verbindung des Halbleiters und gegebenenfalls auch des Dotierungsstoffes mit Halogen und höchstens noch mit Wasserstoff sowie Wasserstoff oder ein inertes Gas enthält, bei dem gleichzeitig mit der epitaktischen Abscheidung eine laufende Erzeugung der Halbleiter- und gegebenenfalls der Dotierstoffverbindung vorgenommen wird, indem gasförmiges Halogen und/oder gasförmiger Halogenwasserstoff über einen erhitzten Vorrat des Halbleiterstoffes und gegebenenfalls des Dotierstoffes geleitet wird, bei dem das Reaktionsgas über den Trägerkörper geführt und dabei die Temperatur des Trägerkörpers auf die Temperatur des Halbleitervorrates derart abgestimmt wird, daß Halbleiter- und gegebenenfalls Dotierungsmaterial des Vorrats auf den Weg über gasförmige Halogenverbindungen auf dem Trägerkörper einkristallin niedergeschlagen werden, d a d u r c h g e k e n n -zeichnet, daß das Reaktionsgas durch eine poröse Wand dem zu beschichtenden Trägerkörper zugeführt wird. In Betracht gezogene Druckschriften: Deutsche Patentschrift Nr. 865160.Claim: Process for the epitaxial deposition of a monocrystalline, in particular doped semiconductor layer on a carrier body serving as a substrate made of the same semiconductor material in which the reaction gas is a compound of the Semiconductor and possibly also the dopant with halogen and at most still contains hydrogen as well as hydrogen or an inert gas, in which at the same time with the epitaxial deposition, an ongoing generation of the semiconductor and possibly the dopant compound is made by adding gaseous halogen and / or gaseous Hydrogen halide via a heated supply of the semiconductor material and optionally of the dopant is passed, in which the reaction gas over the carrier body out and thereby the temperature of the carrier body to the temperature of the semiconductor supply is matched so that semiconductor and optionally doping material of the Supply on the way via gaseous halogen compounds on the carrier body monocrystalline be precipitated, d u r c h e k e n n - indicates that the reaction gas is fed through a porous wall to the carrier body to be coated. Into consideration Printed publications: German Patent No. 865160.
DE19641268600 1964-11-16 1964-11-16 Method for epitaxially depositing a single-crystal, in particular doped, semiconductor layer Pending DE1268600B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19641268600 DE1268600B (en) 1964-11-16 1964-11-16 Method for epitaxially depositing a single-crystal, in particular doped, semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19641268600 DE1268600B (en) 1964-11-16 1964-11-16 Method for epitaxially depositing a single-crystal, in particular doped, semiconductor layer

Publications (1)

Publication Number Publication Date
DE1268600B true DE1268600B (en) 1968-05-22

Family

ID=5660024

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19641268600 Pending DE1268600B (en) 1964-11-16 1964-11-16 Method for epitaxially depositing a single-crystal, in particular doped, semiconductor layer

Country Status (1)

Country Link
DE (1) DE1268600B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2443137A1 (en) * 1978-11-30 1980-06-27 Labo Electronique Physique Mfr. technique for epitaxial layers of semiconductor material - includes using homogenising chamber for carrier gas and deposited material to improve uniformity of deposition
FR2555206A1 (en) * 1983-11-22 1985-05-24 Thomson Csf LOW TEMPERATURE THERMAL DECOMPOSITION AMORPHOUS SILICON DEPOSITION METHOD AND DEVICE FOR IMPLEMENTING THE METHOD
FR2555614A1 (en) * 1983-08-16 1985-05-31 Canon Kk PROCESS FOR FORMING A FILM ON A SUBSTRATE BY VAPOR PHASE DECOMPOSITION

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE865160C (en) * 1951-03-07 1953-01-29 Western Electric Co Method for producing a germanium layer on a germanium body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE865160C (en) * 1951-03-07 1953-01-29 Western Electric Co Method for producing a germanium layer on a germanium body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2443137A1 (en) * 1978-11-30 1980-06-27 Labo Electronique Physique Mfr. technique for epitaxial layers of semiconductor material - includes using homogenising chamber for carrier gas and deposited material to improve uniformity of deposition
FR2555614A1 (en) * 1983-08-16 1985-05-31 Canon Kk PROCESS FOR FORMING A FILM ON A SUBSTRATE BY VAPOR PHASE DECOMPOSITION
FR2555206A1 (en) * 1983-11-22 1985-05-24 Thomson Csf LOW TEMPERATURE THERMAL DECOMPOSITION AMORPHOUS SILICON DEPOSITION METHOD AND DEVICE FOR IMPLEMENTING THE METHOD
EP0143701A1 (en) * 1983-11-22 1985-06-05 Thomson-Csf Process for depositing amorphous silicon by low-temperature thermal decomposition, and apparatus for carrying out this process

Similar Documents

Publication Publication Date Title
US3157541A (en) Precipitating highly pure compact silicon carbide upon carriers
DE1137807B (en) Process for the production of semiconductor arrangements by single-crystal deposition of semiconductor material from the gas phase
DE3620329C2 (en)
EP4043620A1 (en) Method for depositing a crystal layer at low temperatures, in particular a photoluminescent iv-iv layer on an iv substrate, and optoelectronic component having such a layer
DE1138481C2 (en) Process for the production of semiconductor arrangements by single-crystal deposition of semiconductor material from the gas phase
EP1567696A1 (en) Method and device for aln single crystal production with gas-permeable crucible walls
US3120451A (en) Pyrolytic method for precipitating silicon semiconductor material
US3338761A (en) Method and apparatus for making compound materials
DE1544287B2 (en) Process for producing a protective layer from silicon nitride
DE1268600B (en) Method for epitaxially depositing a single-crystal, in particular doped, semiconductor layer
DE1644031A1 (en) Process for the production of high purity, epitaxial gallium arsenide deposits
DE1184738B (en) Process for the production of high purity silicon carbide crystals
US3340110A (en) Method for producing semiconductor devices
DE1251283B (en) Apparatus for the simultaneous production of a multiplicity of single-crystal semiconductor bodies
GB1099098A (en) Improvements in or relating to the manufacture of semiconductor layers
DE1273484B (en) Process for the production of pure, optionally doped semiconductor material by means of transport reactions
DE1519892A1 (en) Process for producing high-purity crystalline, in particular single-crystalline materials
GB1237952A (en)
Kennedy et al. The effect of the hydrogen carrier gas flow rate on the electrical properties of epitaxial GaAs prepared in a hydride system
DE1519804B2 (en) Process for growing a layer of semiconductor material on a seed crystal
DE1215665B (en) Process for producing high purity silicon carbide
DE1254607B (en) Process for the production of monocrystalline semiconductor bodies from the gas phase
EP0403887B1 (en) Process for producing single crystal silicon carbide
DE3613021C2 (en) SiC single crystal semiconductor and process for its manufacture
DE1240818B (en) Process for producing high-purity semiconductor material by deposition from the gas phase