DE112019007754T5 - MAGNETIC RECORDING MEDIUM, MAGNETIC RECORDING AND PLAYBACK DEVICE AND MAGNETIC RECORDING MEDIA CARTRIDGE - Google Patents

MAGNETIC RECORDING MEDIUM, MAGNETIC RECORDING AND PLAYBACK DEVICE AND MAGNETIC RECORDING MEDIA CARTRIDGE Download PDF

Info

Publication number
DE112019007754T5
DE112019007754T5 DE112019007754.6T DE112019007754T DE112019007754T5 DE 112019007754 T5 DE112019007754 T5 DE 112019007754T5 DE 112019007754 T DE112019007754 T DE 112019007754T DE 112019007754 T5 DE112019007754 T5 DE 112019007754T5
Authority
DE
Germany
Prior art keywords
recording medium
magnetic recording
magnetic
less
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE112019007754.6T
Other languages
German (de)
Inventor
Masaru Terakawa
Minoru Yamaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Group Corp filed Critical Sony Group Corp
Publication of DE112019007754T5 publication Critical patent/DE112019007754T5/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/584Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes
    • G11B5/588Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads
    • G11B5/592Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads
    • G11B5/5921Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads using auxiliary signals, e.g. pilot signals
    • G11B5/5926Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on tapes by controlling the position of the rotating heads using bimorph elements supporting the heads using auxiliary signals, e.g. pilot signals recorded in separate tracks, e.g. servo tracks
    • G11B5/5928Longitudinal tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers

Abstract

Bereitgestellt wird ein Magnetaufzeichnungsmedium, das zum Erzielen einer Aufzeichnung mit höherer Dichte in der Lage ist. Dieses Magnetaufzeichnungsmedium ist bandförmig und umfasst Folgendes: einen Basiskörper, der hauptsächlich Polyester enthält; und eine Magnetschicht, die über dem Basiskörper bereitgestellt ist, mehrere Magnetteilchen enthält und zum Aufzeichnen eines Datensignals in der Lage ist. Das Magnetaufzeichnungsmedium weist eine mittlere Dicke von 5,6 µm oder dünner auf. Der Basiskörper weist eine mittlere Dicke zwischen 3,0 µm und einschließlich 4,2 µm auf. Die Magnetschicht weist eine mittlere Dicke von 90 nm oder dünner auf. Das mittlere Aspektverhältnis der Magnetteilchen beträgt zwischen 1,0 und einschließlich 3,0. Die Koerzitivkraft in der vertikalen Richtung beträgt 3.000 Oersted oder schwächer. Der Anteil der Koerzitivkraft in der Längenrichtung relativ zu der Koerzitivkraft in der vertikalen Richtung beträgt 0,8 oder weniger. Die Magnetschicht enthält ein Gleitmittel. Die spezifische BET-Oberfläche für die Gesamtheit des Magnetaufzeichnungsmediums in einem Zustand, in dem das Gleitmittel entfernt wurde, beträgt 2,5 m2/g oder mehr.A magnetic recording medium capable of achieving higher density recording is provided. This magnetic recording medium is belt-shaped and comprises: a base body mainly containing polyester; and a magnetic layer provided over the base body, containing a plurality of magnetic particles and capable of recording a data signal. The magnetic recording medium has an average thickness of 5.6 µm or thinner. The base body has an average thickness of between 3.0 μm and 4.2 μm inclusive. The magnetic layer has an average thickness of 90 nm or thinner. The mean aspect ratio of the magnetic particles is between 1.0 and 3.0 inclusive. The coercive force in the vertical direction is 3,000 oersted or less. The proportion of the coercive force in the length direction relative to the coercive force in the vertical direction is 0.8 or less. The magnetic layer contains a lubricant. The BET specific surface area for the whole of the magnetic recording medium in a lubricated-removed state is 2.5 m 2 /g or more.

Description

Technisches Gebiettechnical field

Die vorliegende Offenbarung betrifft ein Magnetaufzeichnungsmedium, eine Magnet-Aufzeichnung-und-Wiedergabe-Einrichtung die das Magnetaufzeichnungsmedium verwendet, und ein Magnetaufzeichnungsmedium-Cartridge.The present disclosure relates to a magnetic recording medium, a magnetic recording and reproducing device using the magnetic recording medium, and a magnetic recording medium cartridge.

Hintergrundbackground

Ein bandartiges Magnetaufzeichnungsmedium einschließlich einer Magnetschicht wurde weithin zum Aufzeichnen elektronischer Daten verwendet. Die Magnetschicht des Magnetaufzeichnungsmediums beinhaltet einen Datenstreifen, der mehrere Aufzeichnungsspuren enthält, in denen Daten aufgezeichnet werden. Außerdem beinhaltet die Magnetschicht einen Servostreifen, der an einer Position angrenzend an den Datenstreifen in einer Breitenrichtung bereitgestellt ist und in dem Servosignale aufgezeichnet werden. Ein Magnetkopf liest die Servosignale, die in dem Servostreifen aufgezeichnet sind, um eine Positionsausrichtung des Magnetkopfs relativ zu den Aufzeichnungsspuren durchzufuhren.A tape-like magnetic recording medium including a magnetic layer has been widely used for recording electronic data. The magnetic layer of the magnetic recording medium includes a data stripe containing a plurality of recording tracks in which data is recorded. In addition, the magnetic layer includes a servo stripe which is provided at a position adjacent to the data stripe in a width direction and in which servo signals are recorded. A magnetic head reads the servo signals recorded in the servo stripe to perform positional alignment of the magnetic head relative to the recording tracks.

Eine Longitudinalmagnetaufzeichnung und Senkrechtmagnetaufzeichnung sind als Schemata zum Aufzeichnen von Daten in dem Magnetaufzeichnungsmedium bekannt. Die Longitudinalmagnetaufzeichnung zeichnet Daten durch Magnetisieren der Magnetteilchen in der Magnetschicht in einer horizontalen Richtung auf und die Senkrechtmagnetaufzeichnung zeichnet Daten durch Magnetisieren der Magnetteilchen in der Magnetschicht in einer senkrechten Richtung auf Im Allgemeinen ermöglicht die Senkrechtmagnetaufzeichnung eine Datenaufzeichnung mit höherer Dichte als die Longitudinalmagnetaufzeichnung. Die Erfinder der vorliegenden Anmeldung offenbaren eine Technologie zum Erhalten einer wiedergegebenen Wellenform eines Servosignals mit einer vorteilhaften Symmetrie, falls das Servosignal Komponenten aufweist, die in der senkrechten Richtung magnetisiert sind (siehe zum Beispiel PTL 1).Longitudinal magnetic recording and perpendicular magnetic recording are known as schemes for recording data in the magnetic recording medium. Longitudinal magnetic recording records data by magnetizing the magnetic particles in the magnetic layer in a horizontal direction, and perpendicular magnetic recording records data by magnetizing the magnetic particles in the magnetic layer in a perpendicular direction. In general, perpendicular magnetic recording enables higher-density data recording than longitudinal magnetic recording. The inventors of the present application disclose a technology for obtaining a reproduced waveform of a servo signal with favorable symmetry if the servo signal has components magnetized in the perpendicular direction (see PTL 1, for example).

Zitatlistequote list

Patentliteraturpatent literature

[PTL 1] Ungeprüfte japanische Patentanmeldung mit der Veröffentlichungs-Nr. 2014-199706 Kurzdarstellung der Erfindung[PTL 1] Unexamined Japanese Patent Application Publication no. 2014-199706 Summary of the Invention

Eine Aufzeichnung mit höherer Dichte wurde aufgrund einer jüngsten Zunahme der Menge an aufzuzeichnenden Daten erforderlich. Ein bandartiges Magnetaufzeichnungsmedium ist zum Beispiel in einem Magnetraufzeichnungs-Cartridge untergebracht. Eine mögliche Maßnahme zum weiteren Erhöhen der Speicherungskapazität pro Magnetraufzeichnungs-Cartridge ist das Reduzieren der gesamten Dicke des Magnetaufzeichnungsmediums, das in dem Magnetraufzeichnungs-Cartndge unterzubringen ist, und das Erhöhen der Lange des Magnetaufzeichnungsmediums (sogenannte Bandlänge) pro Magnetraufzeichnungs-Cartridge. Jedoch kann das Magnetraufzeichnungsmedium mit einer dünnen Gesamtdicke eine unterlegene Bewegungsstabilität aufweisen. Insbesondere kann im Fall einer wiederholten Aufzeichnung und/oder Wiedergabe das Magnetaufzeichnungsmedium mit einer dünnen Gesamtdicke eine Änderung seines Oberflächenzustands (insbesondere seines Oberflächenzustands bezüglich Reibung) aufweisen, was zu einer Verschlechterung der Bewegungsstabilität führt. Entsprechend ist es wünschenswert, ein Magnetaufzeichnungsmedium bereitzustellen, das eine Aufzeichnung mit hoher Dichte ermöglicht, während seine Bewegungsstabilität beibehalten wird.Higher density recording has been required due to a recent increase in the amount of data to be recorded. A tape-like magnetic recording medium is housed in a magnetic recording cartridge, for example. A possible measure to further increase the storage capacity per magnetic recording cartridge is to reduce the total thickness of the magnetic recording medium to be accommodated in the magnetic recording cartridge and to increase the length of the magnetic recording medium (so-called tape length) per magnetic recording cartridge. However, the magnetic recording medium with a thin overall thickness may have inferior motion stability. In particular, in the case of repeated recording and/or reproducing, the magnetic recording medium having a thin overall thickness may have a change in its surface state (particularly, its surface state with respect to friction), resulting in deterioration in movement stability. Accordingly, it is desirable to provide a magnetic recording medium which enables high-density recording while maintaining its motion stability.

Ein Magnetaufzeichnungsmedium gemäß einer Ausführungsförm der vorliegenden Offenbarung weist eine bandartige Form auf und beinhaltet Folgendes: eine Basis, die Polyester als einen Hauptbestandteil enthält; und eine Magnetschicht, die auf der Basis bereitgestellt ist, mehrere Magnetpulver beinhaltet und zum Aufzeichnen eines Datensignals konfiguriert ist. Eine durchschnittliche Dicke des Magnetaufzeichnungsmediums beträgt 5,6 µm oder weniger. Eine durchschnittliche Dicke der Basis beträgt 4,2 µm oder weniger. Eine durchschnittliche Dicke der Magnetschicht beträgt 90 nm oder weniger. Ein durchschnittliches Aspektverhältnis der Magnetpulver beträgt 1,0 oder mehr und 3,0 oder weniger. Eine Koerzivität in einer senkrechten Richtung beträgt 3000 Oersted oder weniger. Ein Verhältnis einer Koerzivität in einer longitudinalen Richtung zu der Koerzivität in der senkrechten Richtung beträgt 0,8 oder weniger. Die Magnetschicht beinhaltet ein Gleitmittel. Eine gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, beträgt 2,5 m2/g oder mehr.A magnetic recording medium according to an embodiment of the present disclosure has a belt-like shape and includes: a base containing polyester as a main component; and a magnetic layer provided on the base, including a plurality of magnetic powders and configured to record a data signal. An average thickness of the magnetic recording medium is 5.6 µm or less. An average base thickness is 4.2 µm or less. An average thickness of the magnetic layer is 90 nm or less. An average aspect ratio of the magnetic powders is 1.0 or more and 3.0 or less. A coercivity in a perpendicular direction is 3000 oersted or less. A ratio of a coercivity in a longitudinal direction to the coercivity in the perpendicular direction is 0.8 or less. The magnetic layer includes a lubricant. A total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 2.5 m 2 /g or more.

Eine Magnet-Aufzeichnung-und-Wiedergabe-Einrichtung gemäß einer Ausführungsform der vorliegenden Offenbarung beinhaltet Folgendes: einen Zuführungsabschnitt, der zum sequentiellen Zuführen eines Magnetaufzeichnungsmediums mit einer bandartigen Form konfiguriert ist; einen Trommelabschnitt, der zum Aufspulen des Magnetaufzeichnungsmediums konfiguriert ist, das von dem Zuführungsabschnitt zugeführt wird; und einen Magnetkopf, der zum Schreiben von Daten in das Magnetaufzeichnungsmedium und Abrufen der Daten von dem Magnetaufzeichnungsmedium konfiguriert ist, während er sich in Kontakt mit dem Magnetaufzeichnungsmedium befindet, das sich von dem Zuführungsabschnitt zu dem Trommelabschnitt bewegt.A magnetic recording and reproducing device according to an embodiment of the present disclosure includes: a feeding section configured to sequentially feed a magnetic recording medium having a tape-like shape; a drum section configured to wind up the magnetic recording medium fed from the feed section; and a magnetic head configured to write data to the magnetic recording medium and retrieve the data from the magnetic recording medium while in contact with the magnetic recording medium moving from the feed section to the drum section.

Ein Magnetaufzeichnungsmedium-Cartndge beinhaltet das oben beschriebene Magnetaufzeichnungsmedium und ein Gehäuse, das das Magnetaufzeichnungsmedium beherbergt.A magnetic recording medium cartridge includes the magnetic recording medium described above and a housing that houses the magnetic recording medium.

Das Magnetaufzeichnungsmedium, die Magnet-Aufzeichnung-und-Wiedergabe-Einrichtung und das Magnetaufzeichnungsmedium-Cartridge einer Ausführungsform der vorliegenden Offenbarung mit der oben beschriebenen Konfiguration behalten eine vorteilhafte Bewegungsstabilität bei und sind vorteilhaft für eine Aufzeichnung mit hoher Dichte.The magnetic recording medium, the magnetic recording and reproducing device, and the magnetic recording medium cartridge of an embodiment of the present disclosure having the configuration described above maintain advantageous motion stability and are advantageous for high-density recording.

Figurenlistecharacter list

  • [1] 1 ist eine Querschnittsansicht eines Magnetaufzeichnungsmediums gemäß einer Ausführungsform der vorliegenden Offenbarung.[ 1 ] 1 12 is a cross-sectional view of a magnetic recording medium according to an embodiment of the present disclosure.
  • [2] 2 ist eine Querschnittsansicht eines ε-Eisenoxidteilchens, das in einer in 1 veranschaulichten Magnetschicht enthalten ist, zum schematischen Veranschaulichen der Querschnittskonfiguration des ε-Eisenoxidteilchens.[ 2 ] 2 is a cross-sectional view of an ε-iron oxide particle contained in an in 1 illustrated magnetic layer for schematically illustrating the cross-sectional configuration of the ε-iron oxide particle.
  • [3] 3 ist ein Graph, der ein Beispiel für eine SFD-Kurve des in 1 veranschaulichten Magnetaufzeichnungsmediums veranschaulicht.[ 3 ] 3 is a graph showing an example of an SFD curve of the in 1 illustrated magnetic recording medium.
  • [4] 4 ist ein erklärendes Umrissdiagramm, das ein Layout von Datenstreifen und Servostreifen in dem in 1 veranschaulichten Magnetaufzeichnungsmedium veranschaulicht.[ 4 ] 4 is an explanatory outline diagram showing a layout of data stripes and servo stripes in the in 1 illustrated magnetic recording medium.
  • [5] 5 ist ein erklärendes Umrissdiagramm, das den in 4 veranschaulichten Datenstreifen auf eine vergrößerte Weise veranschaulicht.[ 5 ] 5 is an explanatory outline diagram showing the in 4 illustrated data strips in an enlarged manner.
  • [6] 6 ist ein erklärendes Umrissdiagramm, das ein Aufzeichnungsmusters von Servosignalen in dem in 4 veranschaulichten Servostreifen auf eine vergrößerte Weise veranschaulicht.[ 6 ] 6 Fig. 12 is an outline explanatory diagram showing a recording pattern of servo signals in the Fig 4 illustrated servo strips in an enlarged manner.
  • [7] 7 ist ein schematisches Umrissdiagramm, das ein Verfahren zum Messen eines dynamischen Reibungskoeffizienten veranschaulicht.[ 7 ] 7 12 is a schematic outline diagram illustrating a method for measuring a dynamic friction coefficient.
  • [8] 8 ist ein Umrissdiagramm einer Aufzeichnung-und-Wiedergabe-Einrichtung unter Verwendung des in 1 veranschaulichten Magnetaufzeichnungsmediums.[ 8th ] 8th is an outline diagram of a recording and reproducing device using the in 1 illustrated magnetic recording medium.
  • [9] 9 ist eine Querschnittsansicht eines ε-Eisenoxidteilchens gemäß Modifikationsbeispiel 1 zum schematischen Veranschaulichen einer Querschnittskonfiguration des ε-Eisenoxidteilchens.[ 9 ] 9 14 is a cross-sectional view of an ε-iron oxide particle according to Modification Example 1, for schematically illustrating a cross-sectional configuration of the ε-iron oxide particle.
  • [10] 10 ist eine Querschnittsansicht eines Magnetaufzeichnungsmediums gemäß Modifikationsbeispiel 5.[ 10 ] 10 13 is a cross-sectional view of a magnetic recording medium according to Modification Example 5.

Weisen zum Ausführen der ErfindungModes of carrying out the invention

Nachfolgend werden Ausführungsformen der vorliegenden Offenbarung ausfuhrlich unter Bezugnahme auf die Zeichnungen beschrieben. Es ist anzumerken, dass die Beschreibung in der folgenden Reihenfolge erfolgt.

  1. 1. Ausführungsformen
    • 1-1. Konfiguration des Magnetaufzeichnungsmediums
    • 1-2. Verfahren zum Herstellen des Magnetaufzeichnungsmediums
    • 1-3. Konfiguration der Aufzeichnung-und-Wiedergabe-Einrichtung
    • 1-4. Effekte
  2. 2. Modifikationsbeispiele
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the description is made in the following order.
  1. 1. Embodiments
    • 1-1 Configuration of the magnetic recording medium
    • 1-2 Method of manufacturing the magnetic recording medium
    • 1-3 Configuration of the recording and playback facility
    • 1-4 effects
  2. 2. Modification examples

<1. Ausführungsformen><1. Embodiments>

[1-1 Konfiguration des Magnetaufzeichnungsmediums 10][1-1 Configuration of Magnetic Recording Medium 10]

1 ist eine beispielhafte Querschnittskonfiguration eines Magnetaufzeichnungsmediums 10 gemäß einer Ausführungsform der vorliegenden Offenbarung. Wie in 1 veranschaulicht, beinhaltet das Magnetaufzeichnungsmedium 10 eine laminierte Struktur, in der mehrere Schichten gestapelt sind. Zum Beispiel beinhaltet das Magnetaufzeichnungsmedium 10 eine längliche bandartige Basis 11, eine Unterschicht 12, die auf einer Hauptoberfläche 11A der Basis 11 bereitgestellt ist, eine Magnetschicht 13, die auf der Unterschicht 12 bereitgestellt ist, und eine Rückschicht 14, die auf einer anderen Hauptoberfläche 11B der Basis 11 bereitgestellt ist. Die Magnetschicht 13 weist eine Oberfläche 13S auf, auf der sich ein Magnetkopf bewegen soll, während er sich in Kontakt mit der Oberfläche 13S befindet. Es ist anzumerken, dass die Unterschicht 12 und die Rückschicht 14 nach Bedarf bereitgestellt werden oder weggelassen werden können. Es ist auch anzumerken, dass das Magnetaufzeichnungsmedium 10 bevorzugt eine durchschnittliche Dicke von zum Beispiel 5,6 µm oder weniger aufweist. 1 1 is an exemplary cross-sectional configuration of a magnetic recording medium 10 according to an embodiment of the present disclosure. As in 1 As illustrated, the magnetic recording medium 10 includes a laminated structure in which multiple layers are stacked. For example, the magnetic recording medium 10 includes an elongated tape-like base 11, an underlayer 12 provided on a major surface 11A of the base 11, a magnetic layer 13 provided on the underlayer 12, and a backing layer 14 provided on another major surface 11B of the base 11 is provided. The magnetic layer 13 has a surface 13S on which a magnetic head is to move while in contact with the surface 13S. It is noted that the backsheet 12 and the backsheet 14 may be provided or omitted as desired. It is also noted that the magnetic recording medium 10 preferably has an average thickness of, for example, 5.6 μm or less.

Das Magnetaufzeichnungsmedium 10 weist eine längliche bandartige Form auf und soll sich bei Aufzeichnungs- und Wiedergabevorgängen entlang seiner longitudinalen Richtung bewegen. Das Magnetaufzeichnungsmedium 10 wird bevorzugt in einer Aufzeichnung-und-Wiedergabe-Einrichtung verwendet, die mit einem Aufzeichnungskopfversehen ist, der zum Beispiel ein Kopf vom Ringtyp sein kann.The magnetic recording medium 10 has an elongated tape-like shape and is intended to move along its longitudinal direction in recording and reproducing operations. The magnetic recording medium 10 is preferably used in a recording and reproducing device provided with a recording head, which may be a ring-type head, for example.

(Basis 11)(Base 11)

Die Basis 11 ist ein nichtmagnetisches Stützelement, das die Unterschicht 12 und die Magnetschicht 13 stützt. Die Basis 11 weist eine längliche Filmform auf Der obere Grenzwert der durchschnittlichen Dicke der Basis 11 beträgt bevorzugt 4,2 µm oder weniger, bevorzugter 4,0 µm oder weniger. Wenn der obere Grenzwert der durchschnittlichen Dicke der Basis 11 4,2 µm oder weniger beträgt, ist es möglich, die Speicherungskapazität pro Daten-Cartridge im Vergleich zu einem allgemeinen Magnetaufzeichnungsmedium zu erhöhen. Der untere Grenzwert der durchschnittlichen Dicke der Basis 11 beträgt bevorzugt 3 µm oder mehr, bevorzugter 3,2 µm oder mehr. Wenn der untere Grenzwert der durchschnittlichen Dicke der Basis 113 µm oder mehr beträgt, ist es möglich, eine Abnahme der Festigkeit der Basis 11 zu unterdrücken.The base 11 is a nonmagnetic support member that supports the underlayer 12 and the magnetic layer 13 . The base 11 has an elongated film shape. The upper limit of the average thickness of the base 11 is preferably 4.2 µm or less, more preferably 4.0 µm or less. When the upper limit of the average thickness of the base 11 is 4.2 µm or less, it is possible to increase the storage capacity per data cartridge compared to a general magnetic recording medium. The lower limit of the average thickness of the base 11 is preferably 3 µm or more, more preferably 3.2 µm or more. When the lower limit of the average thickness of the base is 113 μm or more, it is possible to suppress the strength of the base 11 from decreasing.

Die durchschnittliche Dicke der Basis 11 wird wie folgt bestimmt. Zuerst wird das Magnetaufzeichnungsmedium 10 mit einer Breite von 1/2 Zoll vorbereitet und in eine Länge von 250 mm geschnitten, um eine Probe zu produzieren. Danach werden die Schichten der Probe außer der Basis 11, d. h. die Unterschicht 12, die Magnetschicht 13 und die Rückschicht 14, mit einem Lösungsmittel, wie etwa MEK (Methylethylketon) oder verdünnter Salzsäure, entfernt. Danach wird eine Messeinrichtung, Laser Hologage (LGH-1 10C), hergestellt durch Mitutoyo Corporation, zum Messen der Dicke der Probenbasis 11 an fünf Punkten oder mehr verwendet. Danach werden diese Messwerte einfach gemittelt (arithmetisch gemittelt), um eine durchschnittliche Dicke der Basis 11 zu berechnen. Es wird angemerkt, dass die Messpunkte zufällig auf der Probe gewählt werden.The average thickness of the base 11 is determined as follows. First, the magnetic recording medium 10 is prepared with a width of 1/2 inch and cut into a length of 250mm to produce a sample. Thereafter, the layers of the sample except for the base 11, i. H. the undercoating layer 12, the magnetic layer 13 and the backing layer 14, are removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid. Thereafter, a measuring device, Laser Hologage (LGH-1 10C) manufactured by Mitutoyo Corporation, is used to measure the thickness of the sample base 11 at five points or more. Thereafter, these measurements are simply averaged (arithmetically averaged) to calculate an average thickness of the base 11 . It is noted that the measurement points are chosen randomly on the sample.

Die Basis 11 enthält zum Beispiel Polyester als ein Primärbestandteil. Die Basis 11 kann zusätzlich zu Polyestern wenigstens eines von Polyolefinen, Zellulosederivaten, vinylbasierten Harzen oder anderen polymeren Harzen beinhalten. Falls die Basis 11 zwei oder mehr der dieser Materialien enthält, können die zwei oder mehr Materialien vermischt, copolymerisiert oder laminiert werden.The base 11 contains, for example, polyester as a primary component. The base 11 may include at least one of polyolefins, cellulose derivatives, vinyl-based resins, or other polymeric resins in addition to polyesters. If the base 11 contains two or more of these materials, the two or more materials may be mixed, copolymerized, or laminated.

Die Polyester, die in der Basis 11 enthalten sind, beinhalten zum Beispiel wenigstens eines von PET (Polyethylenterephthalat), PEN (Polyethylennaphthalat), PBT (Polybutylenterephthalat), PBN (Polybutylennaphthalat), PCT (Polycyclohexylendimethylenterephthalat), PEB (Polyethylen-p-oxybenzoat) oderPolyethylenbisphenoxycarboxylat.The polyesters included in the base 11 include, for example, at least one of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate), PCT (polycyclohexylenedimethylene terephthalate), PEB (polyethylene p-oxybenzoate) orpolyethylene bisphenoxycarboxylate.

Die Polyolefine, die in der Basis 11 enthalten sind, enthalten zum Beispiel wenigstens eines von PE (Polyethylen) oder PP (Polypropylen). Die Cellulosederivate enthalten zum Beispiel wenigstens eines von Cellulosediacetat, Cellulosetriacetat, CAB (Celluloseacetatbutyrat) oder CAP (Celluloseacetatpropionat). Die vinylbasierten Harze enthalten zum Beispiel wenigstens eines von PVC (Polyvinylchlorid) oder PVDC (Polyvinylidenchlorid).The polyolefins included in the base 11 include at least one of PE (polyethylene) or PP (polypropylene), for example. The cellulose derivatives include, for example, at least one of cellulose diacetate, cellulose triacetate, CAB (cellulose acetate butyrate), or CAP (cellulose acetate propionate). The vinyl-based resins contain at least one of PVC (polyvinyl chloride) or PVDC (polyvinylidene chloride), for example.

Andere polymere Harze, die in der Basis 11 enthalten sind, beinhalten zum Beispiel wenigstens eines von PA (Polyamid, Nylon), aromatischem PA (aromatischem Polyamid, Aramid), PI (Polyimid), PI (aromatischem Polyimid), PAI (Polyamidimid), aromatischem PAI (aromatischem Polyamidimid), PBO (Polybenzoxazol, zum Beispiel Zylon (eingetragenes Warenzeichen)), Polyether, PEK (Polyetherketon), Polyetherester, PES (Polyethersulfon), PEI (Polyetherimid), PSF (Polysulfon), PPS (Polyphenylensulfid), PC (Polycarbonat), PAR (Polyarylat) oder PU (Polyurethan).Other polymeric resins contained in the base 11 include, for example, at least one of PA (polyamide, nylon), aromatic PA (aromatic polyamide, aramid), PI (polyimide), PI (aromatic chemical polyimide), PAI (polyamideimide), aromatic PAI (aromatic polyamideimide), PBO (polybenzoxazole, for example Zylon (registered trademark)), polyether, PEK (polyetherketone), polyetherester, PES (polyethersulfone), PEI (polyetherimide), PSF ( polysulfone), PPS (polyphenylene sulfide), PC (polycarbonate), PAR (polyarylate) or PU (polyurethane).

(Magnetschicht 13)(magnetic layer 13)

Die Magnetschicht 13 ist eine Aufzeichnungsschicht zum Aufzeichnen von Signalen. Die Magnetschicht 13 enthält zum Beispiel Magnetpulver, ein Bindemittel und ein Gleitmittel. Die Magnetschicht 13 kann femer nach Bedarf ein Additiv, wie etwa leitfähige Teilchen, einen Abrasivstoff und ein Rostschutzmittel, beinhalten.The magnetic layer 13 is a recording layer for recording signals. The magnetic layer 13 contains, for example, magnetic powder, a binder, and a lubricant. The magnetic layer 13 may further contain an additive such as conductive particles, an abrasive, and a rust preventive, as needed.

Die Magnetschicht 13 weist die Oberfläche 13S auf, die mit mehreren Poren versehen ist. Diese mehreren Poren speichern darin Gleitmittel. Es wird bevorzugt, dass sich die mehreren Poren senkrecht zu der Oberfläche der Magnetschicht 13 erstrecken, um die Lieferung des Gleitmittels zu der Oberfläche 13S der Magnetschicht 13 zu erleichtern. Alternativ dazu können sich manche der mehreren Poren senkrecht erstrecken.The magnetic layer 13 has the surface 13S provided with a plurality of pores. These multiple pores store lubricant within. It is preferable that the plurality of pores extend perpendicularly to the surface of the magnetic layer 13 in order to facilitate the supply of the lubricant to the surface 13S of the magnetic layer 13. Alternatively, some of the multiple pores may extend perpendicularly.

Die Oberfläche 13S der Magnetschicht 13 weist eine arithmetisch gemittelteRauigkeitRa von 2,5 nm oder weniger, bevorzugt 2,2 nm oder weniger, bevorzugter 1,9 nm oder weniger, auf Wenn die arithmetisch gemittelte Rauigkeit Ra 2,5 nm oder weniger beträgt, ist es möglich, exzellente elektromagnetische Umwandlungscharakteristiken zu erhalten. Der untere Grenzwert der arithmetisch gemittelten Rauigkeit Ra der Oberfläche 13S der Magnetschicht 13 kann bevorzugt 1,0 nm oder mehr, bevorzugter 1,2 nm oder mehr, noch weiter bevorzugt 1,4 nm oder mehr betragen. Wenn der untere Grenzwert der arithmetisch gemittelten Rauigkeit Ra der Oberfläche 13S der Magnetschicht 13 1,0 nm oder mehr beträgt, ist es möglich, eine Abnahme der Bewegungsleistungsfähigkeit aufgrund einer Zunahme der Reibung zu unterdrücken.The surface 13S of the magnetic layer 13 has an arithmetic mean roughness Ra of 2.5 nm or less, preferably 2.2 nm or less, more preferably 1.9 nm or less when the arithmetic mean roughness Ra is 2.5 nm or less it possible to obtain excellent electromagnetic conversion characteristics. The lower limit of the arithmetic mean roughness Ra of the surface 13S of the magnetic layer 13 may preferably be 1.0 nm or more, more preferably 1.2 nm or more, still more preferably 1.4 nm or more. When the lower limit of the arithmetic mean roughness Ra of the surface 13S of the magnetic layer 13 is 1.0 nm or more, it is possible to suppress a decrease in moving performance due to an increase in friction.

Die arithmetisch gemittelte Rauigkeit Ra der Oberfläche 13S wird wie folgt berechnet. Zuerst wird die Oberfläche der Magnetschicht 13 unter Verwendung eines AFM (Atomic Force Microscope - Rasterkraftmikroskop) beobachtet, um ein AFM-Bild von 40 µm × 40 µm zu erhalten. Als das AFM wird ein Nano Scope IIIa D3100, hergestellt durch Digital Instruments Co., Ltd., verwendet und es wird ein Cantilever, der aus einem Siliciumeinkristall gefertigt ist, verwendet. Die Messung wird durch Abstimmen einer Tapping-Frequenz innerhalb eines Bereichs von 200 Hz bis 400 Hz durchgeführt. Der Cantilever kann zum Beispiel „SPM-probe NCH normal-type PointPrebe L (Cantilever-Länge) =125 µm“, hergestellt von NanoWorld AG, sein. Als Nächstes wird das AFM-Bild in 512 × 512 (= 262.144) Messpunkte aufgeteilt. Die Höhen Z(i) (I: Messungspunktzahl, i = 1 bis 262.144) werden an jedem der Messpunkte gemessen und die Höhen Z(i) der Messpunkte werden einfach gemittelt (arithmetisch gemittelt), um eine durchschnittliche Höhe (durchschnittliche Ebene) Zdurchschn (= (Z(1) + Z(2) + ... + Z(262.144))/262.144) zu erhalten. Anschließend wird eine Standardabweichung Z"(i)(= |Z(i) - Zdurchschn|) jedes der Messpunkte von der durchschnittlichen Mittellinie erhalten und wird die arithmetisch gemittelte Rauigkeit Ra [nm] (=(Z"(1) + Z"(2) + ... + Z"(262.144)y262.144) berechnet. In diesem Fall werden Daten verwendet, die durch Bildverarbeitung, wie etwa einen Filterprozess, der durch Platten order2 und Planefit order3 XY, verarbeitet werden.The arithmetic mean roughness Ra of the surface 13S is calculated as follows. First, the surface of the magnetic layer 13 is observed using an AFM (Atomic Force Microscope) to obtain an AFM image of 40 µm × 40 µm. As the AFM, a Nano Scope IIIa D3100 manufactured by Digital Instruments Co., Ltd. is used, and a cantilever made of silicon single crystal is used. The measurement is performed by tuning a tapping frequency within a range of 200 Hz to 400 Hz. For example, the cantilever may be “SPM-probe NCH normal-type PointPrebe L (cantilever length) =125 µm” manufactured by NanoWorld AG. Next, the AFM image is divided into 512 × 512 (= 262,144) measurement points. The heights Z(i) (I: measurement point number, i = 1 to 262,144) are measured at each of the measurement points, and the heights Z(i) of the measurement points are simply averaged (arithmetic average) to find an average height (average level) Zavg ( = (Z(1) + Z(2) + ... + Z(262.144))/262.144). Then, a standard deviation Z"(i)(= |Z(i) - Zavg|) of each of the measurement points from the mean center line is obtained and the arithmetic mean roughness Ra [nm] (=(Z"(1) + Z"( 2) + ... + Z"(262.144)y262.144) is calculated. In this case, data processed by image processing such as a filtering process performed by Plates order2 and Planefit order3 XY is used.

Außerdem ist es wünschenswert, dass in der Magnetschicht 13 eine PSD (Power Spectrum Density - Leistungsspektraldichte) bis zu einer räumlichen Wellenlänge von 5 µm zum Beispiel 2,5 µm oder weniger beträgt. Durch Unterdrücken der PSD bis zu einem vorbestimmten Wert oder weniger ist es möglich, eine Beabstandung zwischen dem Aufzeichnung/Wiedergabe-Kopf und dem bandartigen Magnetaufzeichnungsmedium 10 zur Zeit des Aufzeichnens und Wiedergebens zu reduzieren, wodurch das Magnetaufzeichnungsmedium 10 für eine hohe Aufzeichnungsdichte geeignet gemacht wird. Die PSD wird wie folgt gemessen. Analysemodus-Power-Spectral-Density (beigefügte Analysesoftware) wird an den gefilterten Daten ausgeführt, die in Absatz 0022 oben beschrieben sind. Aus den gemessenen Daten werden nur die Daten entlang der Longitudinalrichtung (X) der Probe ausgewählt und als zu analysierende Daten verarbeitet. Die zu analysierenden Daten werden in dem ASC-Dateiformat gespeichert und dann in der Form einer Excel-Datei verarbeitet. Aus Daten über die Amplituden von Frequenzen werden die Daten über eine Amplitude von 5 µm oder weniger summiert, um die PDS zu berechnen.In addition, it is desirable that in the magnetic layer 13, a PSD (Power Spectrum Density) up to a spatial wavelength of 5 µm is, for example, 2.5 µm or less. By suppressing the PSD to a predetermined value or less, it is possible to reduce a spacing between the recording/reproducing head and the tape-like magnetic recording medium 10 at the time of recording and reproducing, thereby making the magnetic recording medium 10 suitable for high recording density. The PSD is measured as follows. Analysis mode Power Spectral Density (accompanying analysis software) is performed on the filtered data described in paragraph 0022 above. From the measured data, only the data along the longitudinal direction (X) of the sample is selected and processed as data to be analyzed. The data to be analyzed is saved in the ASC file format and then processed in the form of an Excel file. From data on the amplitudes of frequencies, the data on an amplitude of 5 µm or less are summed to calculate the PDS.

Der untere Grenzwert einer gesamten spezifischen BET-Oberfläche des Magnetaufzeichnungsmediums 10, von dem das Gleitmittel entfernt wurde, beträgt 2,5 m2/g oder mehr, bevorzugt 3,0 m2/g oder mehr, bevorzugter 3,5 m2/g oder mehr, noch weiter bevorzugt 4,0 m2/g oder mehr. Wenn der untere Grenzwert der spezifischen BET-Oberfläche 2,5 m2/g oder mehr beträgt, ist es möglich, eine Abnahme der Menge an Gleitmittel zu unterdrücken, das zwischen die Oberfläche der Magnetschicht 13 und den Magnetkopf geliefert wird, selbst nach wiederholter Aufzeichnung oder Wiedergabe (d. h., selbst nachdem sich der Magnetkopf wiederholt bewegt, während er sich in Kontakt mit der Oberfläche des Magnetaufzeichnungsmediums 10 befindet). Daher ist es möglich, eine Zunahme des dynamischen Reibungskoeffizienten zu unterdrücken.The lower limit of a total BET specific surface area of the lubricant-removed magnetic recording medium 10 is 2.5 m 2 /g or more, preferably 3.0 m 2 /g or more, more preferably 3.5 m 2 /g or more, more preferably 4.0 m 2 /g or more. When the lower limit of the BET specific surface area is 2.5 m 2 /g or more, it is possible to decrease the amount of lubricant supplied between the surface of the magnetic layer 13 and the magnetic head even after repeated recording or reproduction (ie, even after the magnetic head repeatedly moves while being in contact with the surface of the magnetic recording medium 10). Therefore, it is possible to suppress an increase in dynamic friction coefficient.

Der obere Grenzwert der gesamten spezifischen BET-Oberfläche des Magnetaufzeichnungsmediums 10, von dem das Gleitmittel entfernt wurde, beträgt bevorzugt 7 m2/g oder weniger, bevorzugter 6 m2/g oder weniger, noch weiter bevorzugt 5,5 m2/g oder weniger. Wenn der obere Grenzwert der spezifischen BET-Oberfläche 7 m2/g oder weniger beträgt, ist es möglich, das Gleitmittel ausreichend bereitzustellen, ohne einen Mangel des Gleitmittels, selbst nach mehreren Bewegungen, zu verursachen. Daher ist es möglich, eine Zunahme des dynamischen Reibungskoeffizienten zu unterdrücken.The upper limit of the total BET specific surface area of the magnetic recording medium 10 from which the lubricant has been removed is preferably 7 m 2 /g or less, more preferably 6 m 2 /g or less, still more preferably 5.5 m 2 /g or fewer. When the upper limit of the BET specific surface area is 7 m 2 /g or less, it is possible to supply the lubricant sufficiently without causing shortage of the lubricant even after multiple movements. Therefore, it is possible to suppress an increase in dynamic friction coefficient.

Hier verweist das Magnetaufzeichnungsmedium 10, von dem das Gleitmittel entfernt wurde, auf das Magnetaufzeichnungsmedium 10, das für 24 Stunden in Hexan bei Raumtemperatur eingetaucht und natürlich getrocknet wurde, nachdem es aus dem Hexan herausgenommen wurde.Here, the magnetic recording medium 10 from which the lubricant has been removed refers to the magnetic recording medium 10 which has been immersed in hexane at room temperature for 24 hours and naturally dried after being taken out from the hexane.

Die spezifische BET-Oberfläche wird wie folgt bestimmt.The BET specific surface area is determined as follows.

Zuerst wird das Magnetaufzeichnungsmedium 10 miteinerum etwa10 %bezüglichder Fläche größeren Größe als 0,1265 m2 für 24 Stunden in Hexan (dessen Menge ausreicht, um das Magnetaufzeichnungsmedium zu durchtränken, z. B. 150 ml Hexan) eingetaucht, dann natürlich getrocknet. Danach wird das Magnetaufzeichnungsmedium 10 in eine Größe mit einer Fläche von 0,1265 m2 geschnitten (z. B. wird das Magnetaufzeichnungsmedium 1, nachdem es getrocknet wurde, an beiden Enden um 50 cm geschnitten, um das Magnetaufzeichnungsmedium 10 mit einer Breite von 10 m vorzubereiten. Eine Messungsprobe wird dadurch produziert. Als Nächstes wird eine spezifische BET-Oberfläche unter Verwendung einer Einrichtung zur Messung der spezifischen Oberfläche und der Porenverteilung bestimmt. Die Messungseinrichtung und die Messungsbedingungen sind unten beschrieben.
Messungsumgebung: Raumtemperatur
Messungseinrichtung: 3FLEX, hergestellt durch Micromeritics
Messungsadsorbat: N2-Gas
Messungsdruckbereich (P/P0): 0 bis 0,995
Innerhalb des oben beschriebenen Messungsdruckbereichs wird der Druck wie in Tabelle 1 unten variiert. Die Druckwerte in Tabelle 1 unten sind jeweils ein relativer Druck P/P0. Zum Beispiel wird in Schritt 1 in der folgenden Tabelle der Druck von einem Anfangsdruck von 0,000 zu einem Enddruck von 0,010 geändert, so dass er sich um 0,001 pro 10 Sekunden ändert. Wenn der Druck den Enddruck erreicht, wird eine weitere Druckänderung in dem nächsten Schritt durchgeführt. Das gleiche gilt für Schritte 2 bis 10. Falls jedoch der Druck nicht in jedem Schritt ein Gleichgewicht erreicht hat, wartet die Einrichtung auf das Gleichgewicht des Drucks, bevor sie zu dem nächsten Schritt übergeht. [Tabelle 1] Schritt Anfangsdruck Druckänderung Enddruck 1 0,000 0,001/10s 0,010 2 0,010 0,02/10s 0,100 3 0,100 0,05/10s 0,600 4 0,600 0,05/10s 0,950 5 0,950 0,05/10s 0,990 6 0,990 0,05/10s 0,995 7 0,995 0,01/10s 0,990 8 0,990 0,01/10s 0,950 9 0,950 0,05/10s 0,600 10 0,600 0,05/10s 0,300
First, the magnetic recording medium 10 having a size larger than 0.1265 m 2 by about 10% by area is immersed in hexane (the amount of which is sufficient to saturate the magnetic recording medium, e.g. 150 ml of hexane) for 24 hours, then naturally dried. Thereafter, the magnetic recording medium 10 is cut into a size having an area of 0.1265 m 2 (e.g., the magnetic recording medium 1, after being dried, is cut by 50 cm at both ends to obtain the magnetic recording medium 10 having a width of 10 m. A measurement sample is thereby produced. Next, a BET specific surface area is determined using a specific surface area and pore distribution measuring device. The measuring device and the measurement conditions are described below.
Measurement environment: room temperature
Measuring device: 3FLEX manufactured by Micromeritics
Measurement adsorbate: N 2 gas
Measurement pressure range (P/P0): 0 to 0.995
Within the measurement pressure range described above, the pressure is varied as in Table 1 below. The pressure values in Table 1 below are each a relative pressure P/P0. For example, in step 1 in the table below, the pressure is changed from an initial pressure of 0.000 to an end pressure of 0.010, so that it changes by 0.001 per 10 seconds. When the pressure reaches the final pressure, another pressure change is made in the next step. The same applies to steps 2 through 10. However, if the pressure has not reached equilibrium in each step, the device waits for the pressure to reach equilibrium before proceeding to the next step. [Table 1] Step initial pressure pressure change final pressure 1 0.000 0.001/10s 0.010 2 0.010 0.02/10s 0.100 3 0.100 0.05/10s 0.600 4 0.600 0.05/10s 0.950 5 0.950 0.05/10s 0.990 6 0.990 0.05/10s 0.995 7 0.995 0.01/10s 0.990 8th 0.990 0.01/10s 0.950 9 0.950 0.05/10s 0.600 10 0.600 0.05/10s 0.300

Der obere Grenzwert der durchschnittlichen Dicke der Magnetschicht 13 beträgt bevorzugt 90 nm oder weniger, besonders bevorzugt 80 nm oder weniger, bevorzugter 70 nm oder weniger, noch weiter bevorzugt 60 nm oder weniger. Falls der obere Grenzwert der durchschnittlichen Dicke der Magnetschicht 13 90 nm oder weniger beträgt und ein Kopf vom Ringtyp als der Aufzeichnungskopfverwendet wird, ist es möglich, Magnetisierungen einheitlich in der Dickenrichtung der Magnetschicht 13 aufzuzeichnen und dementsprechend die elektromagnetischen Umwandlungscharakteristiken zu verbessern. Außerdem ist es, wenn der obere Grenzwert der durchschnittlichen Dicke der Magnetschicht 13 90 nm oder weniger beträgt, möglich, die halbe Breite einer solitären Wellenform in einer wiedergegebenen Wellenform eines Datensignals (zum Beispiel 200 nm oder weniger) zu verschmälem und dementsprechend die Spitzen der wiedergegebenen Wellenform des Datensignals spitzer zu machen. Dies verbessert die Genauigkeit beim Lesen des Datensignals. Es ist daher möglich, die Datenaufzeichnungsdichte durch Erhöhen der Anzahl der Aufzeichnungsspuren zu verbessern.The upper limit of the average thickness of the magnetic layer 13 is preferably 90 nm or less, more preferably 80 nm or less, more preferably 70 nm or less, still more preferably 60 nm or less. If the upper limit of the average thickness of the magnetic layer 13 is 90 nm or less and a ring type head is used as the recording head, it is possible to record magnetizations uniformly in the thickness direction of the magnetic layer 13 and accordingly improve electromagnetic conversion characteristics. In addition, when the upper limit of the average thickness of the magnetic layer 13 is 90 nm or less, it is possible to narrow the half width of a solitary waveform in a reproduced waveform of a data signal (for example, 200 nm or less) and accordingly the peaks of the reproduced to sharpen the waveform of the data signal. This improves the accuracy of reading the data signal. It is therefore possible to improve data recording density by increasing the number of recording tracks.

Der untere Grenzwert der durchschnittlichen Dicke der Magnetschicht 13 beträgt bevorzugt 35 nm oder mehr. Falls der obere Grenzwert der durchschnittlichen Dicke der Magnetschicht 13 35 nm oder mehr beträgt und ein Kopf vom MR-Typ als der Wiedergabekopf verwendet wird, ist es möglich, die Ausgabe sicherzustellen und dementsprechend die elektromagnetischen Umwandlungscharakteristiken zu verbessern.The lower limit of the average thickness of the magnetic layer 13 is preferably 35 nm or more. If the upper limit of the average thickness of the magnetic layer 13 is 35 nm or more and an MR type head is used as the reproducing head, it is possible to ensure the output and accordingly improve the electromagnetic conversion characteristics.

Die durchschnittliche Dicke der Magnetschicht 13 wird wie folgt bestimmt. Zuerst werden Kohlenstofffilme auf der Oberfläche 13S der Magnetschicht 13 des Magnetaufzeichnungsmediums 10 und einer Oberfläche 14S der Rückschicht 14 des Magnetaufzeichnungsmediums 10 durch ein Abscheidungsverfahren gebildet. Danach wird femer ein Wolftamdünnfilm auf dem Kohlenstofffilm, der die Oberfläche 13S der Magnetschicht 13 bedeckt, durch ein Abscheidungsverfahren gebildet. Diese Kohlenstofffilme und dieser Wolframfilm schützen die Probe während eines später beschriebenen Dünnungsprozesses.The average thickness of the magnetic layer 13 is determined as follows. First, carbon films are formed on the surface 13S of the magnetic layer 13 of the magnetic recording medium 10 and a surface 14S of the back layer 14 of the magnetic recording medium 10 by a deposition method. Thereafter, a tungsten thin film is further formed on the carbon film covering the surface 13S of the magnetic layer 13 by a deposition method. These carbon films and tungsten film protect the sample during a thinning process described later.

Als Nächstes wird das Magnetaufzeichnungsmedium 10 durch zum Beispiel ein FIB(Focused Ion Beam - fokussierter Ionenstrahl)-Verfahren zu einem dünnen Stück verarbeitet. Falls das FIB-Verfahren verwendet wird, wird die Bildung der Kohlenstofffilme und des Wolframdünnfilms, die als der Schutzfilm dienen, als eine Vorbehandlung zum Beobachten eines später beschriebenen Querschnitt-TEM-Bildes durchgeführt. Die Kohlenstofffilme werden durch ein Abscheidungsverfahren auf einer Oberfläche des Magnetaufzeichnungsmediums 10 angrenzend an die Magnetschicht und einer Oberfläche des Magnetaufzeichnungsmedium 10 angrenzend an die Rückschicht gebildet. Der Wolframdünnfilm wird dann durch ein Abscheidungsverfahren oder ein Sputterverfahren femer auf der Oberfläche angrenzend an die Magnetschicht gebildet. Das Dünnen wird entlang der Längenrichtung (Longitudinalrichtung) des Magnetaufzeichnungsmediums 10 durchgeführt. Das heißt, das Dünnen bildet einen Querschnitt parallel zu sowohl der longitudinalen Richtung als auch der Dickenrichtung des Magnetaufzeichnungsmediums 10. Der Querschnitt des erhaltenen dünnen Probenstücks wird unter Beobachtung eines Transmissionselektronenmikroskops (TEM) unter den folgenden Bedingungen beobachtet, um ein TEM-Bild zu erhalten. Es ist anzumerken, dass Vergrößerung und Beschleunigungsspannung in Abhängigkeit von dem Typ der Einrichtung geeignet angepasst werden können.
Einrichtung: TEM (H9000NAR, hergestellt durch Hitachi, Ltd.)
Beschleunigungsspannung: 300 kV
Vergrößerung: 100.000-fach
Next, the magnetic recording medium 10 is processed into a thin piece by, for example, a FIB (Focused Ion Beam) method. If the FIB method is used, the formation of the carbon films and the tungsten thin film serving as the protective film is performed as a pretreatment for observing a cross-sectional TEM image described later. The carbon films are formed by a deposition method on a surface of the magnetic recording medium 10 adjacent to the magnetic layer and a surface of the magnetic recording medium 10 adjacent to the back layer. The tungsten thin film is then further formed on the surface adjacent to the magnetic layer by a deposition method or a sputtering method. The thinning is performed along the length direction (longitudinal direction) of the magnetic recording medium 10 . That is, the thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic recording medium 10. The cross section of the thin specimen obtained is observed under the observation of a transmission electron microscope (TEM) under the following conditions to obtain a TEM image. Note that magnification and acceleration voltage can be appropriately adjusted depending on the type of device.
Equipment: TEM (H9000NAR manufactured by Hitachi, Ltd.)
Accelerating Voltage: 300KV
Magnification: 100,000x

Das erhaltene TEM-Bild wird dann zum Messen der Dicke der Magnetschicht 13 an 10 Punkten oder mehr entlang der longitudinalen Richtung des Magnetaufzeichnungsmediums 10 verwendet. Die erhaltenen Messwerte werden einfach gemittelt (arithmetisch gemittelt), um die durchschnittliche Dicke der Magnetschicht 13 zu bestimmen. Es wird angemerkt, dass die Messpunkte zufällig auf dem Probenstück ausgewählt werden.The obtained TEM image is then used to measure the thickness of the magnetic layer 13 at 10 points or more along the longitudinal direction of the magnetic recording medium 10. FIG. The measured values obtained are simply averaged (arithmetically averaged) to determine the average thickness of the magnetic layer 13 . It is noted that the measurement points are randomly selected on the specimen.

(Magnetpulver)(magnetic powder)

Das Magnetpulver enthält zum Beispiel Nanoteilchenpulver, die ε-Esenoxid (nachfolgend als „ε-Esenoxidteilchen“ bezeichnet) beinhalten. Selbst wenn die ε-Eisenoxidteilchen Feinteilchen sind, ist es möglich, eine hohe Koerzivität zu erhalten. Es wird bevorzugt, dass das ε-Eisenoxid, das in dem ε-Eisenoxidteilchen enthalten ist, bevorzugt kristallografisch in der Dickenrichtung des Magnetaufzeichnungsmediums 10 orientiert ist.The magnetic powder includes, for example, nanoparticle powders containing ε-esenic oxide (hereinafter referred to as “ε-esenic oxide particles”). Even when the ε-iron oxide particles are fine particles, it is possible to obtain high coercivity. It is preferable that the ε-iron oxide contained in the ε-iron oxide particle is preferentially crystallographically oriented in the thickness direction of the magnetic recording medium 10 .

2 ist eine Querschnittsansicht eines ε-Esenoxidteilchens 20, das in der Magnetschicht 13 enthalten ist, zum schematischen Veranschaulichen einer beispielhaften Querschnittskonfiguration des ε-Eisenoxidteilchens 20. Wie in 2 veranschaulicht, weist das ε-Eisenoxidteilchen 20 eine sphärische oder im Wesentlichen sphärische Form oder eine kubische oder im Wesentlichen kubische Form auf Da die ε-Eisenoxidteilchen 20 eine wie oben erwähnte Form aufweisen, ist es, wenn die ε-Eisenoxidteilchen 20 als Magnetteilchen verwendet werden, möglich die Kontaktfläche zwischen den Teilchen in der Dickenrichtung des Magnetaufzeichnungsmediums 10 zu reduzieren und dementsprechend eine Aggregation der Teilchen im Vergleich zu dem Fall des Verwendens hexagonaler plattenförmiger Bariumferritteilchen als die Magnetteilchen zu unterdrücken. Daher ist es möglich, eine verbesserte Dispergierbarkeit der Magnetpulver und ein vorteilhaftes SNR (Signal-to-Noise Ratio - Signal-RauschVerhältnis) zu erhalten. 2 FIG. 14 is a cross-sectional view of an ε-iron oxide particle 20 contained in the magnetic layer 13 for schematically illustrating an exemplary cross-sectional configuration of the ε-iron oxide particle 20. As in FIG 2 As illustrated, the ε-iron oxide particle 20 has a spherical or substantially spherical shape, or a cubic or substantially cubic shape. Since the ε-iron oxide particles 20 have a shape as mentioned above, it is when the ε-iron oxide particles 20 are used as magnetic particles , it is possible to reduce the contact area between the particles in the thickness direction of the magnetic recording medium 10 and accordingly to suppress aggregation of the particles compared to the case of using hexagonal plate-shaped barium ferrite particles as the magnetic particles. Therefore, it is possible to obtain an improved dispersibility of the magnetic powders and a favorable SNR (Signal-to-Noise Ratio).

Das ε-Esenoxidteilchen 20 weist zum Beispiel eine Kem-Hülle(Core-Shell)-Struktur auf Insbesondere beinhaltet, wie in 2 veranschaulicht, das ε-Eisenoxidteilchen 20 einen Kernteil 21 und einen Hüllenteil 22 mit einer Zweischichtstruktur, die um den Kemteil 21 herum bereitgestellt ist. Die Zweischichtstruktur des Hüllenteils 22 beinhaltet einen ersten Hüllenteil 22a, der auf dem Kernteil 21 bereitgestellt ist, und einen zweiten Hüllenteil 22b, der auf dem ersten Hüllenteil 22a bereitgestellt ist.The ε-esene oxide particle 20 has, for example, a core-shell structure 2 Illustratively, the ε-iron oxide particle 20 has a core portion 21 and a shell portion 22 having a two-layer structure provided around the core portion 21 . The two-layer structure of the skin part 22 includes a first skin part 22a provided on the core part 21 and a second skin part 22b provided on the first skin part 22a.

Der Kemteil 21 des ε-Eisenoxidteilchens 20 enthält ε-Eisenoxid. Das in dem Kemteil 21 enthaltene ε-Eisenoxid beinhaltet bevorzugt ε-Fe2O3-Kristalle als eine Hauptphase, bevorzugter eine einzige Phase aus ε-Fe2O3.The core part 21 of the ε-iron oxide particle 20 contains ε-iron oxide. The ε-iron oxide contained in the core part 21 preferably includes ε-Fe 2 O 3 crystals as a main phase, more preferably a single phase of ε-Fe 2 O 3 .

Der erste Hüllenteil 22a bedeckt wenigstens einen Teil der Peripherie des Kernteils 21. Insbesondere kann der erste Hüllenteil 22a die Peripherie des Kernteils 21 teilweise bedecken oder kann die gesamte Peripherie des Kernteils 21 bedecken. Von dem Gesichtspunkt des Sicherstellens einer ausreichenden Austauschkopplung zwischen dem Kemteil 21 und dem ersten Hüllenteil 22a und des Verbessems magnetischer Charakteristiken ist es vorteilhaft, die gesamte Oberfläche des Kernteils 21 zu bedecken.The first shell portion 22a covers at least part of the periphery of the core portion 21. Specifically, the first shell portion 22a may partially cover the periphery of the core portion 21 or may cover the entire periphery of the core portion 21. It is advantageous to cover the entire surface of the core part 21 from the viewpoint of ensuring sufficient exchange coupling between the core part 21 and the first shell part 22a and improving magnetic characteristics.

Der erste Hüllenteil 22a ist eine sogenannte weichmagnetische Schicht und enthält zum Beispiel ein weichmagnetisches Material, wie etwa α-Fe, eine Ni-Fe-Legierung oder eine Fe-Si-Al-Legierung. Das α-Fe kann durch Reduzieren des in dem Kemteil 21 enthaltenen ε-Eisenoxids erhalten werden.The first shell part 22a is a so-called soft magnetic layer and contains, for example, a soft magnetic material such as α-Fe, a Ni-Fe alloy, or an Fe-Si-Al alloy. The α-Fe can be obtained by reducing the ε-iron oxide contained in the core part 21 .

Der zweite Hüllenteil 22b ist ein Oxidfilm, der als eine Antioxidationsschicht dient. Der zweite Hüllenteil 22b enthält α-Esenoxid, Aluminiumoxid oder Siliciumoxid. Das α-F-isenoxid beinhaltet zum Beispiel wenigstens ein Eisenoxid von Fe3O4, Fe2O3 oder FeO. Wenn der erste Hüllenteil 22a α-Fe (ein weichmagnetisches Material) enthält, kann das α-F-isenomd erhalten werden, indem das in dem ersten Hüllenteil 22a enthaltene α-Fe oxidiert wird.The second shell part 22b is an oxide film serving as an anti-oxidation layer. The second shell part 22b contains α-esene oxide, aluminum oxide or silicon oxide. The α-F iron oxide includes, for example, at least one of Fe 3 O 4 , Fe 2 O 3 or FeO. When the first shell portion 22a contains α-Fe (a soft magnetic material), the α-F isonomed can be obtained by oxidizing the α-Fe contained in the first shell portion 22a.

Da das ε-Eisenoxidteilchen 20 einen ersten Hüllenteil 22a, wie oben beschrieben, aufweist, ist es möglich, die Koerzitivität Hc des gesamten ε-Eisenoxidteilchens (Kem-Hülle-Teilchens) 20 auf eine Koerzitivität Hc anzupassen, die zum Aufzeichnen geeignet ist, während die Koerzitivität Hc des Kernteils 21 allein auf einem großen Wert beibehalten wird, um eine thermische Stabilität sicherzustellen. Da das ε-Eisenoxidteilchen 20 den zweiten Hüllenteil 22b, wie oben beschrieben, aufweist, ist es außerdem möglich, eine Verschlechterung der Charakteristiken des ε-Eisenoxidteilchens 20 aufgrund von Rost oder dergleichen zu unterdrücken, der auf der Teilchenoberfläche durch Aussetzen der ε-Eisenoxidteilchen 20 gegenüber Luft während oder vor dem Herstellungsprozess des Magnetaufzeichnungsmediums 10 erzeugt wird. Daher ist es möglich, die Charakteristikverschlechterung des Magnetaufzeichnungsmediums 10 durch Bedecken des ersten Hüllenteils 22a mit dem zweiten Hüllenteil 22b zu unterdrücken.Since the ε-iron oxide particle 20 has a first shell portion 22a as described above, it is possible to adjust the coercivity Hc of the entire ε-iron oxide particle (core-shell particle) 20 to a coercivity Hc suitable for recording while the coercivity Hc of the core portion 21 alone is maintained at a large value to ensure thermal stability. In addition, since the ε-iron oxide particle 20 has the second shell portion 22b as described above, it is possible to suppress deterioration in the characteristics of the ε-iron oxide particle 20 due to rust or the like generated on the particle surface by exposing the ε-iron oxide particles 20 to air is generated during or before the manufacturing process of the magnetic recording medium 10. Therefore, it is possible to suppress the characteristic deterioration of the magnetic recording medium 10 by covering the first case part 22a with the second case part 22b.

Die durchschnittliche Teilchengröße (durchschnittliche maximale Teilchengröße) der Magnetpulver beträgt bevorzugt 25 nm oder weniger, bevorzugter 8 nm oder mehr und 22 nm oder weniger, noch weiter bevorzugt 12 nm oder mehr und 22 nm oder weniger. In dem Magnetaufzeichnungsmedium 10 entspricht ein Gebiet mit einer Größe der halben Aufzeichnungswellenlänge einem tatsächlichen Magnetisierungsgebiet. Daher ist es möglich, ein vorteilhaftes S/N zu erhalten, indem die durchschnittliche Teilchengröße der Magnetpulver auf die Hälfte oder weniger der kürzesten Aufzeichnungswellenlänge eingestellt wird. Daher ist es, wenn die durchschnittliche Teilchengröße der Magnetpulver 22 nm oder weniger beträgt, möglich, vorteilhafte elektromagnetische Umwandlungscharakteristiken (z. B. SNR) des Magnetaufzeichnungsmediums 10 mit einer hohen Aufzeichnungsdichte (z. B. des Magnetaufzeichnungsmediums 10, das so konfiguriert ist, dass es zum Aufzeichnen von Signalen mit der kürzesten Aufzeichnungswellenlänge von 50 nm oder weniger in der Lage ist) zu erhalten. Dagegen ist es, wenn die durchschnittliche Teilchengröße der Magnetpulver 8 nm oder mehr beträgt, möglich, die Dispergierbarkeit der Magnetpulver weiter zu verbessern und dementsprechend exzellente elektromagnetische Umwandlungscharakteristiken (z. B. SNR) zu erhalten.The average particle size (average maximum particle size) of the magnetic powders is preferably 25 nm or less, more preferably 8 nm or more and 22 nm or less, still more preferably 12 nm or more and 22 nm or less. In the magnetic recording medium 10, a region having a size of half the recording wavelength corresponds to an actual magnetization region. Therefore, it is possible to obtain favorable S/N by setting the average particle size of the magnetic powders to 1/2 or less of the shortest recording wavelength. Therefore, when the average particle size of the magnetic powders is 22 nm or less, it is possible to obtain advantageous electromagnetic conversion characteristics (e.g. SNR) of the magnetic recording medium 10 with a high recording density (e.g. the magnetic recording medium 10 configured so that it is capable of recording signals with the shortest recording wavelength of 50 nm or less). On the other hand, it is when the average particle size of the magnetic powder is 8 nm or more, it is possible to further improve the dispersibility of the magnetic powders and accordingly obtain excellent electromagnetic conversion characteristics (e.g. SNR).

Das durchschnittliche Aspektverhältnis der Magnetpulver beträgt bevorzugt 1,0 oder mehr und 3,0 oder weniger, bevorzugter 1,0 oder mehr und 2,8 oder weniger, noch weiter bevorzugt 1,0 oder mehr und 2,0 oder weniger. Wenn das durchschnittliche Aspektverhältnis der Magnetpulver innerhalb des Bereichs von 1 bis einschließlich 3,0 liegt, ist es mögliche, eine Agglomeration der Magnetpulver zu unterdrücken und einen Widerstand, der auf die Magnetpulver angewandt wird, wenn die Magnetpulver in dem Prozess zum Bilden der Magnetschicht 13 senkrecht orientiert werden, zu unterdrücken. Daher ist es möglich, die senkrechte Orientierung der Magnetpulver zu verbessern.The average aspect ratio of the magnetic powders is preferably 1.0 or more and 3.0 or less, more preferably 1.0 or more and 2.8 or less, still more preferably 1.0 or more and 2.0 or less. When the average aspect ratio of the magnetic powders is within the range of 1 to 3.0 inclusive, it is possible to suppress agglomeration of the magnetic powders and resistance applied to the magnetic powders when the magnetic powders are used in the process of forming the magnetic layer 13 are oriented vertically. Therefore, it is possible to improve the perpendicular orientation of the magnetic powders.

Die durchschnittliche Teilchengröße und das durchschnittliche Aspektverhältnis der Magnetpulver werden wie folgt bestimmt. Zuerst wird das zu messende Magnetaufzeichnungsmedium 10 durch zum Beispiel das FIB(Focused Ion Beam)-Verfahren zu einem dünnen Stück verarbeitet. Das Dünnen wird entlang der Längenrichtung (longitudinalen Richtung) des Magnetbandes durchgeführt. Das heißt, das Dünnen bildet einen Querschnitt parallel zu sowohl der longitudinalen Richtung als auch der Dickenrichtung des Magnetaufzeichnungsmediums 10. Der Querschnitt des erhaltenen dünnen Probenstücks wird unter Verwendung eines Transmissionselektronenmikroskops (H-9500, hergestellt durch Hitachi High-Technologies Corporation) mit einer Beschleunigungsspannung von 200 kV und einer 500.000-fachen Gesamtvergrößerung auf eine solche Weise beobachtet, dass die Magnetschicht 13 vollständig in der Dickenrichtung der Magnetschicht 13 enthalten ist. Ein TEM-Bild wird dann erfasst. Als Nächstes werden 50 Teilchen zufällig aus dem erfassten TEM-Bild ausgewählt und die Hauptachsenlänge DL und die Nebenachsenlänge DSjedes Teilchens werden gemessen. Hier verweist die Hauptachsenlänge DL auf die maximale Entfernung zwischen zwei beliebigen parallelen Linien, die unter beliebigen Winkeln so eingezeichnet werden, dass sie den Umriss jedes Teilchens berühren (sogenannter Feret-Durchmesser). Dagegen verweist die Nebenachsenlänge DS auf die maximale Länge des Teilchens in der Richtung senkrecht zu der Hauptachsenlänge DL des Teilchens.The average particle size and the average aspect ratio of the magnet powders are determined as follows. First, the magnetic recording medium 10 to be measured is processed into a thin piece by, for example, the FIB (Focused Ion Beam) method. The thinning is performed along the length direction (longitudinal direction) of the magnetic tape. That is, the thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic recording medium 10. The cross section of the obtained thin sample piece is using a transmission electron microscope (H-9500, manufactured by Hitachi High Technologies Corporation) with an acceleration voltage of 200 kV and a total magnification of 500,000 times in such a manner that the magnetic layer 13 is completely contained in the thickness direction of the magnetic layer 13. A TEM image is then acquired. Next, 50 particles are randomly selected from the acquired TEM image, and the major axis length DL and minor axis length DS of each particle are measured. Here, the major axis length DL refers to the maximum distance between any two parallel lines drawn at any angle so as to touch the outline of each particle (called the Feret diameter). On the other hand, the minor axis length DS refers to the maximum length of the particle in the direction perpendicular to the major axis length DL of the particle.

Anschließend werden die Hauptachsenlängen DL der 50 gemessenen Teilchen einfach gemittelt (arithmetisch gemittelt), um eine durchschnittliche Hauptachsenlänge DLdurchschn zu bestimmten. Die auf diese Weise bestimmte durchschnittliche Hauptachsenlänge DLdurchschn wird als die durchschnittliche Teilchengröße der Magnetpulver definiert. Die Nebenachsenlängen DS der 50 gemessenen Teilchen werden einfach gemittelt (arithmetisch gemittelt), um eine durchschnittliche Nebenachsenlänge DSdurchschn zu bestimmen. Danach wird ein durchschnittliches Aspektverhältnis (DLdurchschn/DSdurchschn) aus der durchschnittlichen Hauptachsenlänge DLdurchschn und der durchschnittlichen Nebenachsenlänge DSdurchschn bestimmt.Then, the major axis lengths DL of the 50 measured particles are simply averaged (arithmetically averaged) to determine an average major axis length DLavg. The average major axis length DLavg thus determined is defined as the average particle size of the magnetic powders. The minor axis lengths DS of the 50 measured particles are simply averaged (arithmetically averaged) to determine an average minor axis length DSavg. Thereafter, an average aspect ratio (DLavg/DSavg) is determined from the average major axis length DLavg and the average minor axis length DSavg.

Das durchschnittliche Teilchenvolumen der Magnetpulver beträgt bevorzugt 2300 nm3 oder weniger, bevorzugter2200 nm3 oder weniger, bevorzugter2100 nm3 oder weniger, bevorzugter 1950nm3 oder weniger, bevorzugter 1600 nm3 oder weniger, noch weiter bevorzugt 1300 nm3 oder weniger. Wenn das durchschnittlichen Teilchenvolumen der Magnetpulver2300 nm3 oder weniger beträgt, ist es möglich, die halbe Breite einer solitären Welle in einer wiedergegebenen Wellenform eines Datensignals (bis 200 nm oder weniger) zu verschmälem und dementsprechend die Spitze der wiedergegebenen Wellenform des Datensignals spitzer zu machen. Dies verbessert die Genauigkeit beim Lesen des Datensignals. Es ist daher möglich, die Datenaufzeichnungsdichte durch Erhöhen der Anzahl der Aufzeichnungsspuren zu verbessern (Einzelheiten werden später beschrieben). Es ist anzumerken, dass das kleinere durchschnittliche Teilchenvolumen der Magnetpulver besser ist und der untere Grenzwert des Volumens daher nicht auf einen speziellen Wert bestimmt ist. Zum Beispiel ist der untere Grenzwert 1000 nm3 oder mehr.The average particle volume of the magnetic powders is preferably 2300 nm 3 or less, more preferably 2200 nm 3 or less, more preferably 2100 nm 3 or less, more preferably 1950 nm 3 or less, more preferably 1600 nm 3 or less, still more preferably 1300 nm 3 or less. When the average particle volume of the magnetic powders is 2300nm 3 or less, it is possible to narrow the half width of a solitary wave in a reproduced waveform of a data signal (to 200nm or less) and accordingly make the peak of the reproduced waveform of the data signal sharper. This improves the accuracy of reading the data signal. It is therefore possible to improve data recording density by increasing the number of recording tracks (details will be described later). It is noted that the smaller average particle volume of the magnetic powders is better, and therefore the lower limit of the volume is not determined to a specific value. For example, the lower limit of 1000 nm is 3 or more.

Wenn das ε-Eisenoxidteilchen 20 eine sphärische oder im Wesentlichen sphärische Form aufweist, wird das durchschnittliche Teilchenvolumen der Magnetpulver wie folgt bestimmt. Zuerst wird die durchschnittliche Hauptachsenlänge DLdurchschn auf die gleiche Weise wie die oben beschriebenen Berechnungsverfahren der durchschnittlichen Teilchengrößen der Magnetpulver bestimmt. Als Nächstes wird ein durchschnittliches Volumen V der Magnetpulver unter Verwendung des folgenden Ausdrucks erhalten. V = ( π / 6 ) × ( DLdurchschn ) 3

Figure DE112019007754T5_0001
When the ε-iron oxide particle 20 has a spherical or substantially spherical shape, the average particle volume of the magnetic powders is determined as follows. First, the average major axis length DLavg is determined in the same manner as the calculation methods of the average particle sizes of the magnetic powders described above. Next, an average volume V of the magnetic powders is obtained using the following expression. V = ( π / 6 ) × ( DLavg ) 3
Figure DE112019007754T5_0001

(Bindemittel)(Binder)

Es wird bevorzugt, als das Bindemittel ein Harz mit einer Struktur zu verwenden, bei der eine Vernetzungsreaktion an ein polyurethanbasiertes Harz, ein vinylchloridbasiertes Harz oder dergleichen vermittelt wird. Jedoch ist das Bindemittel nicht darauf beschränkt und andere Harze können in Abhängigkeit von erforderlichen physikalischen Eigenschaften und dergleichen des Magnetaufzeichnungsmediums 10 geeignet vermischt werden. Das zu vermischende Harz ist nicht speziell beschränkt, so lange es ein Harz ist, das üblicherweise in dem Magnetaufzeichnungsmedium 10 eines Beschichtungstyps verwendet wird.It is preferable to use, as the binder, a resin having a structure in which a crosslinking reaction is mediated to a polyurethane-based resin, a vinyl chloride-based resin, or the like becomes. However, the binder is not limited to this, and other resins may be appropriately mixed depending on required physical properties and the like of the magnetic recording medium 10. The resin to be mixed is not particularly limited as long as it is a resin commonly used in the magnetic recording medium 10 of a coating type.

Beispiele für das Bindemittel beinhalten Polyvinylchlorid, Polyvinylacetat, Vinylchlorid-Vinylacetat-Copolymer, Vinylchlorid-Vinylidenchlorid-Copolymer, Vinylchlorid-Acrylnitril-Copolymer, Acrylsäureester-Acrylnitril-Copolymere, Acrylsäureester-Vinylchlorid-Vinylidenchlorid-Copolymer, Vinylchlorid-Acrylnitril-Copolymer, Acrylsäureester-Acrylnitril-Copolymer, Acrylsäureester-Vinylidenchlorid-Copolymer, Methacrylsäureester-Vinylidenchlorid-Copolymer, Methacrylsäureester-Vinylchlorid-Copolymer, Methacrylsäureester-Ethylen-Copolymer, Polyvinylfluorid, Vinylidenchlorid-Acrylnitril-Copolymer, Acrylnitril-Butadien-Copolymer, Polyamidharz, Polyvinylbutyral, Cellulosederivate (Celluloseacetatbutyrat, Cellulosediacetat, Cellulosetriacetat, Cellulosepropionat und Nitrocellulose), Styrol-Butadien-Copolymer, Polyesterharz, Aminoharz und synthetischer Kautschuk.Examples of the binder include polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylic acid ester-acrylonitrile copolymer, acrylic acid ester-vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylic acid ester-acrylonitrile Copolymer, acrylic acid ester-vinylidene chloride copolymer, methacrylic acid ester-vinylidene chloride copolymer, methacrylic acid ester-vinyl chloride copolymer, methacrylic acid ester-ethylene copolymer, polyvinyl fluoride, vinylidene chloride-acrylonitrile copolymer, acrylonitrile-butadiene copolymer, polyamide resin, polyvinyl butyral, cellulose derivatives (cellulose acetate butyrate, cellulose diacetate , cellulose triacetate, cellulose propionate and nitrocellulose), styrene-butadiene copolymer, polyester resin, amino resin and synthetic rubber.

Beispiele für das duroplastische Harz oder das reaktive Harz beinhalten Phenolharz, Epoxidharz, Flamstoffharz, Melaminharz, Alkydharz, Siliconharz, Polyaminharz, Hamstoffformaldehydharz und dergleichen.Examples of the thermosetting resin or the reactive resin include phenolic resin, epoxy resin, fluffy resin, melamine resin, alkyd resin, silicone resin, polyamine resin, urea-formaldehyde resin and the like.

Außerdem kann eine polare funktionale Gruppe, wie etwa -SO3M, -OSO3M, -COOM, P=O(OM)2 oder dergleichen, in jedem der oben beschriebenen Bindemittel zum Verbessern der Dispergierbarkeit der Magnetpulver eingeführt werden. Hier ist M in den obigen chemischen Formeln ein Wasserstoffatom oder ein Alkalimetall, wie etwa Lithium, Kalium oder Natrium.In addition, a polar functional group such as -SO 3 M, -OSO 3 M, -COOM, P=O(OM) 2 or the like may be introduced into any of the binders described above to improve the dispersibility of the magnetic powders. Here, M in the above chemical formulas is a hydrogen atom or an alkali metal such as lithium, potassium or sodium.

FemerbeinhaltenBeispielefürdiepolarefunktionaleGruppejene des Seitenkettentyps mit einer Endgruppe aus -NR1R2 oder -NR1R2R3+X- und jene des Hauptkettentyps mit >NR1R2+X". Hier sind R1, R2 und R3 in den obigen Formeln Wasserstoffatome oder Kohlenwasserstoffgruppen und ist X- ein Ion eines Halogenelements, wie etwa von Fluor, Chlor, Brom oder Iod, oder ein anorganisches oder organisches Ion. Femer beinhalten andere Beispiele für die polare funktionale Gruppe -OH, -SH, -CN und Epoxidgruppen.Further, examples of the polar functional group include those of the side chain type having an end group of -NR1R2 or -NR1R2R3 + X - and those of the main chain type having >NR1R2 + X". Here, R1, R2 and R3 in the above formulas are hydrogen atoms or hydrocarbon groups and X - is an ion of a halogen element such as such as fluorine, chlorine, bromine or iodine, or an inorganic or organic ion Further, other examples of the polar functional group include -OH, -SH, -CN and epoxy groups.

(Gleitmittel)(Lubricant)

Das in der Magnetschicht 13 enthaltene Gleitmittel enthält zum Beispiel Fettsäure und Fettsäureester. Es wird bevorzugt, dass die in dem Gleitmittel enthaltene Fettsäure zum Beispiel eine Verbindung, die durch die folgende allgemeine Formel <1> repräsentiert wird, und/oder eine Verbindung, die durch die folgende allgemeine Formel <2> repräsentiert wird, enthält. Femer wird es bevorzugt, dass der in dem Gleitmittel enthaltene Fettsäureester eine Verbindung, die durch die folgende allgemeine Formel <3> repräsentiert wird, und/oder eine Verbindung, die durch die folgende allgemeine Formel <4> repräsentiert wird, enthält. Es ist möglich, eine Zunahme des dynamischen Reibungskoeffizienten aufgrund von wiederholter Aufzeichnung oder Widergabe auf/von dem Magnetaufzeichnungsmedium 10 zu unterdrücken, indem: das Gleitmittel zwei Verbindungen einschließlich der Verbindung, die durch die allgemeine Formel <1> repräsentiert wird, und der Verbindung, die durch die allgemeine Formel <3> repräsentiert wird, enthält; das Gleitmittel zwei Verbindungen einschließlich der Verbindung, die durch die allgemeine Formel <2> repräsentiert wird, und der Verbindung, die durch die allgemeine Formel <3> repräsentiert wird, enthält; das Gleitmittel zwei Verbindungen einschließlich einer Verbindung, die durch die allgemeine Formel <1> repräsentiert wird, und der Verbindung, die durch die allgemeine Formel <4> repräsentiert wird, enthält; das Gleitmittel zwei Verbindungen einschließlich einer Verbindung, die durch die allgemeine Formel <2> repräsentiert wird, und einer Verbindung, die durch die allgemeine Formel <4> repräsentiert wird, enthält; das Gleitmittel drei Verbindungen einschließlich der Verbindung, die durch die allgemeine Formel <1> repräsentiert wird, der Verbindung, die durch die allgemeine Formel <2> repräsentiert wird, und der Verbindung, die durch die allgemeine Formel <3> repräsentiert wird, enthält; das Gleitmittel drei Verbindungen einschließlich der Verbindung, die durch die allgemeine Formel <1> repräsentiert wird, der Verbindung, die durch die allgemeine Formel <2> repräsentiert wird, und der Verbindung, die durch die allgemeine Formel <4> repräsentiert wird, enthält; das Gleitmittel drei Verbindungen einschließlich der Verbindung, die durch die allgemeine Formel <1> repräsentiert wird, der Verbindung, die durch die allgemeine Formel <3> repräsentiert wird, und der Verbindung, die durch die allgemeine Formel <4> repräsentiert wird, enthält; das Gleitmittel drei Verbindungen einschließlich der Verbindung, die durch die allgemeine Formel <2> repräsentiert wird, der Verbindung, die durch die allgemeine Formel <3> repräsentiert wird, und der Verbindung, die durch die allgemeine Formel <4> repräsentiert wird, enthält; oder das Gleitmittel vier Verbindungen einschließlich der Verbindung, die durch die allgemeine Formel <1> repräsentiert wird, der Verbindung, die durch die allgemeine Formel <2> repräsentiert wird, der Verbindung, die durch die allgemeine Formel <3> repräsentiert wird, und der Verbindung, die durch die allgemeine Formel <4> repräsentiert wird, enthält. Infolgedessen ist es möglich, die Bewegungsleistungsfähigkeit des Magnetaufzeichnungsmediums 10 zu verbessern. CH3(CH2)kCOOH <1> The lubricant contained in the magnetic layer 13 contains, for example, fatty acid and fatty acid ester. It is preferable that the fatty acid contained in the lubricant contains, for example, a compound represented by the following general formula <1> and/or a compound represented by the following general formula <2>. Furthermore, it is preferable that the fatty acid ester contained in the lubricant contains a compound represented by the following general formula <3> and/or a compound represented by the following general formula <4>. It is possible to suppress an increase in the dynamic friction coefficient due to repeated recording or reproduction on/from the magnetic recording medium 10 by using: the lubricant two compounds including the compound represented by the general formula <1> and the compound represented by the represented by the general formula <3>contains; the lubricant contains two compounds including the compound represented by general formula <2> and the compound represented by general formula <3>; the lubricant contains two compounds including a compound represented by general formula <1> and the compound represented by general formula <4>; the lubricant contains two compounds including a compound represented by general formula <2> and a compound represented by general formula <4>; the lubricant contains three compounds including the compound represented by general formula <1>, the compound represented by general formula <2>, and the compound represented by general formula <3>; the lubricant contains three compounds including the compound represented by general formula <1>, the compound represented by general formula <2>, and the compound represented by general formula <4>; the lubricant contains three compounds including the compound represented by general formula <1>, the compound represented by general formula <3>, and the compound represented by general formula <4>; the lubricant contains three compounds including the compound represented by general formula <2>, the compound represented by general formula <3>, and the compound represented by general formula <4>; or the lubricant four compounds including the compound represented by general formula <1>, the compound represented by general formula <2>, Ver bond represented by general formula <3> and the compound represented by general formula <4>. As a result, it is possible to improve the moving performance of the magnetic recording medium 10. FIG. CH3( CH2 ) kCOOH <1>

(Es wird angemerkt, dass in der allgemeinen Formel <1> k eine ganze Zahl ist, die aus dem Bereich von 14 bis einschließlich 22, bevorzugter aus dem Bereich von 14 bis einschließlich 18 ausgewählt wird.) CH3(CH2)hCH = CH(CH2)mCOOH <2> (It is noted that in the general formula <1>, k is an integer selected from the range of 14 to 22 inclusive, more preferably from the range of 14 to 18 inclusive.) CH3( CH2 ) hCH =CH( CH2 ) mCOOH < 2 >

(Es wird angemerkt, dass in der allgemeinen Formel <2> die Summe aus n und m eine ganze Zahl ist, die aus dem Bereich von 12 bis einschließlich 20, bevorzugter aus dem Bereich von 14 bis einschließlich 18 ausgewählt wird.) CH3(CH2)pCOO(CH2)qCH3 <3> (It is noted that in the general formula <2>, the sum of n and m is an integer selected from the range of 12 to 20 inclusive, more preferably from the range of 14 to 18 inclusive.) CH 3 (CH 2 ) p COO(CH 2 ) q CH 3 <3>

(Es wird angemerkt, dass in der allgemeinen Formel <3> p eine ganze Zahl ist, die aus dem Bereich von 14 bis einschließlich 22, bevorzugter aus dem Bereich von 14 bis einschließlich 18 ausgewählt wird, und q eine ganze Zahl ist, die aus dem Bereich von 2 bis einschließlich 5, bevorzugter aus dem Bereich von 2 bis einschließlich 4 ausgewählt wird.) CH3(CH2)pCOO-(CH2)qCH(CH3)2 <4> (It is noted that in the general formula <3>, p is an integer selected from the range of 14 to 22 inclusive, more preferably from the range of 14 to 18 inclusive, and q is an integer selected from the range of 2 to 5 inclusive, more preferably selected from the range of 2 to 4 inclusive.) CH 3 (CH 2 ) p COO-(CH 2 ) q CH(CH 3 ) 2 <4>

(Es wird angemerkt, dass in der allgemeinen Formel <2> p eine ganze Zahl ist, die aus dem Bereich von 14 bis einschließlich 22 ausgewählt wird, q eine ganze Zahl ist, die aus dem Bereich von 1 bis einschließlich 3 ausgewählt wird.)(It is noted that in the general formula <2>, p is an integer selected from the range of 14 to 22 inclusive, q is an integer selected from the range of 1 to 3 inclusive.)

(Additiv)(additive)

Die Magnetschicht 13 kann ferner Aluminiumoxid(α-, β-oderγ-Aluminiumoxid), Chromoxid, Siliciumoxid, Diamant, Granat, Schmirgel, Bornitrid, Titancarbid, Siliciumcarbid, Titancarbid, Titanoxid (Rutil- oder Anatas-Typ-Titanoxid) oder dergleichen als nichtmagnetische Verstarkungsteilchen enthalten. The magnetic layer 13 may further include alumina (α-, β-, or γ-alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, titanium oxide (rutile or anatase type titanium oxide) or the like as nonmagnetic contain reinforcing particles.

(Unterschicht 12)(underclass 12)

Die Unterschicht 12 ist eine nichtmagnetische Schicht, die nichtmagnetische Pulver und ein Bindemittel enthalten. Die Unterschicht 12 kann femer nach Bedarf wenigstens ein Additiv aus zum Beispiel einem Gleitmittel, leitfähigen Teilchen, einem Aushärtungsmittel oder einem Rostschutzmittel beinhalten. Femer kann die Unterschicht 12 eine Mehrschichtstruktur aufweisen, in der mehrere Schichten gestapelt sind. Eine durchschnittliche Dicke der Unterschicht 12 beträgt bevorzugt 0,4 µm oder mehr und 1,4 µm oder weniger, bevorzugter 0,6 µm oder mehr und 1,2 µm oder weniger.The underlayer 12 is a nonmagnetic layer containing nonmagnetic powder and a binder. The undercoat 12 may further include at least one additive of, for example, a lubricant, conductive particles, a curing agent, or a rust preventive, as needed. Further, the backsheet 12 may have a multi-layer structure in which plural layers are stacked. An average thickness of the underlayer 12 is preferably 0.4 µm or more and 1.4 µm or less, more preferably 0.6 µm or more and 1.2 µm or less.

Die durchschnittliche Dicke der Unterschicht 12 wird zum Beispiel wie folgt bestimmt. Zuerst wird das Magnetaufzeichnungsmedium 10 mit einer Breite von 1/2 Zoll vorbereitet und in eine Länge von 250 mm geschnitten, um eine Probe zu produzieren. Danach werden die Unterschicht 12 und die Magnetschicht 13 dann von der Basis 11 der Probe des Magnetaufzeichnungsmediums 10 entfernt. Danach wird die Messeinrichtung Laser Hologage (LGH-1 10C), hergestellt durch Mitsutoyo Corporation, zum Messen der Dicke des Laminats aus der Unterschicht 12 und der Magnetschicht 13, die von der Basis 11 entfernt wurden, an fünf Punkten oder mehr verwendet. Danach werden diese Messwerte einfach gemittelt (arithmetisch gemittelt), um eine durchschnittliche Dicke des Laminats aus der Unterschicht 12 und der Magnetschicht 13 zu berechnen. Es wird angemerkt, dass die Messpunkte zufällig auf der Probe gewählt werden. Schließlich wird eine durchschnittliche Dicke der Unterschicht 12 durch Subtrahieren der durchschnittlichen Dicke der Magnetschicht 13, die unter Verwendung des TEM, wie oben beschrieben, bestimmt wird, von der durchschnittlichen Dicke des Laminats bestimmt.The average thickness of the underlayer 12 is determined, for example, as follows. First, the magnetic recording medium 10 is prepared with a width of 1/2 inch and cut into a length of 250mm to produce a sample. Thereafter, the underlayer 12 and the magnetic layer 13 are then removed from the base 11 of the magnetic recording medium 10 sample. Thereafter, the Laser Hologage (LGH-1 10C) gauge manufactured by Mitsutoyo Corporation is used to measure the thickness of the laminate of the underlayer 12 and the magnetic layer 13 removed from the base 11 at five points or more. Thereafter, these measured values are simply averaged (arithmetically averaged) to calculate an average thickness of the laminate of the underlayer 12 and the magnetic layer 13 . It is noted that the measurement points are chosen randomly on the sample. Finally, an average thickness of the underlayer 12 is determined by subtracting the average thickness of the magnetic layer 13 determined using the TEM as described above from the average thickness of the laminate.

Die Unterschicht 12 weist bevorzugt mehrere Poren auf. Da das Gleitmittel in diesen Poren gespeichert wird, ist es möglich, eine Abnahme der Menge des Gleitmittels weiter zu unterdrücken, das zwischen die Oberfläche 13S der Magnetschicht 13 und den Magnetkopf geliefert wird, selbst nach wiederholter Aufzeichnung oder Wiedergabe, das heißt, selbst nachdem sich der Magnetkopf wiederholt bewegt, während er sich in Kontakt mit der Oberfläche des Magnetaufzeichnungsmediums 10 befindet. Daher ist es möglich, eine Zunahme des dynamischen Reibungskoeffizienten weiter zu unterdrücken.The backsheet 12 preferably has a plurality of pores. Since the lubricant is stored in these pores, it is possible to further suppress a decrease in the amount of the lubricant supplied between the surface 13S of the magnetic layer 13 and the magnetic head even after repeated recording or reproduction, that is, even after the magnetic head moves repeatedly while he is in contact with the surface of the magnetic recording medium 10. Therefore, it is possible to further suppress an increase in dynamic friction coefficient.

Von dem Standpunkt des Unterdrückens einer Abnahme des dynamischen Reibungskoeffizienten nach wiederholter Aufzeichnung oder Wiedergabe wird es bevorzugt, dass die Poren der Unterschicht 12 mit den Poren 13A der Magnetschicht 13 verbunden sind. Hier beinhaltet der Zustand, in dem die Poren der Unterschicht 12 mit den Poren 13A der Magnetschicht 13 verbunden sind, einen Zustand, in dem manche der mehreren Poren der Unterschicht 12 mit manchen der Poren der Magnetschicht 13 verbunden sind.It is preferable that the pores of the underlayer 12 communicate with the pores 13A of the magnetic layer 13 from the viewpoint of suppressing a decrease in dynamic friction coefficient after repeated recording or reproduction. Here, the state where the pores of the underlayer 12 are connected to the pores 13</b>A of the magnetic layer 13 includes a state where some of the plurality of pores of the underlayer 12 are connected to some of the pores of the magnetic layer 13 .

Von dem Gesichtspunkt des Ermöglichens der Lieferung des Gleitmittels an die Oberfläche 13S der Magnetschicht 13 wird es bevorzugt, dass die mehreren Poren jene beinhalten, die sich senkrecht zu der Oberfläche 13S der Magnetschicht 13 erstrecken. Außerdem ist es von dem Standpunkt des Ermöglichens der Eigenschaft des Lieferns des Gleitmittels an die Oberfläche 13S der Magnetschicht 13 bevorzugt, dass die Poren der Unterschicht 12, die sich senkrecht zu der Oberfläche 13S der Magnetschicht 13 erstrecken, mit den Poren der Magnetschicht 13 verbunden sind, die sich senkrecht zu der Oberfläche 13S der Magnetschicht 13 erstrecken.From the viewpoint of enabling the supply of the lubricant to the surface 13S of the magnetic layer 13, it is preferable that the plurality of pores include those extending perpendicularly to the surface 13S of the magnetic layer 13. In addition, from the viewpoint of enabling the property of supplying the lubricant to the surface 13S of the magnetic layer 13, it is preferable that the pores of the underlayer 12 extending perpendicularly to the surface 13S of the magnetic layer 13 are connected to the pores of the magnetic layer 13 , which extend perpendicularly to the surface 13S of the magnetic layer 13. FIG.

(Nichtmagnetisches Pulver der Unterschicht 12)(Underlayer 12 non-magnetic powder)

Die nichtmagnetischen Pulver beinhalten zum Beispiel Pulver aus anorganischen Teilchen und/oder Pulver aus organischen Teilchen. Ferner können die nichtmagnetischen Pulver Kohlenstoffpulver, wie etwa Industrieruß, beinhalten. Eine Art nichtmagnetischer Pulver kann allein verwendet werden oder zwei oder mehr Arten nichtmagnetischer Pulver können in Kombination verwendet werden. Beispiele für die anorganischen Teilchen beinhalten Metalle, Metalloxide, Metallcarbonate, Metallsulfate, Metallnitride, Metallcarbide, Metallsulfide oder dergleichen. Die nichtmagnetischen Pulver weisen verschiedene Formen, einschließlich unter anderem nadelartiger, sphärischer, kubischer oder plattenartiger Formen, auf.The nonmagnetic powders include, for example, inorganic particle powder and/or organic particle powder. Further, the nonmagnetic powders may include carbon powders such as carbon black. One kind of nonmagnetic powder can be used alone, or two or more kinds of nonmagnetic powder can be used in combination. Examples of the inorganic particles include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, or the like. The nonmagnetic powders have various shapes including needle-like, spherical, cubic or plate-like shapes, among others.

(Bindemittel der Unterschicht 12)(Binding agent of sub-layer 12)

Das Bindemittel der Unterschicht 12 ist jenem in der oben beschriebenen Magnetschicht 13 ähnlich.The binder of the underlayer 12 is similar to that in the magnetic layer 13 described above.

(Rückschicht 14)(back layer 14)

Die Rückschicht 14 beinhaltet zum Beispiel ein Bindemittel und nichtmagnetische Pulver. Die Rückschicht 14 kann femer nach Bedarf wenigstens ein Additiv aus einem Gleitmittel, einem Aushärtungsmittel, einem Antistatikmittel oder dergleichen beinhalten. Das Bindemittel und die nichtmagnetischen Pulver in der Rückschicht 14 sind die gleichen wie das Bindemittel und die nichtmagnetischen Pulver in der Unterschicht 12, die oben beschrieben sind.The back layer 14 includes, for example, a binder and nonmagnetic powder. The back layer 14 may further include at least one additive of a lubricant, a curing agent, an antistatic agent, or the like, as needed. The binder and nonmagnetic powders in the backing layer 14 are the same as the binder and nonmagnetic powders in the undercoating 12 described above.

Die durchschnittliche Teilchengröße der nichtmagnetischen Pulver in der Rückschicht 14 beträgt bevorzugt 10 nm oder mehr und 150 nm oder weniger, bevorzugter 15 nm oder mehr und 110 nm oder weniger. Die durchschnittliche Teilchengröße der nichtmagnetischen Pulver in der Rückschicht 14 wird auf die gleiche Weise wie für die durchschnittliche Teilchengröße der Magnetpulver in der Magnetschicht 13 bestimmt, welche oben beschrieben ist. Die nichtmagnetischen Pulver können eines mit einer Teilchengrößenverteilung von 2 oder mehr beinhalten.The average particle size of the nonmagnetic powders in the back layer 14 is preferably 10 nm or more and 150 nm or less, more preferably 15 nm or more and 110 nm or less. The average particle size of the nonmagnetic powders in the backing layer 14 is determined in the same manner as for the average particle size of the magnetic powders in the magnetic layer 13 described above. The nonmagnetic powders may include one having a particle size distribution of 2 or more.

Der obere Grenzwert der durchschnittlichen Dicke der Rückschicht 14 beträgtbevorzugt0,6 µm oder weniger, besonders bevorzugt 0,5 µm oder weniger. Wenn der obere Grenzwert der durchschnittlichen Dicke der Rückschicht 14 0,6 µm oder weniger beträgt, ist es möglich, die Dicke der Unterschicht 12 und der Basis 11 dick zu behalten, selbst wenn die durchschnittliche Dicke des Magnetaufzeichnungsmediums 10 5,6 µm oder weniger beträgt, und dementsprechend eine Bewegungsstabilität des Magnetaufzeichnungsmediums 10 in der Aufzeichnung-und-Wiedergabe-Einrichtung aufrechtzuerhalten. Der untere Grenzwert der durchschnittlichen Dicke der Rückschicht 14 beträgt zum Beispiel unter anderem 0,2 µm oder mehr, besonders bevorzugt 0,3 µm oder mehr.The upper limit of the average thickness of the back layer 14 is preferably 0.6 µm or less, more preferably 0.5 µm or less. If the upper limit of the average thickness of the back layer 14 is 0.6 µm or less, it is possible to keep the thickness of the underlayer 12 and the base 11 thick even if the average thickness of the magnetic recording medium 10 is 5.6 µm or less , and accordingly to maintain movement stability of the magnetic recording medium 10 in the recording and reproducing apparatus. The lower limit of the average thickness of the back layer 14 is, for example, 0.2 μm or more, more preferably 0.3 μm or more, among others.

Die durchschnittliche Dicke der Rückschicht 14 wird wie folgt bestimmt. Zuerst wird das Magnetaufzeichnungsmedium 10 mit einer Breite von 1/2 Zoll vorbereitet und in eine Länge von 250 mm geschnitten, um eine Probe zu produzieren. Danach wird die Messeinrichtung, Laser Hologage (LGH-110C), hergestellt durch Mitsutoyo Corporation, zum Messen der Dicke der Probe des Magnetaufzeichnungsmediums 10 an fünf Punkten oder mehr verwendet. Danach werden diese Messwerte einfach gemittelt (arithmetisch gemittelt), um eine durchschnittliche Dicke tT [µm] des Magnetaufzeichnungsmediums 10 zu berechnen. Es wird angemerkt, dass die Messpunkte zufällig auf der Probe gewählt werden. Anschließend wird die Rückschicht 14 von der Probe des Magnetaufzeichnungsmediums 10 mit einem Lösungsmittel, wie etwa MEK (Methylethylketon) oder verdünnter Salzsäure, entfernt. Danach wird wieder das Laser Hologage verwendet, um die Dicke der Probe des Magnetaufzeichnungsmediums 10, von dem die Rückschicht 14 entfernt wurde, an fünf Punkten oder mehr zu messen. Diese Messwerte werden einfach gemittelt (arithmetisch gemittelt), um eine durchschnittliche Dicke tB [µm] des Magnetaufzeichnungsmediums 10 zu berechnen, von dem die Rückschicht 14 entfernt wurde. Es wird angemerkt, dass die Messpositionen zufällig auf der Probe ausgewählt werden. Schließlich wird eine durchschnittliche Dicke tb [µm] der Rückschicht 14 durch den folgenden Ausdruck bestimmt. t b [ μ m ] = t T [ μ m ] t B [ μ m ]

Figure DE112019007754T5_0002
The average thickness of the backing layer 14 is determined as follows. First, the magnetic recording medium 10 is prepared with a width of 1/2 inch and cut into a length of 250mm to produce a sample. Thereafter, the measuring device, Laser Hologage (LGH-110C) manufactured by Mitsutoyo Corporation, is used to measure the thickness of the sample of the magnetic recording medium 10 at five points or more. Then these measured values are simply averaged (arithmetically with telt) to calculate an average thickness t T [µm] of the magnetic recording medium 10. It is noted that the measurement points are chosen randomly on the sample. Thereafter, the backing layer 14 is removed from the sample of magnetic recording medium 10 with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid. Thereafter, laser hologage is again used to measure the thickness of the sample magnetic recording medium 10 from which the backing layer 14 has been removed at five points or more. These measurement values are simply averaged (arithmetic average) to calculate an average thickness t B [µm] of the magnetic recording medium 10 from which the backing layer 14 has been removed. It is noted that the measurement positions are randomly selected on the sample. Finally, an average thickness t b [µm] of the back layer 14 is determined by the following expression. t b [ µ m ] = t T [ µ m ] t B [ µ m ]
Figure DE112019007754T5_0002

Die Rückschicht 14 weist eine Oberfläche auf, auf der mehrere Ausbuchtungen bereitgestellt werden. Die Ausbuchtungen werden zum Bilden mehrerer Poren auf einer Oberfläche der Magnetschicht 13 verwendet, wenn sich das Magnetaufzeichnungsmedium 10 in einem aufgerollten Zustand befindet. Die mehreren Poren werden durch zum Beispiel mehrere nichtmagnetische Teilchen konfiguriert, die von der Oberfläche der Rückschicht 14 hervorstehen.The backsheet 14 has a surface on which a plurality of protrusions are provided. The protrusions are used to form a plurality of pores on a surface of the magnetic layer 13 when the magnetic recording medium 10 is in a rolled state. The multiple pores are configured by, for example, multiple nonmagnetic particles protruding from the surface of the back layer 14 .

Hier wurde der Fall beschrieben, in dem die mehreren Ausbuchtungen, die auf der Oberfläche der Rückschicht 14 bereitgestellt sind, auf die Oberfläche der Magnetschicht 13 transferiert werden, um die mehreren Poren auf der Oberfläche der Magnetschicht 13 zu bilden; jedoch ist das Verfahren zum Bilden mehrerer Poren nicht darauf beschränkt. Zum Beispiel können der Typ von Lösungsmittel, das in einem Beschichtungsmaterial zum Bilden einer Magnetschicht enthalten ist, Trocknungsbedingungen des Beschichtungsmaterials zum Bilden einer Magnetschicht und dergleichen angepasst werden, um mehrere Poren auf der Oberfläche der Magnetschicht 13 zu bilden.Here, the case where the plural protrusions provided on the surface of the backing layer 14 are transferred onto the surface of the magnetic layer 13 to form the plural pores on the surface of the magnetic layer 13 has been described; however, the method of forming multiple pores is not limited to this. For example, the type of solvent contained in a coating material for forming a magnetic layer, drying conditions of the coating material for forming a magnetic layer, and the like can be adjusted to form multiple pores on the surface of the magnetic layer 13 .

[Durchschnittliche Dicke des Magnetaufzeichnungsmediums][Average Thickness of Magnetic Recording Medium]

Der obere Grenzwert der durchschnittlichen Dicke (durchschnittliche Gesamtdicke) des Magnetaufzeichnungsmediums 10 beträgt bevorzugt 5,6 µm oder weniger, bevorzugter 5,0 µm oder weniger, besonders bevorzugt 4,6 µm oder weniger, noch weiter bevorzugt 4,4 µm oder weniger. Wenn die durchschnittliche Dicke des Magnetaufzeichnungsmediums 10 5,6 µm oder weniger beträgt, ist es möglich, die Speicherungskapazität pro Daten-Cartridge im Vergleich zu einem allgemeinen Magnetaufzeichnungsmedium zu erhöhen. Der untere Grenzwert der durchschnittlichen Dicke des Magnetaufzeichnungsmediums 10 beträgt zum Beispiel unter anderem 3,5 µm oder mehr.The upper limit of the average thickness (overall average thickness) of the magnetic recording medium 10 is preferably 5.6 μm or less, more preferably 5.0 μm or less, particularly preferably 4.6 μm or less, even more preferably 4.4 μm or less. When the average thickness of the magnetic recording medium 10 is 5.6 µm or less, it is possible to increase the storage capacity per data cartridge compared to a general magnetic recording medium. For example, the lower limit of the average thickness of the magnetic recording medium 10 is 3.5 μm or more, among others.

Die durchschnittliche Dicke tT des Magnetaufzeichnungsmediums 10 wirdwiefolgtbestimmt. Zuerst wird das Magnetaufzeichnungsmedium 10 mit einer Breite von 1/2 Zoll vorbereitet und in eine Länge von 250 mm geschnitten, um eine Probe zu produzieren. Danach wird die Messeinrichtung, Laser Hologage (LGH-110C), hergestellt durch Mitsutoyo Corporation, zum Messen der Dicke der Probe an fünf Punkten oder mehr verwendet. Danach werden diese Messwerte einfach gemittelt (arithmetisch gemittelt), um eine durchschnittliche Dicke tT [µm] zu berechnen. Es wird angemerkt, dass die Messpunkte zufällig auf der Probe gewählt werden.The average thickness tT of the magnetic recording medium 10 is determined as follows. First, the magnetic recording medium 10 is prepared with a width of 1/2 inch and cut into a length of 250mm to produce a sample. Thereafter, the measuring device, Laser Hologage (LGH-110C) manufactured by Mitsutoyo Corporation is used to measure the thickness of the sample at five points or more. Thereafter, these readings are simply averaged (arithmetically averaged) to calculate an average thickness tT [µm]. It is noted that the measurement points are chosen randomly on the sample.

(Koerzitivität Hc1 in der senkrechten Richtung)(Coercivity Hc1 in the perpendicular direction)

Derobere Grenzwert der KoerzitivitätHc1 in den senkrechten Richtungen beträgt 3000 Oe oder weniger, bevorzugter 2900 Oe oder weniger, noch weiter bevorzugt 2850 Oe oder weniger. Die größere Koerzitivität Hc1 ist besonders bevorzugt, weil sie weniger anfällig für Einflüsse von thermischen Störungen und Entmagnetisierungsfeldeni ist. Jedoch kann die Koerzitivität Hc1 von mehr als 3000 Oe eine Sättigungsaufzeichnung durch den Aufzeichnungskopf behindern, wobei nichtaufgezeichnete Teile zurückgelassen werden und Rauschen erhöht wird. Dies kann zu einer Verschlechterung der elektromagnetischen Umwandlungscharakteristiken (z. B. C/N) führen.The upper limit of the coercivity Hc1 in the perpendicular directions is 3000 Oe or less, more preferably 2900 Oe or less, still more preferably 2850 Oe or less. The larger coercivity Hc1 is particularly preferred because it is less susceptible to the effects of thermal disturbances and demagnetizing fieldsi. However, the coercivity Hc1 exceeding 3000 Oe may hinder saturation recording by the recording head, leaving unrecorded parts and increasing noise. This can lead to deterioration in electromagnetic conversion characteristics (e.g., C/N).

Der untere Grenzwert der Koerzitivität Hc1 in den senkrechten Richtungen beträgt bevorzugt 2200 Oe oder mehr, bevorzugter 2400 Oe oder mehr, noch weiter bevorzugt 2600 Oe oder mehr. Wenn die Koerzitivität Hc1 2200 Oe oder mehr beträgt, ist es möglich, die Verschlechterung der elektromagnetischen Umwandlungscharakteristiken (z. B. C/N) in einer Hochtemperaturumgebung aufgrund von Einflüssen thermischer Störungen und Entmagnehsierungsfeldern zu unterdrücken.The lower limit of the coercivity Hc1 in the perpendicular directions is preferably 2200 Oe or more, more preferably 2400 Oe or more, still more preferably 2600 Oe or more. When the coercivity Hc1 is 2200 Oe or more, it is possible to suppress the deterioration of electromagnetic conversion characteristics (eg, C/N) in a high-temperature environment due to influences of thermal noise and demagnetization fields.

Die oben genannte Koerzitivität Hc1 wird wie folgt bestimmt. Drei Lagen der Magnetaufzeichnungsmedien 10 werden durch Verbinden mit doppelseitigen Klebebändern laminiert und dann durch eine Stanze mit einem Durchmesser von 6,39 mm ausgestanzt, um Messungsproben vorzubereiten. Zu dieser Zeit wird eine Markierung mit einer beliebigen Tinte ohne Magnetismus durchgeführt, so dass die longitudinale Richtung des Magnetaufzeichnungsmediums erkennbar gemacht wird. Danach wird ein Magnetometer mit vibrierender Probe (VSM: Vibrating Sample Magnetometer) verwendet, um eine M-H-Schleife der Messungsproben (des gesamten Magnetaufzeichnungsmediums 10) zu messen, die der longitudinalen Richtung des Magnetaufzeichnungsmediums 10 (der Bewegungsrichtung des Magnetaufzeichnungsmediums 10) entspricht. Als Nächstes wird Aceton, Ethanol oder dergleichen verwendet, um den Beschichtungsfilm (die Unterschicht 12, die Magnetschicht 13 und die Rückschicht 14 usw.) wegzuwischen, so dass nur die Basis 11 zurückgelassen wird. Dann werden drei Lagen der erhaltenen Basen 11 durch Verbinden mit doppelseitigen Klebebändern laminiert und dann durch eine Stanze mit einem Durchmesser von 6,39 mm ausgestanzt, um Hintergrundkorrekturproben (nachfolgend einfach als Korrekturproben bezeichnet) zu produzieren. Danach wird das VSM verwendet, um eine M-H-Schleife der Korrekturproben (der Basis 11) zu messen, die der senkrechten Richtung des Basis 11 (der Dickenrichtung des Magnetaufzeichnungsmediums 10) entspricht.The above coercivity Hc1 is determined as follows. Three sheets of the magnetic recording media 10 are laminated by bonding with double-sided adhesive tapes and then punched out by a 6.39 mm diameter punch to prepare measurement samples. At this time, marking is performed with an arbitrary ink having no magnetism so that the longitudinal direction of the magnetic recording medium is made recognizable. Thereafter, a vibrating sample magnetometer (VSM: Vibrating Sample Magnetometer) is used to measure an MH loop of the measurement samples (the entire magnetic recording medium 10) corresponding to the longitudinal direction of the magnetic recording medium 10 (the moving direction of the magnetic recording medium 10). Next, acetone, ethanol or the like is used to wipe off the coating film (the undercoat 12, the magnetic layer 13 and the backcoat 14, etc.) so that only the base 11 is left. Then, three sheets of the obtained bases 11 are laminated by bonding with double-sided adhesive tapes, and then punched out by a die with a diameter of 6.39 mm to produce background correction samples (hereinafter simply referred to as correction samples). Thereafter, the VSM is used to measure an MH loop of the correction samples (the base 11) corresponding to the perpendicular direction of the base 11 (the thickness direction of the magnetic recording medium 10).

Zum Beispiel wird das Vibrating-Sample-Magnetometer mit hoher Empfindlichkeit „VSM-P7-15“, hergestellt durch Toei Industry Co., Ltd., verwendet, um die M-H-Schleife der Messungsproben (des gesamten Magnetaufzeichnungsmediums 10) und die M-H-Schleife der Korrekturproben (der Basis 11) zu messen. Messungsbedingungen sind wie folgt: Messmodus: volle Schleife, maximales Magnetfeld: 15 kOe, Magnetfeldschritt: 40 Bit, Zeitkonstante des Locking-Verst.: 0,3 s, Wartezeit: 1 s, und MH-Mittelungszahl: 20.For example, the High Sensitivity Vibrating Sample Magnetometer “VSM-P7-15” manufactured by Toei Industry Co., Ltd. is used to measure the M-H loop of the measurement samples (the entire magnetic recording medium 10) and the M-H loop of the correction samples (the base 11). Measurement conditions are as follows: measurement mode: full loop, maximum magnetic field: 15 kOe, magnetic field step: 40 bits, time constant of locking gain: 0.3 s, waiting time: 1 s, and MH averaging number: 20.

Nachdem die zwei M-H-Schleifen erhalten wurden, wird die M-H-Schleife der Korrekturproben (der Basis 11) von der M-H-Schleife der Messungsproben (des gesamten Magnetaufzeichnungsmediums 10) subtrahiert, um eine Hintergrundkorrektur durchzufuhren, und eine MH-Schleife nach der Hintergrundkorrektur wird dadurch erhalten. Mess- und Analyseprogramme, die an das „VSMP7-15“ angehängt sind, werden zur Berechnung in der Hintergrundkorrektur verwendet.After the two M-H loops are obtained, the M-H loop of the correction samples (the base 11) is subtracted from the M-H loop of the measurement samples (the entire magnetic recording medium 10) to perform background correction, and an MH loop after the background correction becomes thereby obtained. Measurement and analysis programs attached to the "VSMP7-15" are used for calculation in the background correction.

Die Koerzitivität Hc1 wird aus der erhaltenen M-H-Schleife nach der Hintergrundkorrektur bestimmt. Die Mess- und Analyseprogramme, die an das „VSM-P7-15“ angehängt sind, werden zum Berechnen der Koerzitivität Hc1 verwendet. Es wird angemerkt, dass die Messungen der M-H-Schleifen, die zuvor beschrieben sind, bei 25 °C durchgeführt werden. Außerdem wird eine „Enlmagnetisierungsfeldkorrektur“ nicht durchgeführt, wenn die M-H-Schleife in der senkrechten Richtung des Magnetaufzeichnungsmediums 10 gemessen wird.The coercivity Hc1 is determined from the obtained M-H loop after background correction. The measurement and analysis programs attached to the “VSM-P7-15” are used to calculate the coercivity Hc1. It is noted that the measurements of the M-H loops described above are performed at 25°C. In addition, when the M-H loop in the perpendicular direction of the magnetic recording medium 10 is measured, "demagnetization field correction" is not performed.

(Koerzitivität Hc2 in der longitudinalen Richtung)(Coercivity Hc2 in the longitudinal direction)

Der obere Grenzwert der Koerzitivität Hc2 in der longitudinalen Richtung des Magnetaufzeichnungsmediums 10 beträgt bevorzugt 2000 Oe oder weniger, bevorzugter 1900 Oe oder weniger, noch weiter bevorzugt 1800 Oe oder weniger. Wenn die Koerzitivität Hc2 in der longitudinalen Richtung 2000 Oe oder weniger beträgt, wird eine Magnetisierungsreaktion mit hoher Empfindlichkeit durch ein Magnetfeld in der senkrechten Richtung von dem Aufzeichnungskopf bewirkt, wobei die Bildung eines vorteilhaften Aufzeichnungsmusters ermöglicht wird.The upper limit of the coercivity Hc2 in the longitudinal direction of the magnetic recording medium 10 is preferably 2000 Oe or less, more preferably 1900 Oe or less, still more preferably 1800 Oe or less. When the coercivity Hc2 in the longitudinal direction is 2000 Oe or less, a magnetization response with high sensitivity is caused by a magnetic field in the perpendicular direction from the recording head, enabling formation of a favorable recording pattern.

Der untere Grenzwert der Koerzitivität Hc2, gemessen in der longitudinalen Richtung des Magnetaufzeichnungsmediums 10 beträgt bevorzugt 1000 Oe odermehr. Wenn deruntere Grenzwert der Koerzitivität Hc der in der longitudinalen Richtung 1000 Oe oder mehr beträgt, ist es möglich, eine Entmagnetisierung aufgrund eines Leckflusses von dem Aufzeichnungskopf zu unterdrücken.The lower limit of the coercivity Hc2 measured in the longitudinal direction of the magnetic recording medium 10 is preferably 1000 Oe or more. When the lower limit of the coercivity Hc in the longitudinal direction is 1000 Oe or more, it is possible to suppress demagnetization due to leakage flux from the recording head.

DieobengenannteKoerzitivitätHc2 wirdaufdiegleicheWeisewiefürdieKoerzitivitätHc1 in der senkrechten Richtung bestimmt, mit der Ausnahme, dass die M-H-Schleifen der gesamten Messungsproben und der Hintergrundkorrekturproben in der Richtung gemessen werden, die der longitudinalen Richtung (Bewegungsrichtung) des Magnetaufzeichnungsmediums 10 entspricht.The above coercivity Hc2 is determined in the same manner as for the coercivity Hc1 in the perpendicular direction, except that the M-H loops of the entire measurement samples and the background correction samples are measured in the direction corresponding to the longitudinal direction (moving direction) of the magnetic recording medium 10.

(Hc2/Hc1)(Hc2/Hc1)

Das Verhältnis Hc2/Hc1 zwischen der Koerzitivität Hc2 in der longitudinalen Richtung zu der KoerzitivitätHcl in der senkrechten Richtung erfüllt die Beziehung Hc2/Hc1 ≤ 0,8, bevorzugt Hc2/Hc1 ≤ 0,75, bevorzugter Hc2/Hc1 ≤ 0,7, noch weiter bevorzugt Hc2/Hc1 ≤ 0,65, besonders bevorzugt Hc2/Hc1 ≤ 0,6. Wenn die Koerzitivitäten Hc1 und Hc2 die Beziehung Hc2/Hc1 ≤ 0,8 erfüllen, ist es möglich, den Grad einer senkrechten Orientierung der Magnetpulver zu erhöhen. Daher ist es möglich, die Magnetisierungsübergangsbreite zu reduzieren und dementsprechend ein hohes Ausgabesignal zur Zeit der Signalwiedergabe zu erhalten. Dies ermöglicht ein Verbesserung der elektromagnetischen Umwandlungscharakteristiken (z. B. C/N). Es wird angemerkt, dass, wie oben beschrieben, wenn Hc2 klein ist, eine Magnetisierungsreaktion mit hoher Empfindlichkeit durch das Magnetfeld in der senkrechten Richtung von dem Aufzeichnungskopf bewirkt wird, wobei die Bildung eines vorteilhaften Aufzeichnungsmusters ermöglicht wird.The ratio Hc2/Hc1 between the coercivity Hc2 in the longitudinal direction to the coercivity Hcl in the perpendicular direction still satisfies the relationship Hc2/Hc1≦0.8, preferably Hc2/Hc1≦0.75, more preferably Hc2/Hc1≦0.7 more preferably Hc2/Hc1 ≤ 0.65, particularly preferably Hc2/Hc1 ≤ 0.6. When the coercivities Hc1 and Hc2 satisfy the relationship Hc2/Hc1≦0.8, it is possible to increase the degree of perpendicular ten orientation of the magnetic powder to increase. Therefore, it is possible to reduce the magnetization transition width and accordingly obtain a high output signal at the time of signal reproduction. This enables improvement in electromagnetic conversion characteristics (e.g. C/N). It is noted that, as described above, when Hc2 is small, magnetization response with high sensitivity is caused by the magnetic field in the perpendicular direction from the recording head, enabling formation of a favorable recording pattern.

Wenn das Verhältnis Hc2/Hc1 Hc2/Hc1 ≤ 0,8 erfüllt, ist es besonders wirksam, dass die durchschnittliche Dicke der Magnetschicht 13 90 nm oder weniger beträgt. Falls die durchschnittliche Dicke der Magnetschicht 13 größer als 90 nm ist und ein Kopf vom Ringtyp als der Aufzeichnungskopf verwendet wird, wird ein niedrigeres Gebiet der Magnetschicht 13 (ein Gebiet angrenzend an die Unterschicht 12) in der longitudinalen Richtung magnetisiert. Dies kann verhindern, dass die Magnetschicht 13 einheitlich in der Dickenrichtung magnetisiert wird. Falls das Verhältnis Hc2/Hc1 Hc2/Hc1 ≤ 0,8 erfüllt (d. h., selbst wenn der Grad einer senkrechten Orientierung der Magnetpulver erhöht wird), können daher die elektromagnetischen Umwandlungscharakteristiken (z. B. C/N) an einer Verbesserung gehindert werden.When the ratio Hc2/Hc1 satisfies Hc2/Hc1≦0.8, it is particularly effective that the average thickness of the magnetic layer 13 is 90 nm or less. If the average thickness of the magnetic layer 13 is larger than 90 nm and a ring type head is used as the recording head, a lower region of the magnetic layer 13 (a region adjacent to the underlayer 12) is magnetized in the longitudinal direction. This can prevent the magnetic layer 13 from being uniformly magnetized in the thickness direction. Therefore, if the ratio Hc2/Hc1 satisfies Hc2/Hc1≦0.8 (i.e., even if the degree of perpendicular orientation of the magnetic powders is increased), the electromagnetic conversion characteristics (e.g., C/N) may be prevented from improving.

Deruntere Grenzwert von Hc2/Hc1 ist zum Beispielunteranderemauf0,5<Hc2/Hc1 begrenzt.For example, the lower limit of Hc2/Hc1 is limited to 0.5<Hc2/Hc1, among others.

Es wird angemerkt, dass Hc2/Hc1 den Grad einer senkrechten Orientierung der Magnetpulver repräsentiert und der Grad der senkrechten Orientierung der Magnetpulver größer wird, wenn Hc2/Hc1 kleiner wird. Der Grund, warum Hc2/Hc1 bei dieser Ausführungsform als ein Index verwendet wird, der den Grad einer senkrechten Orientierung der Magnetpulver angibt, wird nachfolgend beschrieben.It is noted that Hc2/Hc1 represents the degree of perpendicular orientation of the magnetic powders, and the degree of perpendicular orientation of the magnetic powders becomes larger as Hc2/Hc1 becomes smaller. The reason why Hc2/Hc1 is used as an index indicating the degree of perpendicular orientation of the magnetic powders in this embodiment will be described below.

Ein Rechteckigkeitsverhältnis SQ (=(Mr/Ms)× 100, wobei Mr (emu) eine Restmagnetisierung repräsentiert und Ms (emu) eine Sättigungsmagnetisierung repräsentiert) wurde allgemein als ein Index (Parameter) verwendet, der den Grad einer senkrechten Orientierung der Magnetpulver angibt. Jedoch ist der Index, das Rechteckigkeitsverhältnis SQ, gemäß den Ergebnissen der vorliegenden Erfinder aus den folgenden Gründen nicht als ein Index geeignet, der den Grad einer senkrechten Orientierung der Magnetpulver angibt.

  1. (1) Das Rechteckigkeitsverhältnis SQ variiert in Abhängigkeit von dem Wert der Koerzitivität Hc der Magnetpulver. Zum Beispiel wird, wie in 5 veranschaulicht, wenn die Koerzitivität Hc der Magnetpulver zunimmt, das Rechteckigkeitsverhältnis SQ auch offensichtlich größer.
  2. (2) Das Rechteckigkeitsverhältnis SQ wird durch eine Verzerrung der M-H-Schleife aufgrund einer Überdispersion beeinflusst.
A squareness ratio SQ (=(Mr/Ms)×100, where Mr (emu) represents residual magnetization and Ms (emu) represents saturation magnetization) was generally used as an index (parameter) indicating the degree of perpendicular orientation of magnetic powders. However, the index, the squareness ratio SQ, according to the results of the present inventors is not suitable as an index indicating the degree of perpendicular orientation of the magnetic powders for the following reasons.
  1. (1) The squareness ratio SQ varies depending on the value of the coercivity Hc of the magnetic powders. For example, as in 5 1, as the coercivity Hc of the magnetic powders increases, the squareness ratio SQ also obviously increases.
  2. (2) The squareness ratio SQ is affected by distortion of the MH loop due to overdispersion.

Daher wird Hc2/Hc1 bei der vorliegenden Ausführungsform als ein Index verwendet, der den Grad einer Orientierung der Magnetpulver angemessener angibt. Da die Koerzitivitäten Hc1 und Hc2 einfach durch die Orientierungsrichtung der Magnetpulver variiert werden, ist Hc2/Hc1 als ein Index, der den Grad einer Orientierung der Magnetpulver angibt, angemessener.Therefore, in the present embodiment, Hc2/Hc1 is used as an index more appropriately indicating the degree of orientation of the magnetic powders. Since the coercivities Hc1 and Hc2 are varied simply by the direction of orientation of the magnetic powders, Hc2/Hc1 is more appropriate as an index indicating the degree of orientation of the magnetic powders.

(Rechteckigkeitsverhältnis)(squareness ratio)

Ein Rechteckigkeitsverhältnis S1 in der senkrechten Richtung (Dickenrichtung) des Magnetaufzeichnungsmediums 10 beträgt zum Beispiel 65 % oder mehr, bevorzugt 70 % oder mehr, bevorzugter 75 % oder mehr, noch weiter bevorzugt 80 % oder mehr, besonders bevorzugt 85 % oder mehr. Wenn das Rechteckigkeitsverhältnis S165 % oder mehr beträgt, wird die senkrechte Orientierung der Magnetpulver ausreichend hoch. Daher ist es möglich, ein exzellenteres SNR zu erhalten.A squareness ratio S1 in the perpendicular direction (thickness direction) of the magnetic recording medium 10 is, for example, 65% or more, preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, particularly preferably 85% or more. When the squareness ratio S is 165% or more, the perpendicular orientation of the magnetic powders becomes sufficiently high. Therefore, it is possible to obtain more excellent SNR.

Das Rechteckigkeitsverhältnis S1 wird wie folgt bestimmt. Drei Lagen der Magnetaufzeichnungsmedien 10 werden durch Verbinden mit doppelseitigen Klebebändern laminiert und dann durch eine Stanze mit einem Durchmesser von 6,39 mm ausgestanzt, um Messungsproben vorzubereiten. Zu dieser Zeit wird eine Markierung mit einer beliebigen Tinte ohne Magnetismus durchgeführt, so dass die longitudinale Richtung (Bewegungsrichtung) des Magnetaufzeichnungsmediums erkennbar gemacht wird. Danach wird das Vibrating Sample Magnetometer (VSM) verwendet, um eine M-H-Schleife der Messungsproben (des gesamten Magnetaufzeichnungsmediums 10) zu messen, die der longitudinalen Richtung des Magnetaufzeichnungsmediums 10 (der Bewegungsrichtung des Magnetaufzeichnungsmediums 10) entspricht. Als Nächstes wird Aceton, Ethanol oder dergleichen verwendet, um denBeschichtungsfilm (die Unterschicht 12, die Magnetschicht 13 und die Rückschicht 14 usw.) wegzuwischen, so dass nur die Basis 11 zurückgelassen wird. Dann werden drei Lagen der erhaltenen Basen 11 durch Verbinden mit doppelseitigen Klebebändern laminiert und dann mit einer Stanze mit einem Durchmesser von 6,39 mm ausgestanzt, um Hintergrundkorrekturproben (nachfolgend einfach als Korrekturproben bezeichnet) zu produzieren. Danach wird die M-H-Schleife der Korrekturproben (der Basis 11), die der longitudinalen Richtung des Basis 11 (der Bewegungsrichtung des Magnetaufzeichnungsmediums 10) entspricht, unter Verwendung des VSM gemessen.The squareness ratio S1 is determined as follows. Three sheets of the magnetic recording media 10 are laminated by bonding with double-sided adhesive tapes and then punched out by a 6.39 mm diameter punch to prepare measurement samples. At this time, marking is performed with an arbitrary ink having no magnetism so that the longitudinal direction (moving direction) of the magnetic recording medium is made recognizable. Thereafter, the Vibrating Sample Magnetometer (VSM) is used to measure an MH loop of the measurement samples (the entire magnetic recording medium 10) corresponding to the longitudinal direction of the magnetic recording medium 10 (the moving direction of the magnetic recording medium 10). Next, acetone, ethanol, or the like is used to wipe off the coating film (the undercoat 12, the magnetic layer 13, and the backcoat 14, etc.) so that only the base 11 is left. Then, three sheets of the obtained bases 11 are laminated by bonding with double-sided tapes, and then punched out with a die with a diameter of 6.39 mm to perform background correction to produce samples (hereinafter referred to simply as correction samples). Thereafter, the MH loop of the correction samples (the base 11) corresponding to the longitudinal direction of the base 11 (the moving direction of the magnetic recording medium 10) is measured using the VSM.

Zum Beispiel wird das Vibrating-Sample-MagnetometermithoherEmplindlichkeit„VSM-P7-15", hergestellt durch Toei Industry Co., Ltd., verwendet, um die M-H-Schleife der Messungsproben (des gesamten Magnetaufzeichnungsmediums 10) und die M-H-Schleife der Korrekturproben (der Basis 11) zu messen. Messungsbedingungen sind wie folgt: Messmodus: volle Schleife, maximales Magnetfeld: 15 kOe, Magnetfeldschritt: 40 Bit, Zeitkonstante des Locking-Verst.: 0,3 s, Wartezeit: 1 s, und MH-Mittelungszahl: 20.For example, the High Sensitivity Vibrating Sample Magnetometer "VSM-P7-15" manufactured by Toei Industry Co., Ltd. is used to measure the M-H loop of the measurement samples (the entire magnetic recording medium 10) and the M-H loop of the correction samples ( 11) Measurement conditions are as follows: measurement mode: full loop, maximum magnetic field: 15 kOe, magnetic field step: 40 bits, time constant of locking gain: 0.3s, waiting time: 1s, and MH averaging number: 20

Nachdem die zwei M-H-Schleifen erhalten wurden, wird die M-H-Schleife der Korrekturproben (der Basis 11) von der M-H-Schleife der Messungsproben (des gesamten Magnetaufzeichnungsmediums 10) subtrahiert, um eine Hintergrundkorrektur durchzuführen, und eine MH-Schleife nach der Hintergrundkorrektur wird dadurch erhalten. Mess- und Analyseprogramme, die an das „VSMP7-15“ angehängt sind, werden zur Berechnung in der Hintergrundkorrektur verwendet.After the two M-H loops are obtained, the M-H loop of the correction samples (the base 11) is subtracted from the M-H loop of the measurement samples (the entire magnetic recording medium 10) to perform background correction, and an MH loop after background correction becomes thereby obtained. Measurement and analysis programs attached to the "VSMP7-15" are used for calculation in the background correction.

Die erhaltene Sättigungsmagnetisierung Ms (emu) und die erhaltene Restmagnetisierung Mr (emu) der M-H-Schleife nach einer Hintergrundkorrektur werden in den folgenden Ausdruck eingesetzt, um das Rechteckigkeitsverhältnis S1 (%) zu berechnen. Rechteckigkeitsverh a ¨ ltnis S 1 ( % ) = ( Mr/Ms ) × 100

Figure DE112019007754T5_0003

Es wird angemerkt, dass die Messung der M-H-Schleifen, die zuvor beschrieben sind, bei 25 °C durchgeführt wird. Außerdem wird keine „Entmagnetisienmgsfeldkorrektur“ durchgeführt, wenn die M-H-Schleife in der senkrechten Richtung des Magnetaufzeichnungsmediums 10 gemessen wird.The obtained saturation magnetization Ms (emu) and the obtained residual magnetization Mr (emu) of the MH loop after background correction are substituted into the following expression to calculate the squareness ratio S1 (%). squareness ratio a ¨ lnis S 1 ( % ) = ( Mr/Ms ) × 100
Figure DE112019007754T5_0003

It is noted that the measurement of the MH loops described above is performed at 25°C. In addition, when the MH loop in the perpendicular direction of the magnetic recording medium 10 is measured, “demagnetization field correction” is not performed.

Ein Rechteckigkeitsverhältnis S2 in der longitudinalen Richtung (Bewegungsrichtung) des Magnetaufzeichnungsmediums 10 beträgt zum Beispiel bevorzugt 35 % oder weniger, bevorzugter 30 % oder weniger, noch weiter bevorzugt 25 % oder weniger, besonders bevorzugt 20 % oderwenigerund am bevorzugtesten 15 % oder weniger. Wenn das Rechteckigkeitsverhältnis S2 35 % oder weniger beträgt, wird die senkrechte Orientierung der Magnetpulver ausreichend hoch. Daher ist es möglich, ein exzellenteres SNR zu erhalten.A squareness ratio S2 in the longitudinal direction (moving direction) of the magnetic recording medium 10 is, for example, preferably 35% or less, more preferably 30% or less, still more preferably 25% or less, particularly preferably 20% or less, and most preferably 15% or less. When the squareness ratio S2 is 35% or less, the perpendicular orientation of the magnetic powders becomes sufficiently high. Therefore, it is possible to obtain more excellent SNR.

Das Rechteckigkeitsverhältnis S2 wird auf die gleiche Weise wie für das Rechteckigkeitsverhältnis S1 bestimmt, mit der Ausnahme, dass die M-H-Schleifen in der longitudinalen Richtung (der Bewegungsrichtung) des Magnetaufzeichnungsmediums 10 und der Basis 11 gemessen werden.The squareness ratio S2 is determined in the same manner as for the squareness ratio S1, except that the M-H loops in the longitudinal direction (the moving direction) of the magnetic recording medium 10 and the base 11 are measured.

(SFD)(SFD)

In einer SFD (Switching Field Distribution - Schaltfeldverteilung)-Kurve des Magnetaufzeichnungsmediums 10 beträgt das Spitzenverhältnis X/Y zwischen einer Hauptspitzenhöhe X und einer Subspitzenhöhe Y nahe einem Magnetfeld von null bevorzugt 3,0 oder mehr, bevorzugter 5,0 oder mehr, noch weiter bevorzugt 7,0 oder mehr, besonders bevorzugt 10,0 oder mehr und am bevorzugtesten 20,0 oder mehr (siehe 3). Wenn das Spitzenverhältnis X/Y 3,0 oder mehr beträgt, ist es möglich, zu unterdrücken, dass eine große Menge an Komponenten mit niedriger Koerzitivität, die für ε-Eisenoxid eigen sind, wie etwa weichmagnetische Teilchen und superparamagnetische Teilchen, außer den ε-Eisenoxidteilchen 20, die zu der tatsächlichen Aufzeichnung beitragen, in den Magnetpulvern enthalten sind. Daher ist es möglich, die Verschlechterung von Magnetisierungssignalen, die in angrenzenden Spuren aufgezeichnet werden, aufgrund eines Leckens eines Magnetfelds von dem Aufzeichnungskopf zu unterdrücken und dementsprechend ein exzellenteres SNR zu erhalten. Der obere Grenzwert des Spitzenverhältnisses X/Y beträgt zum Beispiel unter anderem 100 oder weniger.In an SFD (Switching Field Distribution) curve of the magnetic recording medium 10, the peak ratio X/Y between a main peak height X and a sub-peak height Y near zero magnetic field is preferably 3.0 or more, more preferably 5.0 or more, even further preferably 7.0 or more, more preferably 10.0 or more, and most preferably 20.0 or more (see 3 ). When the peak ratio X/Y is 3.0 or more, it is possible to suppress that a large amount of low-coercivity components peculiar to ε-iron oxide, such as soft magnetic particles and superparamagnetic particles, other than the ε- Iron oxide particles 20 contributing to actual recording contained in the magnetic powders. Therefore, it is possible to suppress the deterioration of magnetization signals recorded in adjacent tracks due to leakage of a magnetic field from the recording head and accordingly obtain more excellent SNR. For example, the upper limit of the peak ratio X/Y is 100 or less, among others.

Das Spitzenverhältnis X/Y wird wie folgt bestimmt. Zuerst wird die M-H-Schleife nach der Hintergrundkorrektur auf die gleiche Weise wie bei dem oben beschriebenen Verfahren zum Messen der Koerzitivität Hc erhalten. Als Nächstes wird eine SFD-Kurve aus der erhaltenen M-H-Schleife berechnet. Für die Berechnung der SFD-Kurve kann ein Programm verwendet werden, das an die Messungseinrichtung angehängt ist, oder können andere Programme verwendet werden. Das Spitzenverhältnis X/Y wird berechnet, wobei „Y“ der Absolutwert des Punktes ist, an dem die berechnete SFD-Kurve eine Y-Achse schneidet (dM/dH), und „X“ die Höhe der Hauptspitze ist, die in der Nähe der Koerzitivität Hc in der M-H-Schleife beobachtet wird. Es ist anzumerken, dass die Messung der M-H-Schleife bei 25 °C auf die gleiche Weise wie bei dem oben beschriebenen Verfahren zum Messen der Koerzitivität Hc durchgeführt wird. Außerdem wird keine „Entmagnetisienmgsfeldkorrektut“ durchgeführt, wenn die M-H-Schleife in der Dickenrichtung (senkrechten Richtung) des Magnetaufzeichnungsmediums 10 gemessen wird. Femer können mehrere zu messende Proben für die Messung der M-H-Schleife in Abhängigkeit von der Empfindlichkeit des zu verwendenden VSM laminiert werden.The peak ratio X/Y is determined as follows. First, the MH loop after background correction is obtained in the same manner as in the method of measuring the coercivity Hc described above. Next, an SFD curve is calculated from the obtained MH loop. For the calculation of the SFD curve, a program attached to the measuring device can be used, or other programs can be used. The peak ratio X/Y is calculated, where "Y" is the absolute value of the point where the calculated SFD curve intersects a Y-axis (dM/dH) and "X" is the height of the main peak that is nearby of the coercivity Hc in the MH loop is observed. It should be noted that the measurement of the MH loop at 25°C is performed in the same manner as the method of measuring the coercivity Hc described above. Also will no “demagnetization field correction” is performed when the MH loop in the thickness direction (perpendicular direction) of the magnetic recording medium 10 is measured. Further, a plurality of samples to be measured may be laminated for the MH loop measurement depending on the sensitivity of the VSM to be used.

(Aktivierungsvolumen Vakt)(activation volume vact)

Das Aktivierungsvolumen Vakt beträgt bevorzugt 8000 nm3 oder weniger, bevorzugter 6000 nm3 oder weniger, noch weiter bevorzugt 5000 nm3 oder weniger, besonders bevorzugt 4000 nm3 oder wenigerund am bevorzugtesten 3000 nm3 oder weniger. Wenn das Aktivierungsvolumen Vakt 8000 nm3 oder weniger beträgt, wird der Dispersionszustand der Magnetpulver vorteilhaft. Daher ist es möglich, ein Bitinversionsgebiet steil zu machen und dementsprechend die Verschlechterung der Magnetisierungssignale, die in angrenzenden Spuren aufgezeichnet sind, aufgrund von Lecken eines Magnetfeldes von dem Aufzeichnungskopf zu unterdrücken. Entsprechend ist es möglich, ein exzellenteres SNR zu erhalten.The activation volume Vakt is preferably 8000 nm 3 or less, more preferably 6000 nm 3 or less, even more preferably 5000 nm 3 or less, particularly preferably 4000 nm 3 or less and most preferably 3000 nm 3 or less. When the activation volume Vakt is 8000 nm 3 or less, the state of dispersion of the magnetic powders becomes favorable. Therefore, it is possible to make a bit inversion region steep and accordingly to suppress the deterioration of magnetization signals recorded in adjacent tracks due to leakage of a magnetic field from the recording head. Accordingly, it is possible to obtain a more excellent SNR.

Das oben beschriebene Aktivierungsvolumen Vakt wird durch den folgenden Ausdruck bestimmt, der durch Street & Woolley abgeleitet wurde. Vakt ( nm 3 ) = kB × T × Xirr/ ( μ 0 × Ms × S )

Figure DE112019007754T5_0004
(wobei kB die Boltzmann-Konstante (1,38 × 10-23 J/K) repräsentiert, T die Temperatur (K) repräsentiert, Xirr die irreversible magnetische Suszeptibilität repräsentiert, µ0 die magnetische Permeabilität in Vakuum repräsentiert, S den magnetischen Viskositätskoeffizienten repräsentiert, Ms die Sättigungsmagnetisierung (emu / cm3) repräsentiert).The activation volume Vact described above is determined by the following expression derived by Street & Woolley. vac ( nm 3 ) = kB × T × Xirr/ ( µ 0 × Ms × S )
Figure DE112019007754T5_0004
(where kB represents the Boltzmann constant (1.38 × 10 -23 J/K), T represents the temperature (K), Xirr represents the irreversible magnetic susceptibility, µ0 represents the magnetic permeability in vacuum, S represents the magnetic viscosity coefficient, Ms represents the saturation magnetization (emu/cm 3 )).

Die irreversible magnetische Suszeptibilität Xirr, die Sättigungsmagnetisierung Ms und der magnetische Viskositätskoeffizient S, die in den obigen Ausdruck einzusetzen sind, werden durch Verwenden des VSM wie folgt bestimmt. Drei Lagen der Magnetaufzeichnungsmedien 10 werden durch Verbinden mit doppelseitigen Klebebändern laminiert und dann durch eine Stanze mit einem Durchmesser von 6,39 mm ausgestanzt, um Messungsproben vorzubereiten. Zu dieser Zeit wird eine Markierung mit einer beliebigen Tinte ohne Magnetismus durchgeführt, so dass die longitudinale Richtung (Bewegungsrichtung) des Magnetaufzeichnungsmediums 10 erkennbar gemacht wird. Es ist anzumerken, dass die Messung durch das VSM in der Dickenrichtung (senkrechten Richtung) des Magnetaufzeichnungsmediums 10 durchgeführt wird. Außerdem wird die Messung an den Messungsproben, die aus dem länglichen Magnetaufzeichnungsmedium 10 ausgeschnitten wurden, unter Verwendung des VSMbei 25 °C durchgeführt. Außerdem wird keine „Entmagnetisierungsfeldkorrektur“ durchgeführt, wenn die M-H-Schleife in der Dickenrichtung (senkrechten Richtung) des Magnetaufzeichnungsmediums 10 gemessen wird. Femer wird das Vibraling-Sample-Magnetometer mit hoher Empfindlichkeit „VSM-P7-15“, hergestellt durch Toei Industry Co., Ltd., verwendet, um die M-H-Schleife der Messungsproben (des gesamten Magnetaufzeichnungsmediums 10) und die M-H-Schleife der Korrekturproben (der Basis 11) zu messen. Messungsbedingungen sind wie folgt: Messmodus: volle Schleife, maximales Magnetfeld: 15 kOe, Magnetfeldschritt: 40 Bit, Zeitkonstante des Locking-Verst.: 0,3 s, Wartezeit: 1 s, und MH-Mittelungszahl: 20.The irreversible magnetic susceptibility Xirr, the saturation magnetization Ms, and the magnetic viscosity coefficient S to be substituted into the above expression are determined by using the VSM as follows. Three sheets of the magnetic recording media 10 are laminated by bonding with double-sided adhesive tapes and then punched out by a 6.39 mm diameter punch to prepare measurement samples. At this time, marking is performed with an arbitrary ink having no magnetism so that the longitudinal direction (moving direction) of the magnetic recording medium 10 is made recognizable. Note that the measurement is performed in the thickness direction (perpendicular direction) of the magnetic recording medium 10 by the VSM. In addition, the measurement is performed on the measurement samples cut out from the elongated magnetic recording medium 10 using the VSM at 25°C. In addition, when the M-H loop in the thickness direction (perpendicular direction) of the magnetic recording medium 10 is measured, “demagnetization field correction” is not performed. Further, the High Sensitivity Vibrating Sample Magnetometer “VSM-P7-15” manufactured by Toei Industry Co., Ltd. is used to measure the M-H loop of the measurement samples (the entire magnetic recording medium 10) and the M-H loop of the to measure correction samples (of base 11). Measurement conditions are as follows: measurement mode: full loop, maximum magnetic field: 15 kOe, magnetic field step: 40 bits, time constant of locking gain: 0.3 s, waiting time: 1 s, and MH averaging number: 20.

(Irreversible magnetische Suszeptibilität Xirr)(Irreversible Magnetic Susceptibility Xirr)

Die irreversible magnetische Suszeptibilität Xirr ist als eine Steigung in der Nähe einer Restkoerzitivität Hr der Steigung der Restmagnetisierungskurve (DCD-Kurve) definiert. Zuerst wird ein Magnetfeld von -1193 kA/m (15 kOe) an das gesamte Magnetaufzeichnungsmedium 10 angelegt und das Magnetfeld wird auf null zurückgesetzt, so dass ein Restmagnetisierungszustand vorliegt. Danach wird ein Magnetfeld von etwa 15,9 kA/m (200 Oe) in der entgegengesetzten Richtung angelegt und wird das Magnetfeld wieder auf null zurückgesetzt, um die Restmagnetisierungsmenge zu messen. Danach wird gleichermaßen die Messung, bei der ein Magnetfeld, das um 15,9 kA/m größer als das zuvor angelegte Magnetfeld ist, angelegt wird und auf null zurückgesetzt wird, wiederholt durchgeführt und wird die Restmagnetisierungsmenge mit Bezug auf das angelegte Magnetfeld aufgetragen, um eine DCD-Kurve zu messen. Aus der erhaltenen DCD-Kurve wird der Punkt, an dem die Magnetisierungsmenge null wird, als die RestkoerzitivitätHr bestimmt. Ferner wird die DCD-Kurve differenziert, um die Steigung der DCD-Kurve in jedem Magnetfeld zu bestimmen. Aus der Steigung der DCD-Kurve ist die Steigung in der Nähe der Restkoerzitivität Hr Xirr.The irreversible magnetic susceptibility Xirr is defined as a slope near a residual coercivity Hr of the slope of the residual magnetization (DCD) curve. First, a magnetic field of -1193 kA/m (15 kOe) is applied to the entire magnetic recording medium 10, and the magnetic field is reset to zero to be in a residual magnetization state. Thereafter, a magnetic field of about 15.9 kA/m (200 Oe) is applied in the opposite direction and the magnetic field is reset to zero to measure the residual magnetization amount. Thereafter, similarly, the measurement in which a magnetic field larger by 15.9 kA/m than the previously applied magnetic field is applied and reset to zero is repeatedly performed, and the residual magnetization amount is plotted with respect to the applied magnetic field to measure a DCD curve. From the obtained DCD curve, the point at which the amount of magnetization becomes zero is determined as the residual coercivity Hr. Furthermore, the DCD curve is differentiated to determine the slope of the DCD curve in each magnetic field. From the slope of the DCD curve, the slope near the residual coercivity is Hr Xirr.

(Sättigungsmagnetisierung Ms)(saturation magnetization Ms)

Zuerst wird dieM-H-Schleifenach der Hintergrundkorrektur auf diegleicheWeise wie bei dem oben beschriebenen Verfahren zum Messen der Koerzitivität Hc erhalten. Als Nächstes wird Ms (emu/cm3) aus dem Wert einer Sättigungsmagnetisierung Ms (emu) der erhaltenen M-H-Schleife und dem Volumen (cm3) der Magnetschicht 13 in jeder Messungsprobe berechnet. Es wird angemerkt, dass das Volumen der Magnetschicht 13 durch Multiplizieren der Fläche der Messungsprobe mit der durchschnittlichen Dicke der Magnetschicht 13 bestimmt wird. Das Verfahren zum Berechnen der durchschnittlichen Dicke der Magnetschicht 13, die zum Berechnen des Volumens der Magnetschicht 13 notwendig ist, ist wie oben beschrieben.First, the M-H loop after background correction is obtained in the same manner as in the method of measuring the coercivity Hc described above. Next, Ms (emu/cm 3 ) is calculated from the value of a saturation magnetization Ms (emu) of the obtained MH loop and the volume (cm 3 ) of the magnetic layer 13 in each measurement sample. It is noted that the volume of the magnetic layer 13 is determined by multiplying the area of the measurement sample by the average thickness of the magnetic layer 13. FIG. The method of calculating the average thickness of the magnetic layer 13 necessary for calculating the volume of the magnetic layer 13 is as described above.

(Magnetischer Viskositätskoeffizient S)(Magnetic Viscosity Coefficient S)

Zuerst wird ein Magnetfeld von -1193 kA/m (15 kOe) an das gesamte Magnetaufzeichnungsmedium 10 (Messungsproben) angelegt und das Magnetfeld wird auf null zurückgesetzt, so dass ein Restmagnetisierungszustand vorliegt. Danach wird ein Magnetfeld äquivalent zu dem Wert der der Restkoerzitivität Hr, der aus der DCD-Kurve erhalten wird, in der entgegengesetzten Richtung angelegt. Die Menge der Magnetisierung wird während dem Anlegen des Magnetfeldes kontinuierlich in regelmäßigen Zeitintervallen für 1000 Sekunden gemessen. Die Beziehung zwischen der Zeit t und der Magnetisierungsmenge M(t), die auf eine solche Weise erhalten wird, wird in dem folgenden Ausdruck zum Berechnen des magnetischen Viskositätskoeffizienten S verwendet. M ( t ) = M 0 + S × ln ( t )

Figure DE112019007754T5_0005
(wobei M(t) die Magnetisierungsmenge zu der Zeit t repräsentiert, M0 eine anfängliche Magnetisierungsmenge repräsentiert, S den magnetischen Viskositätskoeffizienten repräsentiert und ln(t) den natürlichen Logarithmus der Zeit repräsentiert).First, a magnetic field of -1193 kA/m (15 kOe) is applied to the entire magnetic recording medium 10 (measurement samples), and the magnetic field is reset to zero to be in a residual magnetization state. Thereafter, a magnetic field equivalent to the value of the residual coercivity Hr obtained from the DCD curve is applied in the opposite direction. The amount of magnetization is continuously measured at regular time intervals for 1000 seconds during the application of the magnetic field. The relationship between the time t and the magnetization amount M(t) obtained in such a manner is used in the following expression for calculating the magnetic viscosity coefficient S. M ( t ) = M 0 + S × ln ( t )
Figure DE112019007754T5_0005
(where M(t) represents the amount of magnetization at the time t, M0 represents an initial amount of magnetization, S represents the magnetic viscosity coefficient, and ln(t) represents the natural logarithm of time).

(Datenstreifen und Servostreifen)(data stripe and servo stripe)

4 ist eine schematische Ansicht des Magnetaufzeichnungsmediums 10 bei Betrachtung von oberhalb. Wie in 4 veranschaulicht, beinhaltet die Magnetschicht 13 mehrere Datenstreifen DB (in 4 sind Datenstreifen DB0 bis DB3 veranschaulicht), die sich in der longitudinalen Richtung (X-Achse-Richtung) des Magnetaufzeichnungsmediums 10 erstrecken, und mehrere Servostreifen SB (in 4 sind Servostreifen SB0 bis SB4 veranschaulicht), die sich in der longitudinalen Richtung (X-Achse-Richtung) des Magnetaufzeichnungsmediums 10 erstrecken. Ein Datensignal wird in jeden der mehreren Datenstreifen DB geschrieben und ein Servosignal zur Spursteuerung des Magnetkopfes wird inj eden der mehreren Servostreifen SB geschrieben. Femer ist jeder Datenstreifen DB so angeordnet, dass er sandwichartig durch die mehreren Servostreifen SB eingeschlossen wird, die in der Breitenrichtung (Y-Achse-Richtung) aneinander angrenzen. 4 12 is a schematic view of the magnetic recording medium 10 viewed from above. As in 4 As illustrated, the magnetic layer 13 includes a plurality of data strips DB (in 4 data stripes DB0 to DB3 are illustrated) extending in the longitudinal direction (X-axis direction) of the magnetic recording medium 10, and a plurality of servo stripes SB (in 4 servo stripes SB0 to SB4) extending in the longitudinal direction (X-axis direction) of the magnetic recording medium 10 are illustrated. A data signal is written in each of the plurality of data stripes DB, and a servo signal for tracking control of the magnetic head is written in each of the plurality of servo stripes SB. Further, each data stripe DB is arranged to be sandwiched by the plurality of servo strips SB adjacent to each other in the width direction (Y-axis direction).

Der obere Grenzwert eines Verhältnisses RS (=(SSB/S) × 100) der Gesamtfläche SSB der Servostreifen S zu der Fläche S der Oberfläche der Magnetschicht 13 beträgt von dem Standpunkt des Sicherstellens einer hohen Speicherungskapazität bevorzugt 4,0 % oder weniger, bevorzugter 3,0 % oder weniger, noch weiter bevorzugt 2,0 % oder weniger. Währenddessen beträgt der untere Grenzwert des Verhältnisses RS der Gesamtfläche SSB der Servostreifen SB zu der Fläche S der Oberfläche der Magnetschicht 13 von dem Standpunkt des Sicherstellens von 5 oder mehr Servostreifen bevorzugt 0,8 % oder mehr.The upper limit of a ratio R S (=(S SB /S) × 100) of the total area S SB of the servo stripes S to the area S of the surface of the magnetic layer 13 is preferably 4.0% or less from the viewpoint of ensuring a high storage capacity , more preferably 3.0% or less, even more preferably 2.0% or less. Meanwhile, the lower limit of the ratio R S of the total area S SB of the servo stripes SB to the area S of the surface of the magnetic layer 13 is preferably 0.8% or more from the viewpoint of ensuring 5 or more servo stripes.

Das Verhältnis RS der Gesamtfläche SSB der Servostreifen SB zu der Fläche S der Oberfläche 13S der Magnetschicht 13 kann zum Beispiel durch Entwickeln des Magnetaufzeichnungsmediums 10 unter Verwendung eines Ferricolloid-Entwicklers (hergestellt durch Sigma Hi-Chemical Inc., Sigmarker Q) und dann Beobachten des entwickelten Magnetaufzeichnungsmediums 10 mit einem optischen Mikroskop gemessen werden. Aus dem Bild, das durch das optische Mikroskop beobachtet wird, werden eine Servostreifenbreite WSB und die Anzahl der Servostreifen gemessen. Als Nächstes wird das Verhältnis RS aus dem folgenden Ausdruck bestimmt. Verh a ¨ ltnis R s [ % ] = ( ( ( Servostreifenbreite W SB ) × ( Anzahl an Servostreifen ) ) / ( Breite des Magnetaufzeichnungsmediums 10 ) ) × 100

Figure DE112019007754T5_0006
The ratio R S of the total area S SB of the servo stripes SB to the area S of the surface 13S of the magnetic layer 13 can be determined, for example, by developing the magnetic recording medium 10 using a ferricolloid developer (manufactured by Sigma Hi-Chemical Inc., Sigmarker Q) and then observing the developed magnetic recording medium 10 with an optical microscope. From the image observed through the optical microscope, a servo stripe width W SB and the number of servo stripes are measured. Next, the ratio R S is determined from the following expression. marriage a ¨ lnis R s [ % ] = ( ( ( Servo Stripe Width W SB ) × ( Number of servo stripes ) ) / ( width of magnetic recording medium 10 ) ) × 100
Figure DE112019007754T5_0006

Die Anzahl an Servostreifen SB beträgt bevorzugt 5 oder mehr, bevorzugter 5 + 4n (wobei n eine positive ganze Zahl ist) oder mehr. Wenn die Anzahl an Servostreifen SB 5 oder mehr beträgt, ist es möglich, einen Einfluss auf das Servosignal, der durch die Änderung der Breitenrichtungsabmessung des Magnetaufzeichnungsmediums 10 verursacht wird, zu unterdrücken und stabile Aufzeichnungs- und Wiedergabecharakteristiken mit weniger Off-Tracks (Spurverlassen) sicherzustellen.The number of servo stripes SB is preferably 5 or more, more preferably 5 + 4n (where n is a positive integer) or more. When the number of servo stripes SB is 5 or more, it is possible to suppress an influence on the servo signal caused by the change in the width direction dimension of the magnetic recording medium 10 and to ensure stable recording and playback characteristics with less off-tracks (off-track). .

Der obere Grenzwert der Servostreifenbreite WSB ist von dem Standpunkt des Sicherstellens einer hohen Speicherungskapazität bevorzugt 95 µm oder weniger, bevorzugter 60 µm oder weniger, noch weiter bevorzugt 30 µm oder weniger. Der untere Grenzwert der Servostreifenbreite WSB ist von dem Standpunkt des Herstellens des Aufzeichnungskopfes bevorzugt 10 µm oder mehr. Die Breite WSB der Servostreifenbreite wird wie folgt bestimmt. Zuerst wird das Magnetaufzeichnungsmedium 10 unter Verwendung eines Fenicolloid-Entwicklers (hergestellt durch Sigma Hi-Chemical Inc., Sigmarker Q) entwickelt. Als Nächstes kann die Breite WSB des Servostreifens durch Beobachten des entwickelten Magnetaufzeichnungsmediums 10 mit einem optischen Mikroskop gemessen werden.The upper limit of the servo stripe width W SB is preferably 95 µm or less, more preferably 60 µm or less, still more preferably 30 µm or less from the viewpoint of ensuring a high storage capacity. The lower limit of the servo stripe width W SB is preferably 10 µm or more from the standpoint of manufacturing the recording head. The width W SB of the servo stripe width is determined as follows. First, the magnetic recording medium 10 is developed using a Fenicoloid developer (manufactured by Sigma Hi-Chemical Inc., Sigmarker Q). Next, the width W SB of the servo stripe can be measured by observing the developed magnetic recording medium 10 with an optical microscope.

Wie in 4 veranschaulicht, sind die Datenstreifen DB jeweils durch mehrere Aufzeichnungsspuren 5 konfigurierbar, die sich entlang der X-Ache-Richtung erstrecken und so ausgerichtet sind, dass sie in der Y-Achse-Richtung aneinander angrenzen. Die Datensignale werden entlang der Aufzeichnungsspuren 5 in den Aufzeichnungsspuren 5 aufgezeichnet. Es ist anzumerken, dass bei der vorliegenden Technologie die Länge eines Bits in der longitudinalen Richtung des in dem Datenstreifen DB aufzuzeichnenden Datensignals (die Entfernung zwischen Magnetisierungsumkehrungen) typischerweise 48 nm oder weniger beträgt. Der Servostreifen SB beinhaltet ein vorbestimmtes Servosignalaufzeichnungsmuster 6, in dem ein Servosignal unter Verwendung einer (nicht veranschaulichten) Servosignalaufzeichnungsvorrichtung aufgezeichnet wird.As in 4 As illustrated, the data stripes DB are each configurable by a plurality of recording tracks 5 extending along the X-axis direction and aligned so as to be adjacent to each other in the Y-axis direction. The data signals are recorded in the recording tracks 5 along the recording tracks 5 . It should be noted that with the present technology, the length of one bit in the longitudinal direction of the data signal to be recorded in the data stripe DB (the distance between magnetization reversals) is typically 48 nm or less. The servo stripe SB includes a predetermined servo signal recording pattern 6 in which a servo signal is recorded using a servo signal recording device (not shown).

5 ist eine vergrößerte Ansicht der Aufzeichnungsspuren 5 in dem Datenstreifen DB. Wie in 5 veranschaulicht, weist jede der Aufzeichnungsspuren 5 eine vorbestimmte Aufzeichnungsspurbreite Wd in der Y-Achse-Richtung auf Die Aufzeichnungsspurbreite Wd beträgt typischerweise 3,0 µm oder weniger. Es ist anzumerken, dass eine solche Aufzeichnungsspurbreite Wd zum Beispiel durch Entwickeln des Magnetaufzeichnungsmediums 10 unter Verwendung eines Entwicklers, wie etwa Fenicolloid-Entwicklers, und dann Beobachten des entwickelten Magnetaufzeichnungsmediums 10 mit einem optischen Mikroskop gemessen werden kann. 5 Fig. 12 is an enlarged view of the recording tracks 5 in the data stripe DB. As in 5 As illustrated, each of the recording tracks 5 has a predetermined recording track width Wd in the Y-axis direction. The recording track width Wd is typically 3.0 µm or less. Note that such a recording track width Wd can be measured, for example, by developing the magnetic recording medium 10 using a developer such as fenicolloid developer and then observing the developed magnetic recording medium 10 with an optical microscope.

Die Anzahl der Aufzeichnungsspuren 5, die in jedem Datenstreifen DB enthalten sind, beträgt zum Beispiel näherungsweise 1000 bis 2000.The number of recording tracks 5 included in each data stripe DB is approximately 1000 to 2000, for example.

6 ist eine vergrößerte Ansicht des Servosignalaufzeichnungsmusters 6 in dem Servostreifen SB. Wie in 6 veranschaulicht, beinhaltet das Servosignalaufzeichnungsmuster 6 mehrere Bahnen 7, die mit einem vorbestimmten Azimutwinkel α mit Bezug auf die Breitenrichtung (Y-Achse-Richtung) geneigt sind. Die mehreren Bahnen 7 werden in eine erste Bahngruppe 8 einschließlich solcher, die mit Bezug auf die Breitenrichtung (Y-Achse-Richtung) im Uhrzeigersinn geneigt sind, und eine zweite Bahngruppe 9 einschließlich solcher, die mit Bezug auf die Breitenrichtung gegen den Uhrzeigersinn geneigt sind, klassifiziert. Es wird angemerkt, dass die Form einer solchen Bahn 7 zum Beispiel durch Entwickeln des Magnetaufzeichnungsmediums 10 unter Verwendung eines Entwicklers, wie etwa Fenicolloid-Entwicklers, und dann Beobachten des entwickelten Magnetaufzeichnungsmediums 10 mit einem optischen Mikroskop gemessen werden kann. 6 Fig. 12 is an enlarged view of the servo signal recording pattern 6 in the servo stripe SB. As in 6 As illustrated, the servo signal recording pattern 6 includes a plurality of tracks 7 inclined at a predetermined azimuth angle α with respect to the width direction (Y-axis direction). The plurality of tracks 7 are divided into a first track group 8 including those inclined clockwise with respect to the width direction (Y-axis direction) and a second track group 9 including those inclined counterclockwise with respect to the width direction , classified. It is noted that the shape of such a web 7 can be measured, for example, by developing the magnetic recording medium 10 using a developer such as fenicolloid developer and then observing the developed magnetic recording medium 10 with an optical microscope.

Gestrichelte Linien in 6 veranschaulichen Servospurlinien T, die Linien sind, die durch einen Servolesekopf auf dem Servosignalaufzeichnungsmuster 6 verfolgt werden. Die Servospurlinien T sind entlang der longitudinalen Richtung (X-Achse-Richtung) festgelegt und sind in vorbestimmten Intervallen Ps in der Breitenrichtung festgelegt.Dashed lines in 6 12 illustrate servo trace lines T, which are lines traced on the servo signal recording pattern 6 by a servo read head. The servo track lines T are defined along the longitudinal direction (X-axis direction) and are defined at predetermined intervals Ps in the width direction.

Die Anzahl der Servospurlinien T pro Servostreifen SB beträgt zum Beispiel näherungsweise 30 bis 60.The number of servo track lines T per servo stripe SB is approximately 30 to 60, for example.

Das Intervall Ps zwischen zwei angrenzenden Servospurlinien T ist gleich dem Wert der Aufzeichnungsspurbreite Wd und beträgt zum Beispiel 2,0 µm oder weniger. Hier ist das Intervall Ps zwischen zwei angrenzenden Servospurlinien Ts ein Wert, der die Aufzeichnungsspurbreite Wd bestimmt. Das heißt, wenn das Intervall Ps zwischen den Servospurlinien T verschmälert wird, wird die Aufzeichnungsspurbreite Wd kleiner und nimmt die Anzahl der Aufzeichnungsspuren 5, die in jedem Datenstreifen DB enthalten sind, zu. Infolgedessen nimmt die Kapazität der Speicherung von Daten zu (und umgekehrt, falls das Intervall Ps vergrößert wird). Daher ist es notwendig, die Aufzeichnungsspurbreite Wd zu reduzieren, um die Speicherungskapazität zu erhöhen. Jedoch führt dies auch zu einer Reduzierung des Intervalls Ps zwischen den Servospurlinien T, was es erschwert, die angrenzenden Servospurlinien genau zu verfolgen. Daher wird bei der vorliegenden Ausführungsform eine Wiedergabesignalbreite, d. h. die halbe Breite einer solitären Wellenform in einer wiedergegebenen Wellenform eines Datensignals, verschmälert, wie später beschrieben ist. Es ist daher möglich, eine Verschmälerung der Aufzeichnungsspurbreite Wd zu bewältigen.The interval Ps between two adjacent servo track lines T is equal to the value of the recording track width Wd and is 2.0 µm or less, for example. Here, the interval Ps between two adjacent servo track lines Ts is a value that determines the recording track width Wd. That is, as the interval Ps between the servo track lines T is narrowed, the recording track width Wd becomes smaller and the number of recording tracks 5 included in each data stripe DB increases. As a result, the capacity of storing data increases (and vice versa if the interval Ps is increased). Therefore, it is necessary to reduce the recording track width Wd in order to achieve storage to increase capacity. However, this also results in a reduction in the interval Ps between the servo track lines T, making it difficult to accurately track the adjacent servo track lines. Therefore, in the present embodiment, a reproduced signal width, that is, a half width of a solitary waveform in a reproduced waveform of a data signal, is narrowed as described later. It is therefore possible to cope with a narrowing of the recording track width Wd.

(Reibungskoeffizientenverhältnis (µBA))(Coefficient of Friction Ratio (µ BA ))

Ein Reibungskoeffizientenverhältnis (µBA) zwischen einem dynamischen Reibungskoeffizienten µA und einem dynamischen Reibungskoeffizienten µB beträgt bevorzugt 1,0 oder mehr und 2,1 oder weniger, bevorzugter 1,2 oder mehr und 1,8 oder weniger. Der dynamische Reibungskoeffizient µA ist ein dynamischer Reibungskoeffizient zwischen der Oberfläche 13S der Magnetschicht 13 des Magnetaufzeichnungsmediums 10 und dem Magnetkopf, falls eine Zugspannung von 0,4 N in der longitudinalen Richtung des Magnetaufzeichnungsmediums 10 angelegt wird. Der dynamische Reibungskoeffizient µB ist ein dynamischer Reibungskoeffizient zwischen der Oberfläche 13S der Magnetschicht 13 des Magnetaufzeichnungsmediums 10 und dem Magnetkopf, falls eine Zugspannung von 1,2 N in der longitudinalen Richtung des Magnetaufzeichnungsmediums 10 angelegt wird. Wenn das Reibungskoeffizientenverhältnis (µBA) 1,0 oder mehr und 2,1 oder weniger beträgt, ist es möglich, eine Änderung des dynamischen Reibungskoeffizienten aufgrund einer Variation der Zugspannung zu der Zeit der Bewegung zu reduzieren und dementsprechend die Bewegung des Magnetaufzeichnungsmediums 10 zu stabilisieren.A friction coefficient ratio (μ BA ) between a dynamic friction coefficient μA and a dynamic friction coefficient μB is preferably 1.0 or more and 2.1 or less, more preferably 1.2 or more and 1.8 or less. The dynamic friction coefficient μA is a dynamic friction coefficient between the surface 13S of the magnetic layer 13 of the magnetic recording medium 10 and the magnetic head when a tensile stress of 0.4 N is applied to the magnetic recording medium 10 in the longitudinal direction. The dynamic friction coefficient µB is a dynamic friction coefficient between the surface 13S of the magnetic layer 13 of the magnetic recording medium 10 and the magnetic head when a tensile stress of 1.2N is applied to the magnetic recording medium 10 in the longitudinal direction. When the friction coefficient ratio (µ BA ) is 1.0 or more and 2.1 or less, it is possible to reduce a change in the dynamic friction coefficient due to a variation in tension at the time of movement and accordingly reduce movement of the magnetic recording medium 10 to stabilize.

Der dynamische Reibungskoeffizient µA und der dynamische Reibungskoeffizient µB zum Berechnen des Reibungskoeffizientenverhältnisses (µBA) werden wie folgt bestimmt. Zuerst wird, wie in 7 veranschaulicht, das Magnetaufzeichnungsmedium 10 mit einer Breite von 1/2 Zoll derart auf zwei zylindrischen Führungsrollen 91 und 92, die jeweils einen Durchmesser von 1 Zoll aufweisen und parallel zueinander und voneinander beabstandet sind, platziert, dass sich die Oberfläche 13S der Magnetschicht 13 in Kontakt mit den Führungsrollen 91 und 92 befindet. Die Positionsbeziehung zwischen den zwei Führungsrollen 91 und 92 ist fest.The dynamic friction coefficient µA and the dynamic friction coefficient µB for calculating the friction coefficient ratio (µ BA ) are determined as follows. First, as in 7 1, the magnetic recording medium 10 having a width of 1/2 inch is placed on two cylindrical guide rollers 91 and 92, each having a diameter of 1 inch and parallel to and spaced from each other, such that the surface 13S of the magnetic layer 13 is in contact with the guide rollers 91 and 92. The positional relationship between the two guide rollers 91 and 92 is fixed.

Als Nächstes wird das Magnetaufzeichnungsmedium 10 derart in Kontakt mit einem Kopfblock 93 (zum Aufzeichnen und Wiedergeben), der an einem LTO5-Laufwerk montiert ist, gebracht, dass sich die Oberfläche 13S der Magnetschicht 13 in Kontakt mit dem Kopfblock 93 befindet und ein Haltewinkel θ1[°] zu 5,6° wird. Ein Ende des Magnetaufzeichnungsmediums 10 wird durch eine Haltevorrichtung 94 gehalten und mit einem beweglichen Dehnungsmessgerät 95 verbunden. Außerdem wird ein Gewicht 96 an dem anderen Ende des Magnetaufzeichnungsmediums 10 aufgehängt, so dass eine Zugspannung T0 von 0,4 N an dieses vermittelt wird. Es wird angemerkt, dass der Kopfblock 74 an einer Position befestigt ist, bei der der Haltewinkel θ1[°] 5,6° beträgt. Infolgedessen ist die Positionsbeziehung zwischen den Führungsrollen 91 und 92 und dem Kopfblock 93 ebenfalls fest.Next, the magnetic recording medium 10 is brought into contact with a head block 93 (for recording and reproducing) mounted on an LTO5 drive so that the surface 13S of the magnetic layer 13 is in contact with the head block 93 and a support angle θ1 [°] becomes 5.6°. One end of the magnetic recording medium 10 is held by a holder 94 and connected to a movable strain gauge 95 . Also, a weight 96 is suspended from the other end of the magnetic recording medium 10 so that a tension T0 of 0.4N is given thereto. It is noted that the head block 74 is fixed at a position where the holding angle θ1[°] is 5.6°. As a result, the positional relationship between the guide rollers 91 and 92 and the head block 93 is also fixed.

Das bewegliche Dehnungsmessgerät 95 bewirkt dann, dass sich das Magnetaufzeichnungsmedium 10 mit einer Rate von 10 mm/s relativ zu dem Kopfblock 93 um 60 mm zu dem beweglichen Dehnungsmessgerät 95 hin verschiebt. Der Ausgabewert (Spannung) des beweglichen Dehnungsmessgeräts 95 zu der Zeit des Verschiebens wird basierend auf einer zuvor erlangen linearen Beziehung zwischen dem Ausgabewert und der Last (später zu beschreiben) zu T[N] umgewandelt. Von dem Start bis zum Ende der Verschiebung in 60 mm wird T[N] 13-mal erlangt. Elf Werte von T[N], ausschließlich des ersten und letzten, werden einfach gemittelt, um Tdurchschn [N] zu erhalten. Danach wird der dynamische Reibungskoeffizient µA aus dem folgenden Ausdruck bestimmt. μ A = 1 ( θ 1 [ ° ] × ( π 180 ) × l n ( T d u r c h s c h n [ N ] T 0 [ N ] )

Figure DE112019007754T5_0007
The movable strain gauge 95 then causes the magnetic recording medium 10 to translate relative to the head block 93 by 60 mm toward the movable strain gauge 95 at a rate of 10 mm/s. The output value (stress) of the movable strain gauge 95 at the time of shifting is converted into T[N] based on a previously obtained linear relationship between the output value and the load (to be described later). From the start to the end of the shift in 60mm, T[N] is obtained 13 times. Eleven values of T[N], excluding the first and last, are simply averaged to obtain Tavg[N]. Thereafter, the dynamic friction coefficient µA is determined from the following expression. µ A = 1 ( θ 1 [ ° ] × ( π 180 ) × l n ( T i.e and right c H s c H n [ N ] T 0 [ N ] )
Figure DE112019007754T5_0007

Die oben beschriebene lineare Beziehung wird wie folgt bestimmt. Das heißt, der Ausgabewert (Spannung) des beweglichen Dehnungsmessgeräts 95 wird für sowohl den Fall des Anlegens einer Last von 0,4 N an das bewegliche Dehnungsmessgerät 95 als auch den Fall des Anlegens einer Last von 1,5 N an das bewegliche Dehnungsmessgerät 95 erhalten. Aus den zwei erhaltenen Ausgabewerten und den zwei Lasten wird die lineare Beziehung zwischen dem Ausgabewert und der Last erhalten. Unter Verwendung der linearen Beziehung wird der Ausgabewert (Spannung) des beweglichen Dehnungsmessgeräts 95 zur Zeit des Verschiebens in T[N], wie oben beschrieben, umgewandelt.The linear relationship described above is determined as follows. That is, the output value (stress) of the movable strain gauge 95 is obtained in both the case of applying a load of 0.4N to the movable strain gauge 95 and the case of applying a load of 1.5N to the movable strain gauge 95 . From the two obtained output values and the two loads, the linear relationship between the output value and the load is obtained. Using the linear relationship, the output value (stress) of the movable strain gauge 95 at the time of shifting is converted into T[N] as described above.

Der dynamische Reibungskoeffizient µB wird auf die gleiche Weise wie bei dem Verfahren zum Messen des dynamischen Reibungskoeffizienten µA gemessen, mit der Ausnahme, dass die Zugspannung T0, die an dem anderen Ende des Magnetaufzeichnungsmediums 10 angelegt wird, 1,2 N beträgt.The dynamic coefficient of friction µB is measured in the same manner as the method for measuring the dynamic coefficient of friction µA except that the tension T0 applied to the other end of the magnetic recording medium 10 is 1.2N.

Aus dem dynamischen Reibungskoeffizienten µA und dem dynamischen Reibungskoeffizienten µB, die wie oben beschrieben gemessen werden, wird das Reibungskoeffizientenverhältnis (µB/µA) berechnet.From the dynamic coefficient of friction µA and the dynamic coefficient of friction µB measured as described above, the friction coefficient ratio (µB/µA) is calculated.

Unter der Annahme, dass ein dynamischer Reibungskoeffizient zwischen der Oberfläche 13S der Magnetschicht 13 und dem Magnetkopf µC ist, falls eine Zugspannung von 0,6 N an das Magnetaufzeichnungsmedium 10 angelegt wird, beträgt das Reibungskoeffizientenverhältnis (µC(1000)/µC(5)) bevorzugt 1,0 oder mehr und 1,8 oder weniger, bevorzugter 1,0 oder mehr und 1,6 oder weniger, wobei µC(5) der dynamische Reibungskoeffizient bei der fünften Bewegung seit dem Start der Bewegung ist und µC(1000) der dynamische Reibungskoeffizient bei der 1000. Bewegung seit dem Start der Bewegung ist. Wenn das Reibungskoeffizientenverhältnis (µC(1000)/µC(5)) 1,0 oder mehr und 1,8 oder weniger beträgt, ist es möglich, eine Änderung des dynamischen Reibungskoeffizienten aufgrund der vielfachen Bewegungen zu reduzieren und dementsprechend die Bewegung des Magnetaufzeichnungsmediums 10 zu stabilisieren. Hier ist der verwendete Magnetkopf zum Antrieb in Konformität mit dem Magnetaufzeichnungsmedium 10 konfiguriert.Assuming that a dynamic friction coefficient between the surface 13S of the magnetic layer 13 and the magnetic head is µC, if a tensile stress of 0.6N is applied to the magnetic recording medium 10, the friction coefficient ratio is (µC(1000)/µC(5)) preferably 1.0 or more and 1.8 or less, more preferably 1.0 or more and 1.6 or less, where µC(5) is the dynamic friction coefficient at the fifth movement since the start of movement and µC(1000) is the is the dynamic friction coefficient at the 1000th movement since the start of the movement. When the friction coefficient ratio (µC(1000)/µC(5)) is 1.0 or more and 1.8 or less, it is possible to reduce a change in the dynamic friction coefficient due to the multiple movements and accordingly increase the movement of the magnetic recording medium 10 stabilize. Here, the magnetic head used for driving is configured in conformity with the magnetic recording medium 10. FIG.

(Reibungskoeffizientenverhältnis (µC(1000)C(5)))(Friction coefficient ratio (µ C(1000)C(5) ))

Der dynamische Reibungskoeffizient µC(5) und der dynamische Reibungskoeffizient µC(1000) zum Berechnen des Reibungskoeffizientenverhältnisses (µC(1000)/µC/(5)) werden wie folgt bestimmt.The dynamic friction coefficient µC(5) and the dynamic friction coefficient µC(1000) for calculating the friction coefficient ratio (µC(1000)/µC/(5)) are determined as follows.

Das Reibungskoeffizientenverhältnis (µC(1000)C(5)) des Magnetaufzeichnungsmediums 10 beträgt bevorzugt 1,0 bis 2,0, bevorzugter 1,0 bis 1,8, noch weiter bevorzugt 1,0 bis 1,6, wobei µC(5) der dynamische Reibungskoeffizient bei der fünften Hin-und-Her-Bewegung in einem Fall ist, in dem das Magnetaufzeichnungsmedium, an das eine Zugspannung von 0,6 N angelegt wird, fünf Mal in der longitudinalen Richtung des Magnetkopfes hin und her bewegt wird, und µC(1000) der dynamische Reibungskoeffizient der 1000. Hin-und-Her-Bewegung in einem Fall ist, in dem das Magnetaufzeichnungsmedium 1000-mal auf dem Magnetkopf hin und her bewegt wird. Da das Reibungskoeffizientenverhältnis (µC(1000)C(5)) innerhalb der oben beschriebenen numerischen Bereiche liegt, ist es möglich, die Änderung des dynamischen Reibungskoeffizienten aufgrund der vielfachen Bewegungen zu reduzieren und dementsprechend die Bewegung des Magnetaufzeichnungsmediums 10 zu stabilisieren.The coefficient of friction ratio (μ C(1000)C(5) ) of the magnetic recording medium 10 is preferably 1.0 to 2.0, more preferably 1.0 to 1.8, still more preferably 1.0 to 1.6, where μ C(5) is the dynamic friction coefficient at the fifth reciprocation in a case where the magnetic recording medium to which a tension of 0.6 N is applied is reciprocated five times in the longitudinal direction of the magnetic head is moved, and µ C(1000) is the dynamic friction coefficient of the 1000th reciprocation in a case where the magnetic recording medium is reciprocated 1000 times on the magnetic head. Since the friction coefficient ratio (µ C(1000)C(5) ) is within the numerical ranges described above, it is possible to reduce the change in dynamic friction coefficient due to the multiple movements and accordingly to stabilize the movement of the magnetic recording medium 10 .

Der dynamische Reibungskoeffizient µC(5) und der dynamische Reibungskoeffizient µC(1000) zum Berechnen des Reibungskoeffizientenverhältnisses (µC(1000)C(5)) werden wie folgt bestimmt. Das Magnetaufzeichnungsmedium 10 ist mit dem beweglichen Dehnungsmessgerät 71 auf die gleiche Weise wie bei dem Messverfahren des dynamischen Reibungskoeffizienten µA verbunden, mit der Ausnahme, dass die Zugspannung T0 [N], die an das andere Ende des Magnetaufzeichnungsmediums 10 angelegt wird, 0,6 N beträgt. Dann wird bewirkt, dass das Magnetaufzeichnungsmedium 10 mit einer Rate von 10 mm/s mit Bezug auf den Kopfblock 74 um 60 mm zu dem beweglichen Dehnungsmessgerät hin (in einer Auswärtsbewegung) verschoben wird, und wird bewirkt, dass es um 60 mm von dem beweglichen Dehnungsmessgerät weg (in einer Rückkehrbewegung) verschoben wird. Dieser Hin-und-Her-Vorgang wird 1000-mal wiederholt. Von dem Start bis zu dem Stopp des Verschiebens um 60 mm bei der fünften Auswärtsbewegung aus den 1000 Hin-und-Her-Vorgängen wird der Ausgabewert (Spannung) des Dehnungsmessgeräts 13 Mal erlangt. Die erhaltenen Ausgabewerte werden basierend auf der linearen Beziehung zwischen dem Ausgabewert und der Last, welche unter Verwenden des dynamischen Reibungskoeffizienten µA bestimmt wird (später beschrieben), zu T[N] umgewandelt. ElfWerte von T[N], ausschließlich des ersten und letzten, werden einfach zu Tdurchschn [N] gemittelt. Der dynamische Reibungskoeffizient µC(5) wird durch den folgenden Ausdruck bestimmt. μ C ( 5 ) = 1 ( θ 1 [ ° ] × ( π / 180 ) × l n ( T d u r c h s c h n [ N ] T 0 [ N ] )

Figure DE112019007754T5_0008
Des Weiteren wird der dynamische Reibungskoeffizient µC(1000) auf die gleiche Weise wie für den dynamischen Reibungskoeffizienten µC(5) bestimmt, mit der Ausnahme, dass die 1000. Auswärtsbewegung gemessen wird. Aus dem dynamischen Reibungskoeffizienten µC(5) und dem dynamischen Reibungskoeffizient µC(1000), die wie oben beschrieben gemessen werden, wird das Reibungskoeffizientenverhaltnis (µC(1000)C(5)) berechnet.The dynamic friction coefficient µ C(5) and the dynamic friction coefficient µ C(1000) for calculating the friction coefficient ratio (µ C(1000)C(5) ) are determined as follows. The magnetic recording medium 10 is connected to the movable strain gauge 71 in the same manner as in the dynamic friction coefficient µA measurement method, except that the tensile stress T0 [N] applied to the other end of the magnetic recording medium 10 is 0.6 N amounts to. Then, the magnetic recording medium 10 is caused to be displaced at a rate of 10 mm/s with respect to the head block 74 by 60 mm toward the movable strain gauge (in an outward movement), and is caused to be displaced by 60 mm from the movable Strain gauge is moved away (in a return movement). This back and forth process is repeated 1000 times. From the start to the stop of shifting 60 mm in the fifth outward movement out of the 1000 reciprocations, the output value (stress) of the strain gauge is obtained 13 times. The obtained output values are converted to T[N] based on the linear relationship between the output value and the load, which is determined using the dynamic friction coefficient µA (described later). Eleven values of T[N], excluding the first and last, are simply averaged to Tavg[N]. The dynamic friction coefficient µ C(5) is determined by the following expression. µ C ( 5 ) = 1 ( θ 1 [ ° ] × ( π / 180 ) × l n ( T i.e and right c H s c H n [ N ] T 0 [ N ] )
Figure DE112019007754T5_0008
Furthermore, the dynamic coefficient of friction µ C(1000) is determined in the same manner as for the dynamic coefficient of friction µ C(5) , except that the 1000th outward movement is measured. From the dynamic friction coefficient µ C(5) and the dynamic friction coefficient µ C(1000) measured as described above, the friction coefficient ratio (µ C(1000)C(5) ) is calculated.

[1-2 Verfahren zum Herstellen des Magnetaufzeichnungsmediums 10][1-2 Method of Manufacturing the Magnetic Recording Medium 10]

Als Nächstes wird ein Verfahren zum Herstellen des Magnetaufzeichnungsmediums 10 mit der oben beschriebenen Konfiguration beschrieben. Zuerst wird ein Beschichtungsmaterial zum Bilden einer Unterschicht durch Kneten und Dispergieren nichtmagnetischer Pulver, eines Bindemittels, eines Gleitmittels und dergleichen in einem Lösungsmittel vorbereitet. Als Nächstes wird ein Beschichtungsmaterial zum Bilden einer Magnetschicht durch Kneten und Dispergieren von Magnetpulvern, eines Bindemittels, eines Gleitmittels und dergleichen in einem Lösungsmittel vorbereitet. Als Nächstes wird ein Beschichtungsmaterial zum Bilden einer Rückschicht durch Kneten und Dispergieren eines Bindemittels, nichtmagnetischer Pulver oder dergleichen in einem Lösungsmittel vorbereitet. Zum Vorbereiten des Beschichtungsmaterials zum Bilden einer Magnetschicht, des Beschichtungsmaterials zum Bilden einer Unterschicht und des Beschichtungsmaterials zum Bilden einer Rückschicht können zum Beispiel die folgenden Lösungsmittel, eine Dispergiereinrichtung und eine Kneteinrichtung verwendet werden.Next, a method of manufacturing the magnetic recording medium 10 having the configuration described above will be described. First, a coating material for forming an undercoat is prepared by kneading and dispersing nonmagnetic powders, a binder, a lubricant, and the like in a solvent. Next, a coating material for forming a magnetic layer is prepared by kneading and dispersing magnetic powders, a binder, a lubricant and the like in a solvent. Next, a coating material for forming a back layer is prepared by kneading and dispersing a binder, nonmagnetic powder or the like in a solvent. For preparing the coating material for forming a magnetic layer, the coating material for forming an underlayer and the coating material for forming a backing layer, for example, the following solvents, a disperser and a kneader can be used.

Beispiele für das Lösungsmittel, das zum Vorbereiten der oben beschriebenen Beschichtungsmaterialien verwendet wird, beinhalten zum Beispiel Folgendes: ein ketonbasiertes Lösungsmittel, wie etwa Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon; ein alkoholbasiertes Lösungsmittel, wie etwa Methanol, Ethanol oder Propanol; ein esterbasiertes Lösungsmittel, wie etwa Methylacetat, Ethylacetat, Butylacetat, Propylacetat, Ethyllactat oder Ethylenglykolacetat; ein etherbasiertes Lösungsmittel, wie etwa Diethylenglykoldimethylether, 2-Ethoxyethanol, Tetrahydrofuran oder Dioxan; ein aromatisches Kohlenwasserstofflösungsmittel, wie etwa Benzol, Toluol oder Xylol; und ein halogeniertes Kohlenwasserstofflösungsmittel, wie etwa Methylenchlorid, Ethylenchlorid, Kohlenstoffietrachlorid, Chloroform oder Chlorbenzol. Diese können allein verwendet werden und können nach Bedarf in Kombination verwendet werden.Examples of the solvent used for preparing the coating materials described above include, for example: a ketone-based solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, or cyclohexanone; an alcohol-based solvent such as methanol, ethanol or propanol; an ester-based solvent such as methyl acetate, ethyl acetate, butyl acetate, propyl acetate, ethyl lactate or ethylene glycol acetate; an ether-based solvent such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran or dioxane; an aromatic hydrocarbon solvent such as benzene, toluene or xylene; and a halogenated hydrocarbon solvent such as methylene chloride, ethylene chloride, carbon tetrachloride, chloroform or chlorobenzene. These can be used alone and can be used in combination as needed.

Beispiele für die Kneteinrichtung die für die Vorbereitung der oben genannten Beschichtungsmaterialien verwendet wird, können zum Beispiel unter anderem einen kontinuierlichen Zweischneckenkneter, einen kontinuierlichen Zweischneckenkneter, der eine Verdünnung in mehreren Stufen erlaubt, einen Kneter, einen Druckkneter, einen Walzenkneter und andere Kneteinrichtungen beinhalten. Außerdem können Beispiele für die Dispergiereinrichtung, die für die Vorbereitung der oben genannten Beschichtungsmaterialien verwendet wird, zum Beispiel unter anderem eine Walzenmühle, eine Kugelmühle, eine transversale Sandmühle, eine longitudinale Sandmühle, eine Spitzenmühle, eine Stiftmühle, eine Turmmühle, eine Perienmühle (z. B. DCP-Mühle, hergestellt durch Eirich Co., Ltd. usw.), einen Homogenisierer, eine Ultraschalldispergierungsmaschine und andere Dispergiereinrichtungen beinhalten.Examples of the kneader used for the preparation of the above coating materials may include, for example, a twin-screw continuous kneader, a twin-screw continuous kneader allowing multi-stage dilution, a kneader, a pressure kneader, a roll kneader, and other kneaders, among others. In addition, examples of the dispersing equipment used for the preparation of the above coating materials may include, for example, a roll mill, a ball mill, a transverse sand mill, a longitudinal sand mill, a pin mill, a pin mill, a tower mill, a bead mill (e.g. B. DCP mill manufactured by Eirich Co., Ltd., etc.), a homogenizer, an ultrasonic dispersing machine and other dispersing equipment.

Als Nächstes wird das Beschichtungsmaterial zum Bilden einer Unterschicht auf eine Hauptoberfläche 11A der Basis 11 aufgebracht und getrocknet, um die Unterschicht 12 zu bilden. Anschließend wird das Beschichtungsmaterial zum Bilden einer Magnetschicht auf die Unterschicht 12 aufgebracht und getrocknet, um die Magnetschicht 13 auf der Unterschicht 12 zu bilden. Es wird angemerkt, dass während des Trocknens bevorzugt wird, dass bewirkt wird, dass das Magnetfeld der Magnetpulver zum Beispiel durch eine Solenoidspule in der Dickenrichtung der Basis 11 orientiert wird. Alternativ dazu kann während des Trocknens das Magnetfeld der Magnetpulver zum Beispiel durch eine Solenoidspule in der Bewegungsrichtung (longitudinalen Richtung) der Basis 11 orientiert werden und danach in der Dickenrichtung 11 der Basis orientiert werden. Ein solcher Magnetfeldorientierungsprozess ermöglicht es, den Grad einer senkrechten Orientierung (d. h. das Rechteckigkeitsverhältnis S1) der Magnetpulver zu verbessern. Nachdem die Magnetschicht 13 gebildet wurde, wird das Beschichtungsmaterial zum Bilden einer Rückschicht auf die andere Hauptoberfläche 11B der Basis 11 aufgebracht und getrocknet, um die Rückschicht 14 zu bilden. Das Magnetaufzeichnungsmedium 10 wird dadurch erhalten.Next, the coating material for forming an undercoat is applied to a main surface 11</b>A of the base 11 and dried to form the undercoat 12 . Thereafter, the coating material for forming a magnetic layer is applied onto the underlayer 12 and dried to form the magnetic layer 13 on the underlayer 12 . It is noted that during the drying, it is preferable to cause the magnetic field of the magnet powders to be oriented in the thickness direction of the base 11 by a solenoid coil, for example. Alternatively, during drying, the magnetic field of the magnetic powders may be oriented in the moving direction (longitudinal direction) of the base 11 by a solenoid coil, for example, and thereafter oriented in the thickness direction 11 of the base. Such a magnetic field orientation process makes it possible to improve the degree of perpendicular orientation (i.e., the squareness ratio S1) of the magnetic powders. After the magnetic layer 13 is formed, the coating material for forming a backing layer is applied to the other main surface 11B of the base 11 and dried to form the backing layer 14 . The magnetic recording medium 10 is thereby obtained.

Die Rechteckigkeitsverhältnisse S1 und S2 und das Verhältnis Hc2/Hc1 werden auf gewünschte Wert eingestellt, indem zum Beispiel die Intensität des Magnetfeldes, das an den aus dem Beschichtungsmaterial zum Bilden einer Magnetschicht gefertigten beschichteten Film angelegt wird, die Konzentration eines Feststoffanteils in dem Beschichtungsmaterial zum Bilden einer Magnetschicht und Trocknungsbedingungen (Trocknungstemperaturen und Trocknungszeiten) für den aus dem Beschichtungsmaterial zum Bilden einer Magnetschicht gefertigten beschichteten Film angepasst werden. Die Intensität des Magnetfeldes, das an den beschichteten Film angelegt wird, ist bevorzugt wenigstens zweimal die Koerzitivität der Magnetpulver. Um das Rechteckigkeitsverhältnis S1 weiter zu erhöhen (das heißt, um das Rechteckigkeitsverhältnis S2 weiter zu verringern), ist es vorteilhaft, den Dispergierungszustand der Magnetpulver in dem Beschichtungsmaterial zum Bilden einer Magnetschicht zu verbessern. Um das Rechteckigkeitsverhältnis S1 weiter zu verbessern, ist es femer auch wirksam, die Magnetpulver in einer Stufe vor dem Aufbringen des Beschichtungsmaterials zum Bilden einer Magnetschicht in einer Ausrichtungseinrichtung zum Bewirken zu magnetisieren, dass das Magnetfeld der Magnetpulver orientiert wird. Es wird angemerkt, dass die oben genannten Verfahren zum Anpassen der Rechteckigkeitsverhältnisse S1 und S2 allein verwendet werden können oder zwei oder mehr von ihnen in Kombination verwendet werden können.The squareness ratios S1 and S2 and the ratio Hc2/Hc1 are adjusted to a desired value by, for example, the intensity of the magnetic field applied to the coated film made of the coating material for forming a magnetic layer, the concentration of a solid content in the coating material for forming of a magnetic layer and drying conditions (drying temperatures and drying times) for the coated film made of the coating material for forming a magnetic layer. The intensity of the magnetic field applied to the coated film is preferably at least twice the coercivity of the magnetic powders. In order to further increase the squareness ratio S1 (that is, to further decrease the squareness ratio S2), it is advantageous to improve the state of dispersion of the magnetic powders in the coating material for forming a magnetic layer. Further, in order to further improve the squareness ratio S1, it is also effective to magnetize the magnetic powders in a step before applying the coating material for forming a magnetic layer in an aligner to cause that the magnetic field of the magnetic powder is oriented. It is noted that the above methods for adjusting the squareness ratios S1 and S2 may be used alone, or two or more of them may be used in combination.

Danach wird das erhaltene Magnetaufzeichnungsmedium 10 einem Kalandrierungsprozess zum Glätten der Oberfläche 13S der Magnetschicht 13 unterzogen. Als Nächstes wird das Magnetaufzeichnungsmedium 10 nach dem Kalandrierungsprozess aufgerollt und wird dann einer Wärmebehandlung unterzogen, während sich das Magnetaufzeichnungsmedium 10 in diesem Zustand befindet, um mehrere Ausbuchtungen auf der Oberfläche 14S der Rückschicht 14 auf die Oberfläche 13S der Magnetschicht 13 zu transferieren. Infolgedessen werden mehrere Poren in der Oberfläche 13S der Magnetschicht 13 gebildet.Thereafter, the obtained magnetic recording medium 10 is subjected to a calendering process for smoothing the surface 13S of the magnetic layer 13. Next, the magnetic recording medium 10 is rolled up after the calendering process, and is then subjected to heat treatment while the magnetic recording medium 10 is in this state to transfer multiple protrusions on the surface 14S of the backing layer 14 to the surface 13S of the magnetic layer 13. As a result, a plurality of pores are formed in the surface 13S of the magnetic layer 13.

Die Temperatur der Wärmebehandlung beträgt bevorzugt 50 °C oder mehr und 80 °C oder weniger. Wenn die Temperatur der Wärmebehandlung 50 °C oder mehr beträgt, ist es möglich, vorteilhafte Transfereigenschaften zu erhalten. Im Gegensatz dazu wird, wenn die Temperatur der Wärmebehandlung 80 °C oder weniger beträgt, die Anzahl an Poren zu groß, was bewirken kann, dass zu viel Gleitmittel auf die Oberfläche 13S der Magnetschicht 13 aufgebracht wird. Hier ist die Temperatur der Wärmebehandlung die Temperatur einer Atmosphäre, in der das Magnetaufzeichnungsmedium 10 gehalten wird.The heat treatment temperature is preferably 50°C or more and 80°C or less. When the heat treatment temperature is 50°C or more, it is possible to obtain favorable transfer properties. In contrast, when the heat treatment temperature is 80°C or less, the number of pores becomes too large, which may cause too much lubricant to be applied to the surface 13S of the magnetic layer 13 . Here, the heat treatment temperature is the temperature of an atmosphere in which the magnetic recording medium 10 is kept.

Die Zeit der Wärmebehandlung ist bevorzugt 15 Stunden oder länger und 40 Stunden oder kürzer. Wenn die Zeit der Wärmebehandlung 15 Stunden oder länger beträgt, ist es möglich, vorteilhafte Transfereigenschaften zu erhalten. Wenn die Zeit der Wärmebehandlung 40 Stunden oder kürzer ist, ist es dagegen möglich, eine Verringerung der Produktivität zu unterdrücken.The heat treatment time is preferably 15 hours or longer and 40 hours or shorter. When the heat treatment time is 15 hours or longer, it is possible to obtain favorable transfer properties. On the other hand, when the heat treatment time is 40 hours or shorter, it is possible to suppress a decrease in productivity.

Femer liegt der auf das Magnetaufzeichnungsmedium 10 während der Wärmebehandlung angewandte Druck bevorzugt in einem Bereich von 150 kg/cm bis einschließlich 400 kg/cm.Furthermore, the pressure applied to the magnetic recording medium 10 during the heat treatment is preferably in a range of 150 kg/cm to 400 kg/cm inclusive.

Schließlich wird das Magnetaufzeichnungsmedium 10 in eine vorbestimmte Breite (z. B. eine Breite von 1/2 Zoll) geschnitten. Das Magnetaufzeichnungsmedium 10 wird dadurch wie gewünscht erhalten.Finally, the magnetic recording medium 10 is cut into a predetermined width (e.g., a width of 1/2 inch). The magnetic recording medium 10 is thereby obtained as desired.

[1-3 Konfiguration der Aufzeichnung-und-Wiedergabe-Errichtung 30][1-3 Configuration of Recording and Playback Setup 30]

Nun wird unter Bezugnahme auf 8 die Konfiguration einer Aufzeichnung-und-Wiedergabe-Einrichtung 30 zum Aufzeichnen von Informationen auf dem oben beschriebenen Magnetaufzeichnungsmedium 10 und Wiedergeben von Informationen von dem oben beschriebenen Magnetaufzeichnungsmedium 10 beschrieben.Now, referring to 8th the configuration of a recording and reproducing device 30 for recording information on the magnetic recording medium 10 described above and reproducing information from the magnetic recording medium 10 described above will be described.

Die Aufzeichnung-und-Wiedergabe-Einrichtung 30 weist eine Konfiguration auf, bei der eine Zugspannung, die in der longitudinalen Richtung des Magnetaufzeichnungsmediums 10 angelegt wird, anpassbar ist. Außerdem weist die Aufzeichnung-und-Wiedergabe-Einrichtung 30 eine Konfiguration auf, bei der ein Magnetaufzeichnungsmedium-Cartridge 10A in diese geladen werden kann. Hier weist die Aufzeichnung-und-Wiedergabe-Einrichtung 30 zur einfachen Eklärung eine Konfiguration auf, bei der ein Magnetaufzeichnungsmedium-Cartridge 10A in diese geladen werden kann. Jedoch kann bei der vorliegenden Offenbarung die Aufzeichnung-und-Wiedergabe-Einrichtung 30 eine Konfiguration aufweisen, bei der mehrere Magnetaufzeichnungsmedium-Cartridges 10A in diese geladen werden können. Wie oben beschrieben, kann das Magnetaufzeichnungsmedium 10 eine bandartige Form aufweisen und kann zum Beispiel ein längliches Magnetaufzeichnungsmediumband sein. Das Magnetaufzeichnungsmedium 10 kann zum Beispiel in ein Gehäuse in dem Zustand aufgenommen werden, in dem es um eine Trommel innerhalb des Magnetaufzeichnungsmedium-Cartridge 10A aufgewickelt ist. Das Magnetaufzeichnungsmedium 10 ist zum Bewegen in der longitudinalen Richtung während der Aufzeichnung und Wiedergabe konfiguriert. Femer kann das Magnetaufzeichnungsmedium 10 zum Aufzeichnen von Signalen mit einer kürzesten Aufzeichnungswellenlänge von bevorzugt 100 nm oder weniger, bevorzugter 75 nm oder weniger, noch weiter bevorzugt 60 nm oder weniger, besonders bevorzugt 50 nm oder weniger konfiguriert sein. Das Magnetaufzeichnungsmedium 10 kann in der Aufzeichnung-und-Wiedergabe-Einrichtung 30 mit zum Beispiel einer kürzesten Aufzeichnungswellenlänge innerhalb der obigen Bereiche verwendet werden. Die Aufzeichnungsspurbreite kann zum Beispiel 2 µm oder weniger betragen.The recording and reproducing device 30 has a configuration in which a tension applied in the longitudinal direction of the magnetic recording medium 10 is adjustable. In addition, the recording and reproducing device 30 has a configuration in which a magnetic recording medium cartridge 10A can be loaded therein. Here, for easy explanation, the recording and reproducing device 30 has a configuration in which a magnetic recording medium cartridge 10A can be loaded therein. However, in the present disclosure, the recording and reproducing device 30 may have a configuration in which a plurality of magnetic recording medium cartridges 10A can be loaded therein. As described above, the magnetic recording medium 10 may have a tape-like shape and may be, for example, an elongated magnetic recording medium tape. For example, the magnetic recording medium 10 can be accommodated in a case in the state of being wound around a drum inside the magnetic recording medium cartridge 10A. The magnetic recording medium 10 is configured to move in the longitudinal direction during recording and reproduction. Furthermore, the magnetic recording medium 10 can be configured to record signals with a shortest recording wavelength of preferably 100 nm or less, more preferably 75 nm or less, even more preferably 60 nm or less, particularly preferably 50 nm or less. The magnetic recording medium 10 can be used in the recording and reproducing device 30 having, for example, a shortest recording wavelength within the above ranges. For example, the recording track width may be 2 µm or less.

Die Aufzeichnung-und-Wiedergabe-Einrichtung 30 ist zum Beispiel über ein Netz 43 mit Informationsverarbeitungseinrichtungen, wie etwa Servern 41 und Personal-Computern 42 (nachfolgend als „PCs“ bezeichnet), gekoppelt. Die Aufzeichnung-und-Wiedergabe-Einrichtung 30 ist zum Aufzeichnen von Daten, die von diesen Informationsverarbeitungseinrichtungen bereitgestellt werden, in dem Magnetaufzeichnungsmedium-Cartridge 10A konfiguriert.The recording-and-reproducing device 30 is coupled to information processing devices such as servers 41 and personal computers 42 (hereinafter referred to as “PCs”) via a network 43, for example. The recording and reproducing device 30 is for recording data, provided by these information processing facilities are configured in the magnetic recording medium cartridge 10A.

Wie in 8 veranschaulicht, beinhaltet die Aufzeichnung-und-Wiedergabe-Einrichtung 30 eine Spindel 31, eine Trommel 32, eine Antriebsvorrichtung 33, eine Antriebsvorrichtung 34, mehrere Führungsrollen 35, eine Kopfeinheit 36, eine Kommunikationsschnittstelle (nachfolgend als SST bezeichnet) 37 und eine Steuervorrichtung 38.As in 8th As illustrated, the recording and reproducing device 30 includes a spindle 31, a drum 32, a driving device 33, a driving device 34, a plurality of guide rollers 35, a head unit 36, a communication interface (hereinafter referred to as SST) 37 and a control device 38.

Die Spindel 31 ist derart konfiguriert, dass das Magnetaufzeichnungsmedium-Cartridge 10A darauf montiert werden kann. Das Magnetaufzeichnungsmedium-Cartridge 10A entspricht dem LTO(Linear TapeOpen)-Standard und weist eine Cartridge-Hülle 10B auf, die eine einzige Trommel 10C drehbar aufnimmt, um die das Magnetaufzeichnungsmedium 10 aufgewickelt ist. Ein invertiertes V-förmiges Servomuster ist vorausgehend als ein Servosignal in dem Magnetaufzeichnungsmedium 10 aufgezeichnet. Die Trommel 32 ist dazu konfiguriert, ein vorderes Ende des Magnetaufzeichnungsmediums 10 zu befestigen, das aus dem Magnetaufzeichnungsmedium-Cartridge 10A herausgezogen wird.The spindle 31 is configured such that the magnetic recording medium cartridge 10A can be mounted thereon. The magnetic recording medium cartridge 10A conforms to the LTO (Linear TapeOpen) standard and has a cartridge shell 10B which rotatably houses a single drum 10C around which the magnetic recording medium 10 is wound. An inverted V-shaped servo pattern is previously recorded in the magnetic recording medium 10 as a servo signal. The drum 32 is configured to fix a front end of the magnetic recording medium 10 drawn out from the magnetic recording medium cartridge 10A.

Die Antriebsvorrichtung 33 ist eine Vorrichtung zum drehenden Antreiben der Spindel 31. Die Antriebsvorrichtung 34 ist eine Vorrichtung zum drehenden Antreiben der Trommel 32. Wenn Daten auf dem Magnetaufzeichnungsmedium 10 aufgezeichnet oder von diesem wiedergegeben werden, drehen die Antriebsvorrichtung 33 und die Antriebsvorrichtung 34 die Spindel 31 bzw. die Trommel 32, um zu bewirken, dass sich das Magnetraufzeichnungsmedium 10 bewegt. Die Führungsrollen 35 sind Rollen zum Führen der Bewegung des Magnetaufzeichnungsmediums 10.The driving device 33 is a device for driving the spindle 31 in rotation. The driving device 34 is a device for driving the drum 32 in rotation. When data is recorded on or reproduced from the magnetic recording medium 10, the driving device 33 and the driving device 34 rotate the spindle 31 and drum 32, respectively, to cause magnetic recording medium 10 to move. The guide rollers 35 are rollers for guiding the movement of the magnetic recording medium 10.

Die Kopfeinheit 36 beinhaltet mehrere Aufzeichnungsköpfe zum Aufzeichnen von Datensignalen in dem Magnetaufzeichnungsmedium 10 und mehrere Wiedergabeköpfe zum Wiedergeben von Datensignalen, die in dem Magnetaufzeichnungsmedium 10 aufgezeichnet sind. Zum Beispiel kann ein Kopf vom Ringtyp als der Aufzeichnungskopf verwendet werden und kann zum Beispiel ein Kopf vom Typ des magnetoresistiven Effekts als der Wiedergabekopf verwendet werden. Jedoch sind die Typen des Aufzeichnungskopfes und des Wiedergabekopfes nicht darauf beschränkt.The head unit 36 includes a plurality of recording heads for recording data signals in the magnetic recording medium 10 and a plurality of reproducing heads for reproducing data signals recorded in the magnetic recording medium 10. For example, a ring type head can be used as the recording head and, for example, a magnetoresistive effect type head can be used as the reproducing head. However, the types of the recording head and the reproducing head are not limited to this.

Die SST 37 dient der Kommunikation mit den Informationsverarbeitungseinrichtungen, wie etwa den Server 41 und den PCs 42, und ist mit dem Netz 43 verbunden.The SST 37 is for communication with the information processing devices such as the server 41 and the PCs 42 and is connected to the network 43 .

Die Steuervorrichtung 38 steuert die gesamte Aufzeichnung-und-Wiedergabeeinrichtung 30. Zum Beispiel zeichnet die Steuervorrichtung 38 als Reaktion auf Anforderungen von den Informationsverarbeitungseinrichtungen, wie etwa den Servern 41 und den PCs 42, Datensignale, die von den Informationsverarbeitungseinrichtungen bereitgestellt werden, unter Verwendung der Kopfeinheit 36 in dem Magnetaufzeichnungsmedium 10 auf Ferner gibt die Steuervorrichtung 38 als Reaktion auf Anforderungen von den Informationsverarbeitungseinrichtungen, wie etwa den Servern 41 und den PCs 42, das Datensignal, das auf dem Magnetaufzeichnungsmedium 10 aufgezeichnet ist, unter Verwendung der Kopfeinheit 36 wieder und liefert die wiedergegebenen Datensignale an die Informationsverarbeitungseinrichtungen.The controller 38 controls the entire recording and reproducing device 30. For example, in response to requests from the information processing devices such as the servers 41 and the PCs 42, the controller 38 records data signals provided by the information processing devices using the head unit 36 in the magnetic recording medium 10. Further, in response to requests from the information processing devices such as the servers 41 and the PCs 42, the controller 38 reproduces the data signal recorded on the magnetic recording medium 10 using the head unit 36 and supplies the reproduced Data signals to the information processing devices.

[1-4 Effekte][1-4 Effects]

Wie oben beschrieben, ist das Magnetaufzeichnungsmedium 10 der vorliegenden Ausführungsform ein bandartiges Element, in dem die Basis 11, die Unterschicht 12 und die Magnetschicht 13 in dieser Reihenfolge laminiert sind. Das Magnetaufzeichnungsmedium 10 erfüllt jede der nachfolgend beschriebenen Konfigurationsanforderungen (1) bis (9).

  1. (1) Die Basis 11 enthält Polyester als einen Hauptbestandteil.
  2. (2) Die Magnetschicht 13 ist auf der Basis 11 bereitgestellt, enthält mehrere Magnetpulver und ist zum Aufzeichnen von Datensignalen konfiguriert.
  3. (3) Eine durchschnittliche Dicke des Magnetaufzeichnungsmediums beträgt 5,6 µm oder weniger.
  4. (4) Eine durchschnittliche Dicke der Basis beträgt 4,2 µm oder weniger.
  5. (5) Eine durchschnittliche Dicke der Magnetschicht 13 beträgt 90 nm oder weniger.
  6. (6) Ein durchschnittliches Aspektverhältnis der Magnetpulver in der Magnetschicht 13 beträgt 1,0 oder mehr und 3,0 oder weniger.
  7. (7) Die Koerzitivität Hc 1 in der senkrechten Richtung beträgt 3000 Oe oder weniger.
  8. (8) Das Verhältnis Hc2/Hc1 der Koerzivität Hc2 in der longitudinalen Richtung zu der Koerzivität Hc1 in der senkrechten Richtung beträgt 0,8 oder weniger.
  9. (9) Die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, beträgt 2,5 m2/g oder mehr.
As described above, the magnetic recording medium 10 of the present embodiment is a tape-like member in which the base 11, the underlayer 12 and the magnetic layer 13 are laminated in this order. The magnetic recording medium 10 satisfies each of the configuration requirements (1) to (9) described below.
  1. (1) The base 11 contains polyester as a main component.
  2. (2) The magnetic layer 13 is provided on the base 11, contains a plurality of magnetic powders, and is configured to record data signals.
  3. (3) An average thickness of the magnetic recording medium is 5.6 µm or less.
  4. (4) An average thickness of the base is 4.2 µm or less.
  5. (5) An average thickness of the magnetic layer 13 is 90 nm or less.
  6. (6) An average aspect ratio of the magnetic powders in the magnetic layer 13 is 1.0 or more and 3.0 or less.
  7. (7) The coercivity Hc 1 in the perpendicular direction is 3000 Oe or less.
  8. (8) The ratio Hc2/Hc1 of the coercivity Hc2 in the longitudinal direction to the coercivity Hc1 in the perpendicular direction is 0.8 or less.
  9. (9) The total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 2.5 m 2 /g or more.

Mit dem Magnetaufzeichnungsmedium 10 der vorliegenden Ausführungsform mit einer solchen Konfiguration ist es möglich, vorteilhafte elektromagnetische Umwandlungscharakteristiken (z. B. C/N) sicherzustellen, während die Magnetisierungsübergangsbreite steil gehalten wird. Wenn eine Aufzeichnung und/oder Wiedergabe wiederholt durchgeführt wird, ist es femer möglich, zu ermöglichen, dass das Gleitmittel stabil auf der Oberfläche des Magnetaufzeichnungsmediums vorhanden ist, und dementsprechend eine Zunahme der Reibung aufgrund des Rutschens zu unterdrücken. Da die durchschnittliche Dicke des Magnetaufzeichnungsmediums 10 5,6 µm oder weniger beträgt und die durchschnittliche Dicke der Basis 11 4,2 µm oder weniger beträgt, ist es femer möglich, die Speicherungskapazität pro Magnetaufzeichnungsmedium-Cartridge 10A (siehe 8), in dem die Daten aufzuzeichnen sind, weiter denn je zu erhöhen. Daher ist es möglich, eine zur Aufzeichnung mit hoher Dichte vorteilhafte Konfiguration zu erzielen.With the magnetic recording medium 10 of the present embodiment having such a configuration, it is possible to ensure favorable electromagnetic conversion characteristics (e.g., C/N) while keeping the magnetization transition width steep. Further, when recording and/or reproduction is repeatedly performed, it is possible to allow the lubricant to stably exist on the surface of the magnetic recording medium and accordingly to suppress an increase in friction due to slipping. Further, since the average thickness of the magnetic recording medium 10 is 5.6 µm or less and the average thickness of the base 11 is 4.2 µm or less, it is possible to increase the storage capacity per magnetic recording medium cartridge 10A (see 8th ) in which the data are to be recorded, further than ever. Therefore, it is possible to achieve a configuration favorable for high-density recording.

Femer ist es im Fall des Magnetaufzeichnungsmediums 10 der vorliegenden Ausführungsform, wenn die spezifische BET-Oberfläche des gesamten Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 3,0 m2/g oder mehr beträgt, möglich, das Reibungskoeffizientenverhältnis (µB/µA) im Vergleich zu dem Fall, in dem die spezifische BET-Oberfläche weniger als 3,0 m2/g beträgt, zu reduzieren. Die Änderung des dynamischen Reibungskoeffizienten aufgrund einer Variation der Zugspannung zur Zeit der Bewegung wird dadurch kleiner, was es ermöglicht, die Bewegung des Magnetaufzeichnungsmediums 10 zu stabilisieren.Furthermore, in the case of the magnetic recording medium 10 of the present embodiment, when the BET specific surface area of the entire magnetic recording medium from which the lubricant has been removed is 3.0 m 2 /g or more, it is possible to increase the coefficient of friction ratio (µB/µA) in the compared to the case where the BET specific surface area is less than 3.0 m 2 /g. The change in the dynamic friction coefficient due to a variation in tension at the time of movement thereby becomes smaller, making it possible to stabilize the movement of the magnetic recording medium 10.

Femer ist es im Fall des Magnetaufzeichnungsmediums 10 der vorliegenden Ausführungsform, wenn die spezifische BET-Oberfläche des gesamten Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 3,5 m2/g oder mehr beträgt, möglich, das Reibungskoeffizientenverhältnis (µB/µA) im Vergleich zu dem Fall, in dem die spezifische BET-Oberfläche weniger als 3,5 m2/g beträgt, weiter zu reduzieren. Die Änderung des dynamischen Reibungskoeffizienten aufgrund einer Variation der Zugspannung zur Zeit der Bewegung wird dadurch kleiner, was es ermöglicht, die Bewegung des Magnetaufzeichnungsmediums 10 zu stabilisieren. Wenn die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 4,0 m2/g oder mehr beträgt, ist es insbesondere möglich, die Bewegung des Magnetaufzeichnungsmediums 10 weiter zu stabilisieren.Furthermore, in the case of the magnetic recording medium 10 of the present embodiment, when the BET specific surface area of the entire magnetic recording medium from which the lubricant has been removed is 3.5 m 2 /g or more, it is possible to increase the friction coefficient ratio (µB/µA) in the to be further reduced compared to the case where the BET specific surface area is less than 3.5 m 2 /g. The change in the dynamic friction coefficient due to a variation in tension at the time of movement thereby becomes smaller, making it possible to stabilize the movement of the magnetic recording medium 10. In particular, when the total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 4.0 m 2 /g or more, it is possible to further stabilize the movement of the magnetic recording medium 10 .

Femer ist es in dem Fall des Magnetaufzeichnungsmediums 10 der vorliegenden Ausführungsform, wenn das Reibungskoeffizientenverhältnis (µC(1000)/µC(5)) 1,0 oder mehr und 1,8 oder weniger beträgt, möglich, die Änderung des dynamischen Reibungskoeffizienten aufgrund der vielfachen Bewegungen zu reduzieren und dementsprechend die Bewegung des Magnetaufzeichnungsmediums 10 zu stabilisieren.Furthermore, in the case of the magnetic recording medium 10 of the present embodiment, when the friction coefficient ratio (μC(1000)/μC(5)) is 1.0 or more and 1.8 or less, it is possible to change the dynamic friction coefficient due to the multiples To reduce movements and to stabilize the movement of the magnetic recording medium 10 accordingly.

Im Fall des Magnetaufzeichnungsmediums 10 der vorliegenden Ausführungsform ist es femer, wenn der durchschnittliche Teilchendurchmesser der Magnetpulver 8 nm oder mehr und 22 nm oder weniger beträgt, möglich, vorteilhafte elektromagnetische Umwandlungscharakteristiken (z. B. SNR) des Magnetaufzeichnungsmediums 10 zu erhalten.Further, in the case of the magnetic recording medium 10 of the present embodiment, when the average particle diameter of the magnetic powders is 8 nm or more and 22 nm or less, it is possible to obtain favorable electromagnetic conversion characteristics (e.g. SNR) of the magnetic recording medium 10 .

Femer ist es im Fall des Magnetaufzeichnungsmediums 10 der vorliegenden Ausführungsform, wenn das durchschnittlichen Teilchenvolumen der Magnetpulver 2300 nm3 oder weniger beträgt, möglich, die halbe Breite einer solitären Wellenform in der wiedergegebenen Wellenform des Datensignals zu verschmälem und dementsprechend die Spitze der wiedergegebenen Wellenform des Datensignals spitzer zu machen. Dies verbessert die Genauigkeit beim Lesen des Datensignals. Es ist daher möglich, die Aufzeichnungsdichte der Daten durch Erhöhen der Anzahl der Aufzeichnungsspuren zu verbessern.Furthermore, in the case of the magnetic recording medium 10 of the present embodiment, when the average particle volume of the magnetic powders is 2300 nm 3 or less, it is possible to narrow the half width of a solitary waveform in the reproduced waveform of the data signal and accordingly the peak of the reproduced waveform of the data signal to make sharper. This improves the accuracy of reading the data signal. It is therefore possible to improve the recording density of data by increasing the number of recording tracks.

Femer ist es im Fall des Magnetaufzeichnungsmediums 10 der vorliegenden Ausführungsform, wenn die arithmetisch gemittelte Rauigkeit Ra der Oberfläche der Magnetschicht 13 2,5 nm oder weniger beträgt, möglich, exzellente elektromagnetische Umwandlungscharakteristiken zu erhalten. Wenn die PSD bis zu einer räumlichen Wellenlänge von 5 µm 2,5 µm oder weniger beträgt, ist es außerdem möglich, eine Beabstandung zwischen dem Aufzeichnung/Wiedergabe-Kopf und dem bandartigen Magnetaufzeichnungsmedium 10 zur Zeit des Aufzeichnens oder Wiedergebens zu reduzieren, wodurch das Magnetaufzeichnungsmedium 10 für eine hohe Aufzeichnungsdichte geeignet gemacht wird.Furthermore, in the case of the magnetic recording medium 10 of the present embodiment, when the arithmetic mean roughness Ra of the surface of the magnetic layer 13 is 2.5 nm or less, it is possible to obtain excellent electromagnetic conversion characteristics. In addition, when the PSD is 2.5 µm or less up to a spatial wavelength of 5 µm, it is possible to reduce a spacing between the recording/reproducing head and the tape-like magnetic recording medium 10 at the time of recording or reproducing, whereby the magnetic recording medium 10 is made suitable for high recording density.

Femer wird bei dem Magnetaufzeichnungsmedium 10 der vorliegenden Ausführungsform, wenn die Koerzitivität in der longitudinalen Richtung 2000 Oe oder weniger beträgt, eine Magnetisierungsreaktion mit hoher Empfindlichkeit durch ein Magnetfeld in der senkrechten Richtung von dem Aufzeichnungskopf bewirkt, wobei die Bildung eines vorteilhaften Aufzeichnungsmusters ermöglicht wird.Further, in the magnetic recording medium 10 of the present embodiment, when the coercivity in the longitudinal direction is 2000 Oe or less, magnetization response is caused with high sensitivity by a magnetic field in the perpendicular direction from the recording head, enabling formation of a favorable recording pattern.

Femer ist es in dem Fall des Magnetaufzeichnungsmediums 10 der vorliegenden Ausfuhrungsform, da das Verhältnis Hc2/Hc1 der Koerzitivität Hc2 in der longitudinalen Richtung zu der Koerzitivität Hc1 in der senkrechten Richtung die Beziehung Hc2/Hc1 ≤ 0,7 erfüllt, möglich, den Grad einer senkrechten Orientierung der Magnetpulver zu erhöhen. Daher ist es möglich, die Magnetisierungsübergangsbreite zu reduzieren und ein hohes Ausgabesignal zur Zeit der Signalwiedergabe zu erhalten. Dies ermöglicht ein Verbesserung der elektromagnetischen Umwandlungscharakteristiken (z. B. C/N).Further, in the case of the magnetic recording medium 10 of the present embodiment, since the ratio Hc2/Hc1 of the coercivity Hc2 in the longitudinal direction to the coercivity Hc1 in the perpendicular direction satisfies the relationship Hc2/Hc1≦0.7, it is possible to obtain the degree of one increase perpendicular orientation of the magnetic powder. Therefore, it is possible to reduce the magnetization transition width and obtain a high output signal at the time of signal reproduction. This enables improvement in electromagnetic conversion characteristics (e.g. C/N).

Femer ist es in dem Fall des Magnetaufzeichnungsmediums 10 der vorliegenden Ausfuhrungsform, wenn die Koerzitivität Hc1 in der senkrechten Richtung 2200 Oe oder mehr beträgt, möglich, die Verschlechterung der elektromagnetischen Umwandlungscharakteristiken (z. B. C/N) in einer Hochtemperaturumgebung aufgrund von Einflüssen thermischer Störungen und Entmagnetisierungsfeldern zu unterdrücken.Furthermore, in the case of the magnetic recording medium 10 of the present embodiment, when the coercivity Hc1 in the perpendicular direction is 2200 Oe or more, it is possible to prevent the deterioration of the electromagnetic conversion characteristics (e.g. C/N) in a high-temperature environment due to thermal influences to suppress interference and demagnetizing fields.

<2. Modifikationsbeispiele><2. Modification Examples>

(Modifikationsbeispiel 1)(Modification Example 1)

Bei der oben beschriebenen Ausführungsform wurde das ε-Eisenoxidteilchen 20 einschließlich des Hüllenteils 22 mit einer Zweischichtstruktur (2) exemplarisch gezeigt und beschrieben. Jedoch kann das Magnetaufzeichnungsmedium der vorliegende Technologie ein ε-Eisenoxidteilchen 20A einschließlich eines Hüllenteils 23 mit einer Einzelschichtstruktur beinhalten, wie zum Beispiel in 19 veranschaulicht ist. Der Hüllenteil 23 des ε-Eisenoxidteilchens 20A weist zum Beispiel die gleiche Konfiguration wie der ersten Hüllenteil 22a auf Jedoch ist von dem Standpunkt des Unterdrückens der Verschlechterung von Charakteristiken das bei der oben beschriebenen Ausführungsform beschriebene ε-Eisenoxidteilchen 20 mit dem Hüllenteil 22 der Zweischichtstruktur dem ε-Eisenoxidteilchen 20A des Modifikationsbeispiels 1 vorzuziehen.In the embodiment described above, the ε-iron oxide particle 20 including the shell portion 22 was formed into a two-layer structure ( 2 ) shown and described as an example. However, the magnetic recording medium of the present technology may include an ε-iron oxide particle 20A including a shell part 23 having a single-layer structure, such as in FIG 19 is illustrated. The shell part 23 of the ε-iron oxide particle 20A has the same configuration as the first shell part 22a, for example - Iron oxide particles 20A of Modification Example 1 are preferable.

(Modifikationsbeispiel 2)(Modification example 2)

Bei dem Aufzeichnungsmedium 10 der oben beschriebenen Ausführungsform wurde das ε-Eisenoxidteilchen 20 mit einer Kern-Hülle-Struktur exemplarisch gezeigt und beschrieben. Jedoch kann das ε-Eisenoxidteilchen ein Additiv anstelle der Kern-Hülle-Struktur enthalten oder kann die Kern-Hülle-Struktur und ein Additiv beinhalten. In diesem Fall wird ein Teil von Fe des ε-Eisenoxidteilchens mit einem Additiv ersetzt. Mit dem ε-Eisenoxidteilchen einschließlich eines Additivs ist es auch möglich, die Koerzitivität Hc des gesamten ε-Eisenoxidteilchens zu einer Koerzitivität Hc anzupassen, die zum Aufzeichnen geeignet ist, und die Einfachheit des Aufzeichnens zu verbessern. Das Additiv ist ein Metallelement außer Eisen, bevorzugt ein dreiwertiges Metallelement, bevorzugter wenigstens eines von Al (Aluminium), Ga (Gallium) oder In (Indium), noch weiter bevorzugt wenigstens eines von Al oder Ga.In the recording medium 10 of the embodiment described above, the ε-iron oxide particle 20 having a core-shell structure has been exemplified and described. However, the ε-iron oxide particle may contain an additive instead of the core-shell structure, or may contain the core-shell structure and an additive. In this case, part of Fe of the ε-iron oxide particle is replaced with an additive. Also, with the ε-iron oxide particle including an additive, it is possible to adjust the coercivity Hc of the whole ε-iron oxide particle to a coercivity Hc suitable for recording and improve the easiness of recording. The additive is a metal element other than iron, preferably a trivalent metal element, more preferably at least one of Al (aluminum), Ga (gallium) or In (indium), still more preferably at least one of Al or Ga.

Insbesondere ist das ε-Eisenoxid einschließlich eines Additivs ε-Fe2-xMxO3-Kristalle (wobei M ein Metallelement außer Eisen ist, bevorzugt ein dreiwertiges Metallelement, bevorzugter wenigstens eines von Al, Ga oder In, noch weiter bevorzugt wenigstens eines von Al oder Ga, und x zum Beispiel 0 < x < 1 erfüllt).In particular, the ε-iron oxide including an additive is ε-Fe 2-x M x O 3 crystals (where M is a metal element other than iron, preferably a trivalent metal element, more preferably at least one of Al, Ga or In, still more preferably at least one of Al or Ga, and x satisfies e.g. 0 < x < 1).

(Modifikationsbeispiel 3)(Modification Example 3)

Die Magnetpulver der vorliegenden Offenbarung können Nanoteilchenpulver, die hexagonales Ferrit (nachfolgend als „hexagonales Ferritteilchen“ bezeichnet) enthalten, anstelle der ε-Eisenoxidteilchenpulver beinhalten. Das hexagonale Ferritteilchen weist zum Beispiel eine hexagonale plattenartige oder im Wesentlichen hexagonale plattenartige Form auf. Das hexagonale Ferrit beinhaltet bevorzugt wenigstes eines von Ba (Barium), Sr (Strontium), Pb (Blei) oder Ca (Calcium), bevorzugter wenigstens eines von Ba oder Sr. Insbesondere kann das hexagonale Ferrit zum Beispiel Bariumferrit oder Strontiumferrit sein. Das Bariumferrit kann zusätzlich zu Ba femer wenigstens eines von Sr, Pb oder Ca beinhalten. Das Strontiumferrit kann zusätzlich zu Sr femer wenigstens eines von Ba, Pb oder Ca beinhalten.The magnetic powders of the present disclosure may include nanoparticle powders containing hexagonal ferrite (hereinafter referred to as “hexagonal ferrite particle”) instead of the ε-iron oxide particle powder. The hexagonal ferrite particle has, for example, a hexagonal plate-like or substantially hexagonal plate-like shape. The hexagonal ferrite preferably includes at least one of Ba (barium), Sr (strontium), Pb (lead) or Ca (calcium), more preferably at least one of Ba or Sr. Specifically, the hexagonal ferrite may be barium ferrite or strontium ferrite, for example. The barium ferrite may further include at least one of Sr, Pb or Ca in addition to Ba. The strontium ferrite may further include at least one of Ba, Pb or Ca in addition to Sr.

Insbesondere weist das hexagonale Ferrit eine durchschnittliche Zusammensetzung auf, die durch eine allgemeine Formel MFe12O19 repräsentiert wird, wobei M zum Beispiel wenigstens ein Metall von Ba, Sr, Pb oder Ca, bevorzugt wenigstens ein Metall von Ba oder Sr ist. M kann eine Kombination aus Ba und einem oder mehreren Metallen sein, das/die aus der Gruppe ausgewählt ist/sind, die aus Sr, Pb und Ca besteht. Alternativ dazu kann M eine Kombination aus Sr und einem oder mehreren Metallen sein, das/die aus der Gruppe ausgewählt ist/sind, die aus Ba, Pb und Ca besteht. Bei der obigen allgemeinen Formel kann ein Teil von Fe mit einem anderen Metallelement ersetzt werden.In particular, the hexagonal ferrite has an average composition represented by a general formula MFe 12 O 19 where M is, for example, at least one metal of Ba, Sr, Pb or Ca, preferably at least one metal of Ba or Sr. M can be a combination of Ba and one or more metals selected from the group consisting of Sr, Pb and Ca. Alternatively, M can be a combination of Sr and one or more metals selected from the group consisting of Ba, Pb and Ca. In the above general formula, a part of Fe may be replaced with another metal element.

Wenn die Magnetpulver Pulver aus hexagonalen Fenitteilchen beinhalten, beträgt die durchschnittliche Teilchengröße der Magnetpulver bevorzugt 50 nm oder weniger, bevorzugter 40 nm oder weniger, noch weiter bevorzugt 30 nm oder weniger. Bevorzugter beträgt die durchschnittliche Teilchengröße der Magnetpulver 25 nm oder weniger, 22 nm oder weniger, 21 nm oder weniger oder 20 nm oder weniger. Außerdem beträgt die durchschnittliche Teilchengröße der Magnetpulver zum Beispiel 10 nm oder mehr, bevorzugt 12 nm oder mehr, weiter bevorzugt 15 nm oder mehr. Daher kann die durchschnittliche Teilchengröße der Magnetpulver einschließlich der Pulver aus hexagonalen Ferritteilchen zum Beispiel 10 nm oder mehr und 50 nm oder weniger, 10 nm oder mehr und 40 nm oder weniger, 12 nm oder mehr und 30 nm oder weniger, 12 nm oder mehr und 25 nm oder weniger oder 15 nm oder mehr und 22 nm oder weniger betragen. Wenn die durchschnittliche Teilchengröße der Magnetpulver gleich oder kleiner als der oben beschriebene obere Grenzwert (z. B. 50 nm oder weniger, insbesondere 30 nm oder weniger) ist, ist es möglich, vorteilhafte elektromagnetische Umwandlungscharakteristiken (z. B. SNRs) des Magnetaufzeichnungsmediums 10 mit einer hohen Aufzeichnungsdichte zu erhalten. Wenn die durchschnittliche Teilchengröße der Magnetpulver gleich oder größer als der oben beschriebene untere Grenzwert (z. B. 10 nm oder mehr, bevorzugt 12 nm oder mehr) ist, ist es möglich, die Dispergierbarkeit der Magnetpulver weiter zu verbessern und exzellentere elektromagnetische Umwandlungscharakteristiken (z. B. SNR) zu erhalten.When the magnetic powders include hexagonal fenite particle powder, the average particle size of the magnetic powders is preferably 50 nm or less, more preferably 40 nm or less, still more preferably 30 nm or less. More preferably, the average particle size of the magnetic powders is 25 nm or less, 22 nm or less, 21 nm or less, or 20 nm or less. In addition, the average particle size of the magnetic powders is, for example, 10 nm or more, preferably 12 nm or more, more preferably 15 nm or more. Therefore, the average particle size of the magnet powders including the hexagonal ferrite particle powders can be, for example, 10 nm or more and 50 nm or less, 10 nm or more and 40 nm or less, 12 nm or more and 30 nm or less, 12 nm or more and 25 nm or less, or 15 nm or more and 22 nm or less. If the average particle size of the magnetic powders is equal to or smaller than the upper limit described above (e.g. 50 nm or less, particularly 30 nm or less), it is possible to obtain advantageous electromagnetic conversion characteristics (e.g. SNRs) of the magnetic recording medium 10 with a high recording density. When the average particle size of the magnet powders is equal to or larger than the lower limit described above (e.g. 10 nm or more, preferably 12 nm or more), it is possible to further improve the dispersibility of the magnet powders and provide more excellent electromagnetic conversion characteristics (e.g e.g. SNR).

Wenn die Magnetpulver Pulver aus hexagonalen Fenitteilchen beinhalten, kann das durchschnittliche Aspektverhältnis der Magnetpulver bevorzugt 1 oder mehr und 3,5 oder weniger, bevorzugter 1 oder mehr und 3,1 oder weniger oder 2 oder mehr und 3,1 oder weniger, noch weiter bevorzugt 2 oder mehr und 3 oder weniger betragen. Da das durchschnittliches Aspektverhältnis der Magnetpulver innerhalb der oben beschriebenen numerischen Bereiche liegt, ist es möglich, eine Aggregation der Magnetpulver zu unterdrücken. Wenn die Magnetpulver in dem Prozess zum Bilden der Magnetschicht 13 senkrecht orientiert werden, ist es femer möglich, den Widerstand zu unterdrücken, der auf die Magnetpulver angewandt wird. Dies kann die senkrechte Orientierung der Magnetpulver verbessern.When the magnetic powders include hexagonal ferrite particle powder, the average aspect ratio of the magnetic powders may preferably be 1 or more and 3.5 or less, more preferably 1 or more and 3.1 or less, or 2 or more and 3.1 or less, even more preferably 2 or more and 3 or less. Since the average aspect ratio of the magnetic powders is within the numerical ranges described above, it is possible to suppress aggregation of the magnetic powders. Furthermore, when the magnetic powders are oriented perpendicularly in the process of forming the magnetic layer 13, it is possible to suppress the resistance applied to the magnetic powders. This can improve the perpendicular orientation of the magnetic powders.

Übrigens werden die durchschnittliche Teilchengröße und das durchschnittliche Aspektverhältnis der Magnetpulver einschließlich Pulver aus hexagonalen Ferritteilchen wie folgt bestimmt. Zuerst wird das zu messende Magnetaufzeichnungsmedium 10 durch das FIB(Focused Ion Beam)-Verfahren oder dergleichen zu einem dünnen Stück verarbeitet. Das Dünnen wird entlang der Längenrichtung (longitudinalen Richtung) des Magnetbandes durchgeführt. Der Querschnitt des erhaltenen dünnen Probenstücks wird unter Verwendung eines Transmissionselektronenmikroskops (H-9500, hergestellt durch Hitachi High-Technologies Corporation) mit einer Beschleunigungsspannung von 200 kV und einer 500.000-fachen Gesamtvergrößerung auf eine solche Weise beobachtet, dass die Aufzeichnungsschicht vollständig in der Dickenrichtung der Aufzeichnungsschicht enthalten ist. Als Nächstes werden 50 Teilchen mit einer Seitenfläche, die zu der zu beobachtenden Oberfläche orientiert ist, aus einem erfassten TEM-Bild ausgewählt und wird die maximale Plattendicke DA jedes der Teilchen gemessen. Die maximalen Plattendicken DA, die auf eine solche Weise erhalten werden, werden einfach gemittelt (arithmetisch gemittelt), um eine durchschnittliche maximale Plattendicke DAdurchschn zu erhalten. Anschließend wird der Plattendurchmesser DB jedes der Magnetpulver gemessen. Hier verweist der Plattendurchmesser DB auf die maximale Entfernung zwischen zwei beliebigen parallelen Linien, die unter beliebigen Winkeln so eingezeichnet werden, dass sie den Umriss des Magnetpulvers berühren (sogenannter Feret-Durchmesser). Anschließend wird der gemessene Plattendurchmesser DB einfach gemittelt (arithmetisch gemittelt), um einen durchschnittlichen Plattendurchmesser DBdurchschn zu bestimmen. Dann wird ein durchschnittliches Aspektverhältnis (DBdurchschn/DAdurchschn) der Teilchen aus der durchschnittlichen maximalen Plattendicke DAdurchschn und dem durchschnittlichen Plattendurchmesser DBdurchschn bestimmt.Incidentally, the average particle size and the average aspect ratio of the magnetic powders including hexagonal ferrite particle powder are determined as follows. First, the magnetic recording medium 10 to be measured is processed into a thin piece by the FIB (Focused Ion Beam) method or the like. The thinning is performed along the length direction (longitudinal direction) of the magnetic tape. The cross section of the thin specimen obtained is observed using a transmission electron microscope (H-9500, manufactured by Hitachi High-Technologies Corporation) with an acceleration voltage of 200 kV and a total magnification of 500,000 times in such a manner that the recording layer is completely in the thickness direction of the recording layer is included. Next, 50 particles having a side face oriented to the surface to be observed are selected from an acquired TEM image, and the maximum plate thickness DA of each of the particles is measured. The maximum plate thicknesses DA obtained in such a manner are simply averaged (arithmetically averaged) to obtain an average maximum plate thickness DAavg. Then, the plate diameter DB of each of the magnetic powders is measured. Here, the plate diameter DB refers to the maximum distance between any two parallel lines drawn at any angle so as to touch the outline of the magnetic powder (called the Feret diameter). Then, the measured disk diameter DB is simply averaged (arithmetically averaged) to determine an average disk diameter DBavg. Then, an average aspect ratio (DBavg /DAavg) of the particles is determined from the average maximum plate thickness DAavg and the average plate diameter DBavg.

Wenn die Magnetpulver Pulver aus hexagonalen Ferritteilchen beinhalten, beträgt das durchschnittliche Teilchenvolumen der Magnetpulver bevorzugt 5900 nm3 oder weniger, bevorzugter 500 nm3 oder mehr und 3400 nm3 oder weniger, noch weiter bevorzugt 1000 nm3 oder mehr und 2500 nm3 oder weniger. Wenn das durchschnittliche Teilchenvolumen der Magnetpulver 5900 nm3 oder weniger beträgt, wird der gleiche Effekt wie in dem Fall erhalten, in dem die durchschnittliche Teilchengröße der Magnetpulver 30 nm oder weniger beträgt. Wenn das durchschnittliche Teilchenvolumen der Magnetpulver 500 nm3 oder mehr beträgt, wird dagegen der gleiche Effekt wie in dem Fall erhalten, in dem die durchschnittliche Teilchengröße der Magnetpulver 12 nm oder mehr beträgt.When the magnetic powders include hexagonal ferrite particle powder, the average particle volume of the magnetic powders is preferably 5900 nm 3 or less, more preferably 500 nm 3 or more and 3400 nm 3 or less, still more preferably 1000 nm 3 or more and 2500 nm 3 or less. When the average particle volume of the magnet powders is 5900 nm or less, the same effect is obtained as in the case where the average particle size of the magnet powders is 30 nm or less. On the other hand, when the average particle volume of the magnetic powders is 500 nm or more, the same effect is obtained as in the case where the average particle size of the magnetic powders is 12 nm or more.

Es wird angemerkt, dass das durchschnittliche Teilchenvolumen der Magnetpulver wie folgt bestimmt wird. Zuerst werden die durchschnittliche maximale Plattendicke DAdurchschn und der durchschnittliche maximale Plattendurchmesser DBdurchschn durch das oben beschriebene Verfahren zum Berechnen der durchschnittlichen Teilchengröße der Magnetpulver bestimmt. Als Nächstes wird ein durchschnittliches Volumen V der ε-Eisenoxidteilchen durch den folgenden Ausdrucks bestimmt: V = 3 3 8 × D A d u r c h s c h n × D B d u r c h s c h n × D B d u r c h s c h n

Figure DE112019007754T5_0009
It is noted that the average particle volume of the magnetic powders is determined as follows. First, the average maximum plate thickness DAavg and the average maximum plate diameter DBavg are determined by the above-described method of calculating the average particle size of the magnetic powders. Next, an average volume V of the ε-iron oxide particles is determined by the following expression: V = 3 3 8th × D A i.e and right c H s c H n × D B i.e and right c H s c H n × D B i.e and right c H s c H n
Figure DE112019007754T5_0009

Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Technologie können die Magnetpulver Bariumferritmagnetpulver oder Strontiumfenitmagnetpulver, bevorzugter Bariumferritmagnetpulver sein. Die Bariumferritmagnetpulver beinhalten magnetische Teilchen aus Eisenoxid mit Bariumferrit als eine Hauptphase (nachfolgend als „Bariumferritteilchen“ bezeichnet). Die Bariumferritmagnetpulver weisen eine hohe Zuverlässigkeit der Datenaufzeichnung auf; zum Beispiel nimmt die Koerzitivität selbst in einer Umgebung mit hoher Temperatur und Luftfeuchtigkeit nicht ab. Von diesem Standpunkt werden die Bariumferritmagnetpulver als die Magnetpulver bevorzugt.According to a particularly preferred embodiment of the present technology, the magnetic powders can be barium ferrite magnetic powder or strontium ferrite magnetic powder, more preferably barium ferrite magnetic powder. The barium ferrite magnet powders include iron oxide magnetic particles having barium ferrite as a main phase (hereinafter referred to as “barium ferrite particles”). The barium ferrite magnetic powders have high data recording reliability; for example, the coercivity does not decrease even in a high-temperature and high-humidity environment. From this point of view, the barium ferrite magnet powders are preferred as the magnet powders.

Eine durchschnittliche Teilchengröße der Bariumferritmagnetpulver beträgt 50 nm oder weniger, bevorzugter 10 nm oder mehr und 40 nm oder weniger, noch weiter bevorzugt 12 nm oder mehr und 25 nm oder weniger.An average particle size of the barium ferrite magnet powders is 50 nm or less, more preferably 10 nm or more and 40 nm or less, still more preferably 12 nm or more and 25 nm or less.

Wenn die Magnetschicht 13 die Bariumferritmagnetpulver als die Magnetpulver beinhaltet, beträgt eine durchschnittliche Dicke tm [nm] der Magnetschicht 13 bevorzugt 35 nm ≤ tm ≤ 100 nm, besonders bevorzugt 80 nm oder weniger. Außerdem beträgt die in der Dickenrichtung (senkrechten Richtung) des Magnetaufzeichnungsmediums 10 gemessene Koerzitivität Hc bevorzugt 160 kA/m oder mehr und 280 kA/m oder weniger, bevorzugter 165 kA/m oder mehr und 275 kA/m oder weniger, noch weiter bevorzugt 170 kA/m oder mehr und 270 kA/m oder weniger.When the magnetic layer 13 includes the barium ferrite magnetic powders as the magnetic powders, an average thickness tm [nm] of the magnetic layer 13 is preferably 35 nm≦tm≦100 nm, more preferably 80 nm or less. In addition, the coercivity Hc measured in the thickness direction (perpendicular direction) of the magnetic recording medium 10 is preferably 160 kA/m or more and 280 kA/m or less, more preferably 165 kA/m or more and 275 kA/m or less, even more preferably 170 kA/m or more and 270 kA/m or less.

(Modifikationsbeispiel 4)(Modification Example 4)

Die Magnetpulver können Nanoteilchenpulver beinhalten, die Co-haltigen Spinell-Ferrit (nachfolgend als „Kobaltferritteilchen“ bezeichnet) anstelle der ε-Eisenoxidteilchenpulver enthalten. Die Kobaltferritteilchen weisen bevorzugt eine uniaxiale Anisotropie auf. The magnetic powders may include nanoparticle powders containing Co-containing spinel ferrite (hereinafter referred to as “cobalt ferrite particles”) instead of the ε-iron oxide particle powders. The cobalt ferrite particles preferably have uniaxial anisotropy.

Die Kobaltferritteilchen weisen zum Beispiel eine kubische oder im Wesentlichen kubische Form auf Der Co-haltige Spinell-Ferrit kann femer zusätzlich zu Co wenigstens eines von Ni, Mn, Al, Cu oder Zn beinhalten.The cobalt ferrite particles have a cubic or substantially cubic shape, for example. The Co-containing spinel ferrite may further include at least one of Ni, Mn, Al, Cu, or Zn in addition to Co.

Der Co-haltige Spinell-Ferrit weist zum Beispiel eine durchschnittliche Zusammensetzung auf die durch die folgende Formel repräsentiert wird: CoxMyFe2OZ (wobei in Ausdruck (1) M zum Beispiel ein Metall von Ni, Mn, Al, Cu und/oder Zn ist, x ein Wert innerhalb des Bereichs von 0,4 ≤ x ≤ 1,0 ist, y ein Wert innerhalb des Bereichs von 0 ≤ y ≤ 0,3 ist. Es wird angemerkt, dass x und y die Beziehung (x + y) < 1,0 erfüllen, z ein Wert innerhalb des Bereichs von 3 ≤ z ≤ 4 ist und Fe teilweise mit einem anderen Metallelement ersetzt werden kann).For example, the Co-containing spinel ferrite has an average composition represented by the following formula: Co x M y Fe 2 O Z (wherein in expression (1) M is, for example, a metal of Ni, Mn, Al, Cu and/or Zn, x is a value within the range of 0.4≦x≦1.0, y is a value within the range of 0≦y≦0.3 It is noted that x and y satisfy the relationship (x+y)<1.0, z is a value within the range of 3≦z≦4, and Fe partially with another metal element can be replaced).

Wenn die Magnetpulver Kobaltferritteilchenpulver beinhalten, beträgt die durchschnittliche Teilchengröße der Magnetpulver bevorzugt 25 nm oder weniger, bevorzugter 10 nm oder mehr und 23 nm oder weniger. Wenn die durchschnittliche Teilchengröße der Magnetpulver 25 nm oder weniger beträgt, ist es möglich, vorteilhafte elektromagnetische Umwandlungscharakteristiken (z. B. SNRs) des Magnetaufzeichnungsmediums 10 mit einer hohen Aufzeichnungsdichte zu erhalten. Dagegen ist es, wenn die durchschnittliche Teilchengröße der Magnetpulver 10 nm oder mehr beträgt, möglich, die Dispergierbarkeit der Magnetpulver weiter zu verbessern und exzellentere elektromagnetische Umwandlungscharakteristiken (z. B. SNR) zu erhalten. Wenn die Magnetpulver die Kobaltferritteilchenpulver beinhalten, ist das durchschnittliche Aspektverhältnis der Magnetpulver gleich jenem der oben beschriebenen Ausführungsform. Außerdem werden die durchschnittliche Teilchengröße und das durchschnittliche Aspektverhältnis der Magnetpulver auch auf die gleiche Weise wie das Berechnungsverfahren der oben beschriebenen Ausführungsform bestimmt.When the magnetic powders include cobalt ferrite particle powder, the average particle size of the magnetic powders is preferably 25 nm or less, more preferably 10 nm or more and 23 nm or less. When the average particle size of the magnetic powders is 25 nm or less, it is possible to obtain favorable electromagnetic conversion characteristics (eg, SNRs) of the magnetic recording medium 10 with a high recording density. On the other hand, when the average particle size of the magnetic powders is 10 nm or more, it is possible to further improve the dispersibility of the magnetic powders and obtain more excellent electromagnetic conversion characteristics (eg, SNR). When the magnetic powders include the cobalt ferrite particle powders, the average aspect ratio of the magnetic powders is equal to that of the embodiment described above. In addition, the average particle size and the average aspect ratio of the magnetic powders are also determined in the same manner as the calculation method of the embodiment described above.

Das durchschnittliche Teilchenvolumen der Magnetpulver beträgt bevorzugt 15000 nm3 oder weniger, bevorzugter 1000 nm3 oder mehr und 12000 nm3 oder weniger. Wenn das durchschnittliche Teilchenvolumen der Magnetpulver 15000 nm3 oder weniger beträgt, ist es möglich, den gleichen Effekt wie in dem Fall zu erhalten, in dem die durchschnittliche Teilchengröße der Magnetpulver 25 nm oder weniger beträgt. Wenn das durchschnittliche Teilchenvolumen der Magnetpulver 1000 nm3 oder mehr beträgt, ist es dagegen möglich, den gleichen Effekt wie in dem Fall zu erhalten, in dem die durchschnittliche Teilchengröße der Magnetpulver 10 nm oder mehr beträgt. Es wird angemerkt, dass das durchschnittliche Teilchenvolumen der Magnetpulver auf die gleiche Weise wie bei dem Verfahren zum Berechnen des durchschnittlichen Teilchenvolumens der Magnetpulver bei der oben beschriebenen Ausführungsform (dem Verfahren zum Berechnen des durchschnittlichen Teilchenvolumens, wenn das ε-Eisenoxidteilchen eine kubische Form oder eine im Wesentlichen kubische Form aufweist) bestimmt wird.The average particle volume of the magnet powders is preferably 15000 nm 3 or less, more preferably 1000 nm 3 or more and 12000 nm 3 or less. When the average particle volume of the magnet powders is 15000 nm or less, it is possible to obtain the same effect as in the case where the average particle size of the magnet powders is 25 nm or less. On the other hand, when the average particle volume of the magnetic powders is 1000 nm or more, it is possible to obtain the same effect as in the case where the average particle size of the magnetic powders is 10 nm or more. It is noted that the average particle volume of the magnetic powders is calculated in the same manner as the method of calculating the average particle volume of the magnetic powders in the embodiment described above (the method of calculating the average particle volume when the ε-iron oxide particle has a cubic shape or an im Has substantially cubic shape) is determined.

Die Koerzitivität Hc der Kobaltferritmagnetpulver beträgt bevorzugt 2500 Oe oder mehr, bevorzugter 2600 Oe oder mehr und 3500 Oe oder weniger.The coercivity Hc of the cobalt ferrite magnet powders is preferably 2500 Oe or more, more preferably 2600 Oe or more and 3500 Oe or less.

(Modifikationsbeispiel 5)(Modification Example 5)

Wie in 10 veranschaulicht, kann zum Beispiel das Magnetaufzeichnungsmedium 10 femer eine Baniereschicht 15 beinhalten, die auf wenigstens einer Oberfläche der Basis 11 bereitgestellt ist. Die Baniereschicht 15 ist eine Schicht zum Unterdrücken einer Dimensionsänderung der Basis 11 in Abhängigkeit von der Umgebung. Zum Beispiel ist ein Beispielfall für die Dimensionsänderung eine hygroskopische Eigenschaft der Basis 11. Es ist möglich, die Rate einer Wasserpenetration in die Basis 11 durch das Abscheiden der Baniereschicht 15 zu reduzieren. Die Baniereschicht 15 beinhaltet zum Beispiel ein Metall oder ein Metalloxid. Hier kann das Metall zum Beispiel wenigstens eines von Al, Cu, Co, Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Zn, Ga, Ge, Y, Zr, Mo, Ru, Pd, Ag, Ba, Pt, Au oder Ta sein. Das Metalloxid kann zum Beispiel ein Metalloxid sein, das ein oder mehrere der obigen Metalle enthält. Insbesondere kann zum Beispiel wenigstens eines von Al2O3, CuO, CoO, SiO2, Cr2O3, TiO2, Ta2O5 oder ZrO2 verwendet werden. Außerdem kann die Baniereschicht 15 diamantartigen Kohlenstoff (DLC: Diamond-Like Carbon) oder Diamant beinhalten.As in 10 As illustrated, for example, the magnetic recording medium 10 may further include a barrier layer 15 provided on at least one surface of the base 11 . The barrier layer 15 is a layer for suppressing a dimensional change of the base 11 depending on the environment. For example, an example case for the dimensional change is a hygroscopic property of the base 11. It is possible to reduce the rate of water penetration into the base 11 by depositing the barrier layer 15. The barrier layer 15 includes a metal or a metal oxide, for example. Here, the metal can be, for example, at least one of Al, Cu, Co, Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Zn, Ga, Ge, Y, Zr, Mo, Ru, Pd, Ag, Ba , Pt, Au or Ta. The metal oxide can be, for example, a metal oxide containing one or more of the above metals. Specifically, at least one of Al 2 O 3 , CuO, CoO, SiO 2 , Cr 2 O 3 , TiO 2 , Ta 2 O 5 or ZrO 2 can be used, for example. In addition, the barrier layer 15 may include diamond-like carbon (DLC) or diamond.

Diedurchschnittliche Dicke der Barriereschicht 15 beträgt bevorzugt 20 nmo der mehr und 1000 nm oder weniger, bevorzugter 50 nm oder mehr und 1000 nm oder weniger. Die durchschnittliche Dicke der Baniereschicht 15 wird auf die gleiche Weise wie für die durchschnittliche Dicke der Magnetschicht 13 bestimmt. Es wird angemerkt, dass die Vergrößerung des TEM-Bildes in Abhängigkeit von der Dicke der Baniereschicht 15 geeignet angepasst wird.The average thickness of the barrier layer 15 is preferably 20 nm or more and 1000 nm or less, more preferably 50 nm or more and 1000 nm or less. The average thickness of the barrier layer 15 is determined in the same manner as for the average thickness of the magnetic layer 13. It is noted that the magnification of the TEM image is appropriately adjusted depending on the thickness of the barrier layer 15 .

(Modifikationsbeispiel 6)(Modification Example 6)

Bei der oben beschriebenen Ausführungsform wurde der Fall beschrieben, in dem die mehreren Ausbuchtungen 14A, die auf der Oberfläche 14S der Rückschicht 14 bereitgestellt sind, auf die Oberfläche 13S der Magnetschicht 13 transferiert werden, um die mehreren Poren 13A auf der Oberfläche 13S der Magnetschicht 13 zu bilden; jedoch ist das Verfahren zum Bilden der mehreren Poren 13A nicht darauf beschränkt. Zum Beispiel können die mehreren Poren 13A auf der Oberfläche 13 S der Magnetschicht 13 zum Beispiel durch Anpassen des Typs des Lösungsmittels, das in dem Beschichtungsmaterial zum Bilden einer Magnetschicht enthalten ist, oder von Trocknungsbedingungen des Beschichtungsmaterials zum Bilden einer Magnetschicht gebildet werden.In the embodiment described above, the case has been described in which the plurality of protrusions 14A provided on the surface 14S of the backing layer 14 are transferred to the surface 13S of the magnetic layer 13 to fill the plurality of pores 13A on the surface 13S of the magnetic layer 13 to build; however, the method of forming the multiple pores 13A is not limited to this. For example, the plurality of pores 13A can be formed on the surface 13S of the magnetic layer 13 by adjusting the type of solvent contained in the coating material for forming a magnetic layer or drying conditions of the coating material for forming a magnetic layer, for example.

(Modifikationsbeispiel 7)(Modification Example 7)

Das Magnetaufzeichnungsmedium 10 gemäß der oben beschriebenen Ausführungsform kann in einer Bibliothekseinrichtung verwendet werden. In diesem Fall kann die Bibliothekseinrichtung mehrere Aufzeichnung-und-Wiedergabe-Einrichtungen 30 der oben beschriebenen Ausführungsform beinhalten.The magnetic recording medium 10 according to the embodiment described above can be used in a library facility. In this case, the library device may include multiple recording and reproducing devices 30 of the embodiment described above.

Beispieleexamples

Nachfolgend wird die vorliegende Offenbarung speziell unter Bezugnahme auf Beispiele beschrieben. Die vorliegende Offenbarung ist j edoch nicht auf diese Beispiele beschränkt.Hereinafter, the present disclosure is specifically described with reference to examples. However, the present disclosure is not limited to these examples.

In den folgenden Beispielen und Vergleichsbeispielen sind das durchschnittliche Aspektverhältnis der Magnetpulver, die durchschnittliche Teilchengröße der Magnetpulver, das durchschnittliche Teilchenvolumen der Magnetpulver, die durchschnittliche Dicke der Unterschicht, die durchschnittliche Dicke des gesamten Magnetaufzeichnungsmediums (durchschnittliche Banddicke), die durchschnittliche Dicke der Magnetschicht, die Koerzitivität Hc1, die Koerzitivität Hc2, das Verhältnis Hc2/Hc1, die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums und das Reibungskoeffizientenverhältnis µC(1000)/µC(5), die in der senkrechten Richtung gemessen werden, und die arithmetisch gemittelte Rauigkeit der Oberfläche der Magnetschicht (der Magnetschicht Ra) und der Magnetschicht-PSD (≤ 0,5 µm) die Werte, die durch das bei der obigen Ausführungsform beschriebene Messverfahren bestimmt werden.In the following examples and comparative examples, the average aspect ratio of the magnetic powders, the average particle size of the magnetic powders, the average particle volume of the magnetic powders, the average thickness of the underlayer, the average thickness of the whole magnetic recording medium (average tape thickness), the average thickness of the magnetic layer, the coercivity Hc1, the coercivity Hc2, the ratio Hc2/Hc1, the total BET specific surface area of the magnetic recording medium and the coefficient of friction ratio µC(1000)/µC(5), which are given in the perpendicular direction are measured, and the arithmetic mean roughness of the surface of the magnetic layer (the magnetic layer Ra) and the magnetic layer PSD (≦0.5 µm) are the values determined by the measuring method described in the above embodiment.

[Beispiel 1][Example 1]

Ein Magnetaufzeichnungsmedium aus Beispiel 1 wurde wie folgt erhalten.A magnetic recording medium of Example 1 was obtained as follows.

<Vorbereitungsprozess des Beschichtungsmaterials zum Bilden der Magnetschicht><Preparation Process of Coating Material for Forming Magnetic Layer>

Das Beschichtungsmaterial zum Bilden einer Magnetschicht wurde wie folgt vorbereitet. Zuerst wurde eine erste Zusammensetzung mit der folgenden Formulierung durch einen Extruder geknetet. Als nächstes wurden die geknetete erste Zusammensetzung und eine zweite Zusammensetzung mit der folgenden Formulierung zu einem Ruhrtank hinzugefugt, der mit einer Dispergiermaschine ausgestattet ist, um eine vorläufige Vermischung durchzuführen. Anschließend wurde femer eine Sandmühlenvermischung durchgeführt und wurde eine Filterbehandlung durchgeführt, um das Beschichtungsmaterial zum Bilden einer Magnetschicht vorzubereiten.The coating material for forming a magnetic layer was prepared as follows. First, a first composition having the following formulation was kneaded by an extruder. Next, the kneaded first composition and a second composition having the following formulation were added to a stirring tank equipped with a dispersing machine to conduct preliminary mixing. Subsequently, sand mill mixing was further performed and filter treatment was performed to prepare the coating material for forming a magnetic layer.

(Erste Zusammensetzung)(First Composition)

Die Bestandteile und Gewichte der ersten Zusammensetzung sind wie folgt.

  • · Bariumferrit(BaFe12O19)-Teilchenpulver (hexagonale Plattenform, durchschnittliches Aspektverhältnis: 2,8, durchschnittliche Teilchengröße: 20,3 nm, durchschnittliches Teilchenvolumen: 1950 nm3): 100 Massenteile
  • · Vinylchloridbasiertes Harz (Cyclohexanonlösung 30 Massen-%): 40 Massenteile (eine Cyclohexanonlösung ist enthalten) (Polymerisationsgrad: 300, Mn = 10.000 und 0,07 mmol/g von OSO3K und 0,03 mmol/gvon sekundärem OH als eine polare Gruppe sind enthalten)
  • · Aluminiumoxidpulver (α-Al2O3, durchschnittliche Teilchengröße:: 0,2 µm): 5 Massenteile
  • · Industrieruß (hergestellt durch Tokai Carbon Co., Ltd., Handelstname: SEAST TA): 2 Massenteile
The ingredients and weights of the first composition are as follows.
  • · Barium ferrite (BaFe 12 O 19 ) particle powder (hexagonal plate shape, average aspect ratio: 2.8, average particle size: 20.3 nm, average particle volume: 1950 nm 3 ): 100 parts by mass
  • · Vinyl chloride-based resin (cyclohexanone solution 30% by mass): 40 parts by mass (a cyclohexanone solution is included) (degree of polymerization: 300, Mn = 10,000 and 0.07 mmol/g of OSO 3 K and 0.03 mmol/g of secondary OH as a polar one group are included)
  • · Alumina powder (α-Al 2 O 3 , average particle size: 0.2 µm): 5 parts by mass
  • · Carbon black (manufactured by Tokai Carbon Co., Ltd., trade name: SEAST TA): 2 parts by mass

(Zweite Zusammensetzung)(Second Composition)

Die Bestandteile und Gewichte der zweiten Zusammensetzung sind wie folgt.

  • · Vinylchloridbasiertes Harz: 20 Gewichtsteile (eine Cyclohexanonlösung ist enthalten) (Harzlösung: Harz: 30 Massen-%, Cyclohexanon: 70 Massen-%)
  • · N-Butylstearat als Fettsäureester: 2 Massenteile
  • · Methylethylketon: 121,3 Massenteile
  • · Toluol: 121,3 Massenteile
  • · Cyclohexanon: 60,7 Massenteile
The ingredients and weights of the second composition are as follows.
  • Vinyl chloride-based resin: 20 parts by weight (a cyclohexanone solution is included) (resin solution: resin: 30% by mass, cyclohexanone: 70% by mass)
  • · N-butyl stearate as fatty acid ester: 2 parts by mass
  • · Methyl ethyl ketone: 121.3 parts by mass
  • Toluene: 121.3 parts by mass
  • · Cyclohexanone: 60.7 parts by mass

Zu dem Beschichtungsmaterial zum Bilden einer Magnetschicht, das wie oben beschrieben vorbereitet wurde, wurden 4 Massenteile Polyisocyanat (Handelsname: Coronate L, hergestellt durch Nippon Polyurethane Co., Ltd.) als ein Aushärtungsmittel und 2 Massenteile Stearinsäure als eine Fettsäure hinzugefugt.To the coating material for forming a magnetic layer prepared as described above, 4 parts by mass of polyisocyanate (trade name: Coronate L, manufactured by Nippon Polyurethane Co., Ltd.) as a curing agent and 2 parts by mass of stearic acid as a fatty acid were added.

<Vorbereitungsprozess des Beschichtungsmaterials zum Bilden der Unterschicht><Preparation Process of Coating Material for Forming Undercoat>

Das Beschichtungsmaterial zum Bilden einer Unterschicht wurde wie folgt vorbereitet. Zuerst wurde eine dritte Zusammensetzung mit der folgenden Formulierung durch einen Extruder geknetet. Als nächstes wurden die geknetete dritte Zusammensetzung und eine vierte Zusammensetzung mit der folgenden Formulierung zu einem Ruhrtank hinzugefugt, der mit einer Dispergiermaschine ausgestattet ist, um eine vorläufige Vermischung durchzuführen. Anschließend wurde femer eine Sandmühlenvermischung durchgeführt und wurde eine Filterbehandlung durchgeführt, um das Beschichtungsmaterial zum Bilden einer Unterschicht vorzubereiten.The coating material for forming an undercoat was prepared as follows. First, a third composition having the following formulation was kneaded by an extruder. Next, the kneaded third composition and a fourth composition having the following formulation were added to a stirring tank equipped with a dispersing machine to conduct preliminary mixing. Subsequently, further sand mill mixing was carried out and a filter treatment was carried out to prepare the coating material for forming an undercoat.

(Dritte Zusammensetzung)(Third composition)

Die Bestandteile und Gewichte der dritten Zusammensetzung sind wie folgt.

  • • Nadelförmige Eisenoxidpulver (α-Fe2O3, durchschnittliche Hauptachsenlänge: 0,15 µm): 100 Massenteile
  • • Vinylchloridbasiertes Harz: (Harzlösung: Harz: 30 Massen-%, Cyclohexanon: 70 Massen-%): 55,6 Massenteile
  • • Industrieruß (durchschnittliche Teilchengröße: 20 nm): 10 Massenteile
The ingredients and weights of the third composition are as follows.
  • • Acicular iron oxide powder (α-Fe 2 O 3 , average major axis length: 0.15 µm): 100 parts by mass
  • • Vinyl chloride-based resin: (resin solution: resin: 30% by mass, cyclohexanone: 70% by mass): 55.6 parts by mass
  • • Carbon black (average particle size: 20 nm): 10 parts by mass

(Vierte Zusammensetzung)(Fourth Composition)

Die Bestandteile und Gewichte der vierten Zusammensetzung sind wie folgt.

  • • Polyurethanbasiertes Harz UR8200 (hergestellt durch Toyo Boseki.: 18,5 Massenteile)
  • • N-Butylstearat als Fettsäureester: 2 Massenteile
  • • Methylethylketon: 108,2 Massenteile
  • • Toluol: 108,2 Massenteile
  • • Cyclohexanon: 18,5 Massenteile
The ingredients and weights of the fourth composition are as follows.
  • • Polyurethane-based resin UR8200 (manufactured by Toyo Boseki.: 18.5 parts by mass)
  • • N-butyl stearate as fatty acid ester: 2 parts by mass
  • • Methyl ethyl ketone: 108.2 parts by mass
  • • Toluene: 108.2 parts by mass
  • • Cyclohexanone: 18.5 parts by mass

Zu dem Beschichtungsmaterial zum Bilden einer Unterschicht, das wie oben beschrieben vorbereitet wurde, wurden 4 Massenteile Polyisocyanat (Handelsname: Coronate L, hergestellt durch Nippon Polyurethane Co., Ltd.) als ein Aushärtungsmittel und 2 Massenteile Stearinsäure als eine Fettsäure hinzugefügt.To the coating material for forming an undercoat prepared as described above, 4 parts by mass of polyisocyanate (trade name: Coronate L, manufactured by Nippon Polyurethane Co., Ltd.) as a curing agent and 2 parts by mass of stearic acid as a fatty acid were added.

<Vorbereitungsprozess des Beschichtungsmaterials zum Bilden der Rückschicht><Preparation Process of Coating Material for Forming Back Layer>

Das Beschichtungsmaterial zum Bilden einer Rückschicht wurde wie folgt vorbereitet. Das Beschichtungsmaterial zum Bilden einer Rückschicht wurde durch Vermischen von nachfolgenden beschriebenen Rohmaterialien in einem Rührtank, der mit einer Dispergiermaschine ausgestattet ist, und Durchführen eines Filterprozesses vorbereitet.

  • • Industrierußpulver mit kleinem Teilchendurchmesser (durchschnittlicher Teilchendurchmesser (D50) 20 nm): 90 Massenteile
  • • Industrierußpulver mit großem Teilchendurchmesser (durchschnittlicher Teilchendurchmesser (D50) 270 nm): 10 Massenteile
  • • Polyesterpolyurethan (hergestellt durch Polyurethane Japan, Handelsname: N-2304): 100 Massenteile
  • • Methylethylketon: 500 Massenteile
  • • Toluol: 400 Massenteile
  • • Cyclohexanon: 100 Massenteile
The coating material for forming a back layer was prepared as follows. The coating material for forming a back layer was prepared by mixing raw materials described below in a stirring tank equipped with a dispersing machine and performing a filtering process.
  • • Small particle diameter carbon black powder (average particle diameter (D50) 20 nm): 90 parts by mass
  • • Large particle diameter carbon black powder (average particle diameter (D50) 270 nm): 10 parts by mass
  • • Polyester polyurethane (manufactured by Polyurethane Japan, trade name: N-2304): 100 parts by mass
  • • Methyl ethyl ketone: 500 parts by mass
  • • Toluene: 400 parts by mass
  • • Cyclohexanone: 100 parts by mass

<Aufbringungsprozess><Application Process>

Unter Verwendung des Beschichtungsmaterials zum Bilden einer Magnetschicht und des Beschichtungsmaterials zum Bilden einer Unterschicht, die wie oben beschrieben vorbereitet wurden, wurden eine Unterschicht mit einer durchschnittlichen Dicke von 1,1 µm und eine Magnetschicht mit einer durchschnittlichen Dicke von 80 nm auf einer Hauptoberfläche eines länglichen Polyesterfilms, der eine durchschnittliche Dicke von 4,0 µm aufweist und als ein nichtmagnetisches Stützelement dient, wie folgt gebildet. Zuerst wurde eine Unterschicht durch Aufbringen des Beschichtungsmaterials zum Bilden einer Unterschicht auf einer Hauptoberfläche des Polyesterfilms und Trocknen des Beschichtungsmaterials gebildet. Als Nächstes wurde eine Magnetschicht durch Aufbringen des Beschichtungsmaterials zum Bilden einer Magnetschicht auf der Unterschicht und Trocknen des Beschichtungsmaterials gebildet. Es wird angemerkt, dass während des Trocknens des Beschichtungsmaterials zum Bilden einer Magnetschicht das Magnetfeld der Magnetpulver durch eine Solenoidspule in der Dickenrichtung des Films orientiert wurde. Außerdem wurden die Trocknungsbedingungen (Trocknungstemperaturen und Trocknungszeiten) für das Beschichtungsmaterial zum Bilden einer Magnetschicht angepasst und wurden die Koerzitivität Hc1 in der Dickenrichtung (senkrechten Richtung) und die Koerzitivität Hc2 in der longitudinalen Richtung des Magnetaufzeichnungsmediums auf die in Tabelle 2 unten gezeigte Werte eingestellt. Anschließend wurde eine Rückschicht mit einer durchschnittlichen Dicke von 0,3 µm durch Aufbringen des Beschichtungsmaterials zum Bilden einer Rückschicht auf die andere Hauptoberfläche des Polyesterfilms und Trocknen des Beschichtungsmaterials gebildet.Using the coating material for forming a magnetic layer and the coating material for forming an underlayer prepared as described above, an underlayer having an average thickness of 1.1 µm and a magnetic layer having an average thickness of 80 nm were formed on a main surface of an oblong Polyester film having an average thickness of 4.0 µm and serving as a nonmagnetic support member is formed as follows. First, an undercoating was formed by applying the coating material for forming an undercoating on a main surface of the polyester film and drying the coating material. Next, a magnetic layer was formed by applying the coating material for forming a magnetic layer on the underlayer and drying the coating material. It is noted that during the drying of the coating material to form a magnetic layer, the magnetic field of the magnetic powders was oriented in the thickness direction of the film by a solenoid coil. In addition, the Trock ing conditions (drying temperatures and drying times) for the coating material to form a magnetic layer were adjusted and the coercivity Hc1 in the thickness direction (perpendicular direction) and the coercivity Hc2 in the longitudinal direction of the magnetic recording medium were set to the values shown in Table 2 below. Then, a backing layer having an average thickness of 0.3 µm was formed by applying the coating material for forming a backing layer on the other main surface of the polyester film and drying the coating material.

<Kalandrierungs- und Transferprozesse><Calendering and transfer processes>

Anschließend wurde ein Kalandrierungsprozess zum Glätten der Oberflächen der Magnetschicht durchgeführt. Als Nächstes wurde das Magnetaufzeichnungsmedium mit der Magnetschicht mit der geglätteten Oberfläche aufgerollt und dann wurde eine Wärmebehandlung an dem Magnetaufzeichnungsmedium in dem aufgerollten Zustand für 10 Stunden bei 60 °C durchgeführt. Dann wurde das Magnetaufzeichnungsmedium derart in eine Rollenform umgewickelt, dass das Ende, das sich auf der Innenumfangsseite befunden hatte, auf der Außenumfangsseite befand, und dann wurde die Wärmebehandlung in dem aufgerollten Zustand wieder an dem Magnetaufzeichnungsmedium für 10 Stunden bei 60 °C durchgeführt. Dies ermöglicht, dass mehrere Ausbuchtungen auf der Oberfläche der Rückschicht auf die Oberfläche der Magnetschicht transferiert werden, wobei mehrere Poren auf der Oberfläche der Magnetschicht gebildet werden.Then, a calendering process was performed to smooth the surfaces of the magnetic layer. Next, the magnetic recording medium having the magnetic layer with the smoothed surface was rolled up, and then heat treatment was performed on the magnetic recording medium in the rolled state at 60°C for 10 hours. Then, the magnetic recording medium was wrapped in a roll form such that the end that had been on the inner peripheral side was on the outer peripheral side, and then the heat treatment in the rolled state was again performed on the magnetic recording medium for 10 hours at 60°C. This allows multiple protrusions on the surface of the back layer to be transferred to the surface of the magnetic layer, forming multiple pores on the surface of the magnetic layer.

<Schneideprozess><cutting process>

Das wie oben beschrieben erhaltene Magnetaufzeichnungsmedium wurde 1/2 Zoll (12,65 mm) breit geschnitten, um ein gewünschtes längliches Magnetaufzeichnungsmedium (eine durchschnittliche Dicke von 5,6 µm) zu erhalten. Das Magnetaufzeichnungsmedium weist eine vierschichtige Struktur, wie in Tabelle 2 unten gezeigt, mit einer durchschnittlichen Gesamtdicke von 5,6 µm, der Anzahl an Servospuren von 5 und einer durchschnittlichen Dicke der Basis (des Basisfilms) von 4,0 µm auf Außerdem beträgt W 2,9 µm und beträgt L 0,052 µm. Die obige Konfiguration wird als eine Medienkonfiguration 1 bezeichnet. Außerdem repräsentiert W die Aufzeichnungsspurbreite, repräsentiert L die Entfernung zwischen Magnetisierungsumkehrungen des Gebiets, aufgezeichnet bei der kürzesten Wellenlänge (Bitlänge). Es ist anzumerken, dass die Magnetschicht Ra des erhaltenen Magnetaufzeichnungsmediums 1,9nm betrug, dieMagnetschicht-PSD 2,1 µm betrug und die halbe Breite PW50 der solitären Wellenform in der wiedergegebenen Wellenform 175 nm betrug.The magnetic recording medium obtained as described above was slit 1/2 inch (12.65 mm) wide to obtain a desired elongate magnetic recording medium (an average thickness of 5.6 µm). The magnetic recording medium has a four-layer structure as shown in Table 2 below, with an average total thickness of 5.6 µm, the number of servo tracks of 5 and an average thickness of the base (base film) of 4.0 µm. In addition, W is 2 .9 µm and L is 0.052 µm. The above configuration is referred to as a media configuration 1. Also, W represents the recording track width, L represents the distance between magnetization reversals of the area recorded at the shortest wavelength (bit length). Note that the magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm, the magnetic layer PSD was 2.1 µm, and the half width PW50 of the solitary waveform in the reproduced waveform was 175 nm.

[Beispiel 2][Example 2]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 2,6, eine durchschnittliche Teilchengröße von 18,6 nm und ein durchschnittliches Teilchenvolumen von 1600 nm3 auf Außerdem betrug in dem Aufbringungsprozess die durchschnittliche Dicke der Magnetschicht 60 nm, betrug die KoerzitivitätHc1 2920 Oe und betrug die Koerzitivität Hc2 1920 Oe. Femer wurde in dem Transferprozess die Erwärmungsbedingung derart angepasst, dass die spezifische BET-Oberfläche 3,3 m2/g betrug und das Reibungskoeffizientenverhältnis µC(1000)/µC(5) 1,3 betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 2 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine MagnetschichtRa von 1,85 nm und eine Magnetschicht-PSD von 2,0 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 2.6, an average particle size of 18.6 nm and an average particle volume of 1600 nm 3 in the deposition process, the average thickness of the magnetic layer was 60 nm, the coercivity Hc1 was 2920 Oe, and the coercivity Hc2 was 1920 Oe. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.3 m 2 /g and the friction coefficient ratio µC(1000)/µC(5) was 1.3. Except for the above points, a magnetic recording medium of Example 2 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.85 nm and a magnetic layer PSD of 2.0 µm.

[Beispiel 3][Example 3]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 3,0, eine durchschnittliche Teilchengröße von 21,3 nm und ein durchschnittliches Teilchenvolumen von 2100 nm3 auf Ferner wurde in dem Transferprozess die Erwärmungsbedingung derart angepasst, dass die spezifische BET-Oberfläche 3,6 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 3 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,9 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 3.0, an average particle size of 21.3 nm and an average particle volume of 2100 nm 3 in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.6 m 2 /g. Except for the above points, a magnetic recording medium of Example 3 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm.

[Beispiel 4][Example 4]

In dem Aufbringungsprozess wurde ein Magnetaufzeichnungsmedium aus Beispiel 4 auf die gleiche Weise wie bei Beispiel 1 oben erhalten, mit der Ausnahme, dass die durchschnittliche Dicke der Magnetschicht 90 nm betrug. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,9 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the application process, a magnetic recording medium of Example 4 was obtained in the same manner as Example 1 above except that the average thickness of the magnetic layer was 90 nm. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm.

[Beispiel 5][Example 5]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 2,9, eine durchschnittliche Teilchengröße von 20,9 nm und ein durchschnittliches Teilchenvolumen von 2050 nm3 auf Ferner betrug die Koerzitivität Hc1 in den Aufbringungsprozess 2980 Oe. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 5 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,9 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 2.9, an average particle size of 20.9 nm and an average particle volume of 2050 nm 3 the coercivity Hc1 in the deposition process is 2980 Oe. Except for the above points, a magnetic recording medium of Example 5 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm.

[Beispiel 6][Example 6]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wurden ε-Eisenoxidteilchenpulver (sphärisch, durchschnittliches Aspektverhältnis: 1,3, durchschnittliche Teilchengröße: 15,7 nm, Teilchenvolumen: 2050 nm3) als Magnetpulver verwendet. Außerdem betrug in dem Aufbringungsprozess dieKoerzitivität Hc1 2850 Oe und betrug dieKoerzitivitätHc2 2020 Oe. Femer wurde in dem Transferprozess die Wärmebedingung derart angepasst, dass die spezifische BET-Oberfläche 3,6 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 6 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 2 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, ε-iron oxide particle powders (spherical, average aspect ratio: 1.3, average particle size: 15.7 nm, particle volume: 2050 nm 3 ) were used as magnetic powder. Also, in the deposition process, the coercivity Hc1 was 2850 Oe and the coercivity Hc2 was 2020 Oe. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.6 m 2 /g. Except for the above points, a magnetic recording medium of Example 6 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 2 nm and a magnetic layer PSD of 2.1 µm.

[Beispiel 7][Example 7]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wurden Kobaltferritpulver (kubisch, durchschnittliches Aspektverhältnis: 1,1, durchschnittliche Teilchengröße: 12,6 nm, Teilchenvolumen: 2030 nm3) als Magnetpulver verwendet. Außerdem betrug in dem Aufbringungsprozess dieKoerzilivität Hc1 2800 Oe und betrug dieKoerzitivitätHc2 2020 Oe. Femer wurde in dem Transferprozess die Wärmebedingung derart angepasst, dass die spezifische BET-Oberfläche 3,6 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 7 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 2 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, cobalt ferrite powders (cubic, average aspect ratio: 1.1, average particle size: 12.6 nm, particle volume: 2030 nm 3 ) were used as the magnetic powder. Also, in the deposition process, the coercivity Hc1 was 2800 Oe and the coercivity Hc2 was 2020 Oe. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.6 m 2 /g. Except for the above points, a magnetic recording medium of Example 7 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 2 nm and a magnetic layer PSD of 2.1 µm.

[Beispiel 8][Example 8]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 2,3, eine durchschnittliche Teilchengröße von 17 nm und ein durchschnittliches Teilchenvolumen von 1400 nm3 auf Außerdem betrug in dem Aufbringungsprozess die durchschnittliche Dicke der Magnetschicht 60 nm, betrug die Koerzitivität Hc1 2550 Oe und betrug die Koerzitivität Hc2 1820 Oe. Femer wurde in dem Transferprozess die Wärmebedingung derart angepasst, dass die spezifische BET-Oberfläche 3,2 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 8 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,8 nm und eine Magnetschicht-PSD von 1,9 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 2.3, an average particle size of 17 nm and an average particle volume of 1400 nm 3 deposition process, the average thickness of the magnetic layer was 60 nm, the coercivity Hc1 was 2550 Oe, and the coercivity Hc2 was 1820 Oe. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.2 m 2 /g. Except for the above points, a magnetic recording medium of Example 8 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.8 nm and a magnetic layer PSD of 1.9 µm.

[Beispiel 9][Example 9]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhaltnis von 2,0, eine durchschnittliche Teilchengröße von 15 nm und ein durchschnittliches Teilchenvolumen von 1100 nm3 auf Außerdem betrug in dem Aufbringungsprozess die durchschnittliche Dicke der Magnetschicht 60 nm, betrug die Koerzitivität Hc1 2500 Oe und betrug die Koerzitivität Hc2 1840 Oe. Femer wurde in dem Transferprozess die Wärmebedingung derart angepasst, dass die spezifische BET-Oberfläche 3,1 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 9 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmediums eine Magnetschicht Ra von 1,75 nm und eine Magnetschicht-PSD 1,8 µm aufwies und eine halbe Breite PW50 der solitären Wellenform in der wiedergegebenen Wellenform 160 nm betrug.In the preparation process of the coating material for forming a magnetic layer, barium ferrite ( BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 2.0, an average particle size of 15 nm and an average particle volume of 1100 nm deposition process, the average thickness of the magnetic layer was 60 nm, the coercivity Hc1 was 2500 Oe, and the coercivity Hc2 was 1840 Oe. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.1 m 2 /g. Except for the above points, a magnetic recording medium of Example 9 was applied obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.75 nm and a magnetic layer PSD of 1.8 µm, and a half width PW50 of the solitary waveform in the reproduced waveform was 160 nm.

[Beispiel 10][Example 10]

Ein Magnetaufzeichnungsmedium aus Beispiel 10 wurde aufdie gleiche Weise wie bei Beispiel 1 oben erhalten, mit der Ausnahme, dass eine Medienkonfiguration 2 (Tabelle 3) eingesetzt wurde. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmediums eine MagnetschichtRa von 1,9 nm und eine Magnetschicht-PSD 2,1 µm aufwies und eine halbe Breite PW50 der solitären Wellenform in der wiedergegebenen Wellenform 175 nm betrug.A magnetic recording medium of Example 10 was obtained in the same manner as Example 1 above, except that Media Configuration 2 (Table 3) was employed. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm, and a half width PW50 of the solitary waveform in the reproduced waveform was 175 nm.

[Beispiel 11][Example 11]

Eine Medienkonfiguration 3 (Tabelle 3) wurde eingesetzt. In dem Vorbereitungsprozess des Beschichtungsmaterials für eine Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 2,6, eine durchschnittliche Teilchengröße von 18,6 nm und ein durchschnittliches Teilchenvolumen von 1600 nm3 auf. Außerdem betrug in dem Aufbringungsprozess die durchschnittliche Dicke der Magnetschicht 60 nm, betrug die Koerzitivität Hc1 2920 Oe und betrug die Koerzitivität Hc2 1920 Oe. Die durchschnittliche Banddicke betrug 5,2 µm. Ferner wurde in dem Transferprozess die Wärmebedingung derart angepasst, dass die spezifische BET-Oberfläche 3,3 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 11 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,85 nm und eine Magnetschicht-PSD von 2,0 µm aufwies.A media configuration 3 (Table 3) was employed. In the preparation process of the coating material for a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 2.6, an average particle size of 18.6 nm and an average particle volume of 1600 nm 3 . Also, in the deposition process, the average thickness of the magnetic layer was 60 nm, the coercivity Hc1 was 2920 Oe, and the coercivity Hc2 was 1920 Oe. The average tape thickness was 5.2 µm. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.3 m 2 /g. Except for the above points, a magnetic recording medium of Example 11 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.85 nm and a magnetic layer PSD of 2.0 µm.

[Beispiel 12][Example 12]

Eine Medienkonfiguration 4 (Tabelle 3) wurde eingesetzt. In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 2,3, eine durchschnittliche Teilchengröße von 17 nm und ein durchschnittliches Teilchenvolumen von 1400 nm3 auf. Außerdem betrug in dem Aufbringungsprozess die durchschnittliche Dicke der Magnetschicht 60 nm, betrug die Koerzitivität Hc1 2550 Oe und betrug die Koerzitivität Hc2 1820 Oe. Die durchschnittliche Banddicke betrug 5,2 µm. Ferner wurde in dem Transferprozess die Wärmebedingung derart angepasst, dass die spezifische BET-Oberfläche 3,6 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 12 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,8 nm und eine Magnetschicht-PSD von 1,9 µm aufwies.A media configuration 4 (Table 3) was employed. In the preparation process of the coating material for forming a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 2.3, an average particle size of 17 nm, and an average particle volume of 1400 nm 3 . Also, in the deposition process, the average thickness of the magnetic layer was 60 nm, the coercivity Hc1 was 2550 Oe, and the coercivity Hc2 was 1820 Oe. The average tape thickness was 5.2 µm. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.6 m 2 /g. Except for the above points, a magnetic recording medium of Example 12 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.8 nm and a magnetic layer PSD of 1.9 µm.

[Beispiel 13][Example 13]

Eine Medienkonfiguration 5 (Tabelle 3) wurde eingesetzt. In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 2,3, eine durchschnittliche Teilchengröße von 17 nm und ein durchschnittliches Teilchenvolumen von 1400 nm3 auf. Außerdem betrug in dem Aufbringungsprozess die durchschnittliche Dicke der Magnetschicht 60 nm, betrug die Koerzitivität Hc1 2550 Oe und betrug die Koerzitivität Hc2 1820 Oe. Die durchschnittliche Banddicke betrug 4,5 µm. Ferner wurde in dem Transferprozess die Wärmebedingung derart angepasst, dass die spezifische BET-Oberfläche 3,3 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 13 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,8 nm und eine Magnetschicht-PSD von 1,9 µm aufwies.A media configuration 5 (Table 3) was employed. In the preparation process of the coating material for forming a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 2.3, an average particle size of 17 nm, and an average particle volume of 1400 nm 3 . Also, in the deposition process, the average thickness of the magnetic layer was 60 nm, the coercivity Hc1 was 2550 Oe, and the coercivity Hc2 was 1820 Oe. The average tape thickness was 4.5 µm. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.3 m 2 /g. Except for the above points, a magnetic recording medium of Example 13 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.8 nm and a magnetic layer PSD of 1.9 µm.

[Beispiel 14][Example 14]

Eine Medienkonfiguration 6 (Tabelle 3) wurde eingesetzt. In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 2,0, eine durchschnittliche Teilchengröße von 15 nm und ein durchschnittliches Teilchenvolumen von 1100 nm3 auf. Außerdem betrug in dem Aufbringungsprozess die durchschnittliche Dicke der Magnetschicht 60 nm, betrug die Koerzitivität Hc1 2500 Oe und betrug die Koerzitivität Hc2 1840 Oe. Die durchschnittliche Banddicke betrug 4,5 µm. Ferner wurde in dem Transferprozess die Wärmebedingung derart angepasst, dass die spezifische BET-Oberfläche 3,0 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 14 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,75 nm und eine Magnetschicht-PSD von 1,8 µm aufwies.A media configuration 6 (Table 3) was employed. In the preparation process of the coating material for forming a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 2.0, an average particle size of 15 nm, and an average particle volume of 1100 nm 3 . Also, in the deposition process, the average thickness of the magnetic layer was 60 nm, the coercivity Hc1 was 2500 Oe, and the coercivity Hc2 was 1840 Oe. The average tape thickness was 4.5 µm. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.0 m 2 /g. Except for the above points, a magnetic recording medium of Example 14 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.75 nm and a magnetic layer PSD of 1.8 µm.

[Beispiel 15][Example 15]

In dem Aufbringungsprozess betrug die durchschnittliche Dicke der Magnetschicht 90 nm, betrug die Koerzitivität Hc1 990 Oe und betrug die Koerzitivität Hc2 1500 Oe. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 15 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,85 nm und eine Magnetschicht-PSD von 2,0 µm aufwies.In the deposition process, the average thickness of the magnetic layer was 90 nm, the coercivity Hc1 was 990 Oe, and the coercivity Hc2 was 1500 Oe. Except for the above points, a magnetic recording medium of Example 15 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.85 nm and a magnetic layer PSD of 2.0 µm.

[Beispiel 16][Example 16]

In dem Aufbringungsprozess betrug die Koerzitivität Hc1 2690 Oe und betrug die Koerzitivität Hc2 2150 Oe. Mit Ausnahme der obigen Punkte wurde das Magnetaufzeichnungsmedium aus Beispiel 16 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine MagnetschichtRa von 1,85 nm und eine Magnetschicht-PSD von 2,0 µm aufwies.In the deposition process, the coercivity Hc1 was 2690 Oe and the coercivity Hc2 was 2150 Oe. Except for the above points, the magnetic recording medium of Example 16 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.85 nm and a magnetic layer PSD of 2.0 µm.

[Beispiel 17][Example 17]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wurden ε-Eisenoxidteilchenpulver (sphärisch, durchschnittliches Aspektverhältnis: 1,3, durchschnittliche Teilchengröße: 15,7 nm, Teilchenvolumen: 2050 nm3) als Magnetpulver verwendet. Außerdem betrug in dem Aufbringungsprozess die durchschnittliche Dicke der Magnetschicht 90 nm, betrug die Koerzitivität Hc1 2900 Oe und betrug die Koerzitivität Hc2 1950 Oe. Femer wurde in dem Transferprozess die Wärmebedingung derart angepasst, dass die spezifische BET-Oberfläche 3,3 m2/g betrug. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 17 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 2 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, ε-iron oxide particle powders (spherical, average aspect ratio: 1.3, average particle size: 15.7 nm, particle volume: 2050 nm 3 ) were used as magnetic powder. Also, in the deposition process, the average thickness of the magnetic layer was 90 nm, the coercivity Hc1 was 2900 Oe, and the coercivity Hc2 was 1950 Oe. Further, in the transfer process, the heating condition was adjusted such that the BET specific surface area was 3.3 m 2 /g. Except for the above points, a magnetic recording medium of Example 17 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 2 nm and a magnetic layer PSD of 2.1 µm.

[Beispiel 18][Example 18]

Durch Ändern der Bedingungen des Kalandrierungsprozesses wurde die spezifische BET-Oberfläche des erhaltenen Magnetaufzeichnungsmediums auf 2,5 m2/g eingestellt, wurde das Reibungskoeffizientenverhältnis µC(1000)/µC(5) auf 1,8 eingestellt, wurde die Magnetschicht Ra auf 1,6 nm eingestellt und wurde die Magnetschicht-PSD auf 1,7 µm eingestellt.By changing the calendering process conditions, the BET specific surface area of the obtained magnetic recording medium was adjusted to 2.5 m 2 /g, the friction coefficient ratio µC(1000)/µC(5) was adjusted to 1.8, the magnetic layer Ra was adjusted to 1, 6 nm and the magnetic layer PSD was adjusted to 1.7 µm.

[Beispiel 19][Example 19]

Durch Ändern der Bedingungen des Kalandrierungsprozesses wurde die spezifische BET-Oberfläche des erhaltenen Magnetaufzeichnungsmediums auf 4,2 m2/g eingestellt, wurde das Reibungskoeffizientenverhältnis µC(1000)/µC(5) auf 1,1 eingestellt, wurde die Magnetschicht Ra auf 2,4 nm eingestellt und wurde die Magnetschicht-PSD auf 2,5 µm eingestellt. Die halbe Breite PW50 der solitären Wellenform in der wiedergegebenen Wellenform betrug 175 nm.By changing the calendering process conditions, the BET specific surface area of the obtained magnetic recording medium was adjusted to 4.2 m 2 /g, the friction coefficient ratio µC(1000)/µC(5) was adjusted to 1.1, the magnetic layer Ra was adjusted to 2, 4 nm and the magnetic layer PSD was adjusted to 2.5 µm. The half-width PW50 of the solitary waveform in the reproduced waveform was 175 nm.

[Vergleichsbeispiel 1][Comparative Example 1]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 3,5, eine durchschnittliche Teilchengröße von 23,6 nm und ein durchschnittliches Teilchenvolumen von 2450 nm3 auf Außerdem betrug in dem Aufbringungsprozess die durchschnittliche Dicke der Magnetschicht 85 nm und betrug die Koerzitivität Hc1 2820 Oe. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Vergleichsbeispiel 1 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,9 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 3.5, an average particle size of 23.6 nm and an average particle volume of 2450 nm 3 in the deposition process, the average thickness of the magnetic layer was 85 nm and the coercivity Hc1 was 2820 Oe. Except for the above points, a magnetic recording medium of Comparative Example 1 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm.

[Vergleichsbeispiel 2][Comparative Example 2]

In dem Aufbringungsprozess betrug die durchschnittliche Dicke der Magnetschicht 100 nm. Mit Ausnahme des obigen Punktes wurde ein Magnetaufzeichnungsmedium aus Vergleichsbeispiel 2 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,9 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the deposition process, the average thickness of the magnetic layer was 100 nm. Except for the above point, a magnetic recording medium of Comparative Example 2 was obtained in the same manner as Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm.

[Vergleichsbeispiel 3][Comparative Example 3]

In dem Aufbringungsprozess betrug die durchschnittliche Dicke der Magnetschicht 85 nm, betrug die Koerzitivität Hc1 2500 Oe und betrug die Koerzitivität Hc2 2100 Oe. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Vergleichsbeispiel 3 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,9 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the deposition process, the average thickness of the magnetic layer was 85 nm, the coercivity Hc1 was 2500 Oe, and the coercivity Hc2 was 2100 Oe. Except for the above points, a magnetic recording medium of Comparative Example 3 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm.

[Vergleichsbeispiel 4][Comparative Example 4]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wiesen Bariumferrit(BaFe12O19)-Teilchen in der ersten Zusammensetzung ein durchschnittliches Pulveraspektverhältnis von 3,0, eine durchschnittliche Teilchengröße von 21,3 nm und ein durchschnittliches Teilchenvolumen von 2090 nm3 auf Außerdem betrug die Koerzitivität Hc1 in den Aufbringungsprozess 3100 Oe. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Vergleichsbeispiel 4 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,9 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, barium ferrite (BaFe 12 O 19 ) particles in the first composition had an average powder aspect ratio of 3.0, an average particle size of 21.3 nm, and an average particle volume of 2090 nm 3 the coercivity Hc1 in the deposition process is 3100 Oe. Except for the above points, a magnetic recording medium of Comparative Example 4 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm.

[Vergleichsbeispiel 5][Comparative Example 5]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wurden ε-Eisenoxidteilchenpulver (sphärisch, durchschnittliches Aspektverhältnis: 1,3, durchschnittliche Teilchengröße: 15,7 nm, Teilchenvolumen: 2050 nm3) als Magnetpulver verwendet. Außerdem betrug in dem Aufbringungsprozess die Koerzitivität Hc1 2550 Oe und betrug die Koerzitivität Hc2 2080 Oe. Mit Ausnahme der obigen Punkte wurde das Magnetaufzeichnungsmedium aus Vergleichsbeispiel 5 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,9 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, ε-iron oxide particle powders (spherical, average aspect ratio: 1.3, average particle size: 15.7 nm, particle volume: 2050 nm 3 ) were used as magnetic powder. Also, in the deposition process, the coercivity Hc1 was 2550 Oe and the coercivity Hc2 was 2080 Oe. Except for the above points, the magnetic recording medium of Comparative Example 5 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm.

[Vergleichsbeispiel 6][Comparative Example 6]

In dem Vorbereitungsprozess des Beschichtungsmaterials zum Bilden einer Magnetschicht wurden Kobaltferritpulver (kubisch, durchschnittliches Aspektverhältnis: 1,1, durchschnittliche Teilchengröße: 12,6 nm, Teilchenvolumen: 2030 nm3) als Magnetpulver verwendet. Außerdem betrug in dem Aufbringungsprozess die Koerzitivität Hc1 2450 Oe und betrug die Koerzitivität Hc2 2080 Oe. Mit Ausnahme der obigen Punkte wurde ein Magnetaufzeichnungsmedium aus Beispiel 6 auf die gleiche Weise wie bei Beispiel 1 oben erhalten. Es wird angemerkt, dass das erhaltene Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,9 nm und eine Magnetschicht-PSD von 2,1 µm aufwies.In the preparation process of the coating material for forming a magnetic layer, cobalt ferrite powders (cubic, average aspect ratio: 1.1, average particle size: 12.6 nm, particle volume: 2030 nm 3 ) were used as the magnetic powder. Also, in the deposition process, the coercivity Hc1 was 2450 Oe and the coercivity Hc2 was 2080 Oe. Except for the above points, a magnetic recording medium of Example 6 was obtained in the same manner as in Example 1 above. It is noted that the obtained magnetic recording medium had a magnetic layer Ra of 1.9 nm and a magnetic layer PSD of 2.1 µm.

[Vergleichsbeispiel 7][Comparative Example 7]

Durch Anpassen des Additivs für die Magnetschicht wies ein erhaltenes Magnetaufzeichnungsmedium eine MagnetschichtRa von 2,55 nm und eine Magnetschicht-PSD von 3,2 µm auf Es wird angemerkt, dass die spezifische BET-Oberfläche 3,7 m2/g betrug und das Reibungskoeffizientenverhältnis µC(1000)/µC(5) 1,1 betrug.By adjusting the additive for the magnetic layer, an obtained magnetic recording medium had a magnetic layer Ra of 2.55 nm and a magnetic layer PSD of 3.2 µm. It is noted that the BET specific surface area was 3.7 m 2 /g and the coefficient of friction ratio µC(1000)/µC(5) was 1.1.

[Vergleichsbeispiel 8][Comparative example 8]

Durch Anpassen des Additivs für die Magnetschicht wies ein erhaltenes Magnetaufzeichnungsmedium eine MagnetschichtRa von 1,66 nm und eine Magnetschicht-PSD von 1,7 µm auf Es wird angemerkt, dass die spezifische BET-Oberfläche 3,4 m2/g betrug und das Reibungskoeffizientenverhältnis µC(1000)/µC(5) 2,4 betrug.By adjusting the additive for the magnetic layer, an obtained magnetic recording medium had a magnetic layer Ra of 1.66 nm and a magnetic layer PSD of 1.7 µm. It is noted that the BET specific surface area was 3.4 m 2 /g and the coefficient of friction ratio µC(1000)/µC(5) was 2.4.

[Vergleichsbeispiel 9][Comparative Example 9]

Durch Ändern der Bedingungen des Kalandrierungsprozesses wies ein erhaltenes Magnetaufzeichnungsmedium eine Magnetschicht Ra von 1,3 nm und eine Magnetschicht-PSD von 1,4 µm auf Es wird angemerkt, dass die spezifische BET-Oberfläche 2,4 m2/g betrug und das Reibungskoeffizientenverhältnis µC(1000)/µC(5) 2,4 betrug.By changing the calendering process conditions, an obtained magnetic recording medium had a magnetic layer Ra of 1.3 nm and a magnetic layer PSD of 1.4 µm. It is noted that the BET specific surface area was 2.4 m 2 /g and the coefficient of friction ratio µC(1000)/µC(5) was 2.4.

[Auswertung][Evaluation]

Die Magnetaufzeichnungsmedien aus Beispielen 1 bis 19 und Vergleichsbeispielen 1 bis 9 wurden der folgenden Auswertung unterzogen.The magnetic recording media of Examples 1 to 19 and Comparative Examples 1 to 9 were subjected to the following evaluation.

(C/N)(C/N)

Zuerst wurde ein Schleifentester (hergestellt durch Microphysics Co., Ltd.) verwendet, um wiedergegebene Signale der Magnetaufzeichnungsmedien zu erfassen. Die Bedingungen zum Erfassen der wiedergegebenen Signale sind wie folgt.
Kopf: GMR-Kopf
Rate: 2 m/s
Wiedergegebenes Signal: Einzelaufzeichnungsfrequenz (10 MHz)
Aufzeichnungsstrom: Optimaler Aufzeichnungsstrom
First, a loop tester (manufactured by Microphysics Co., Ltd.) was used to detect reproduced signals of the magnetic recording media. The conditions for capturing the reproduced signals are as follows.
Head: GMR head
Rate: 2m/s
Played signal: single recording frequency (10MHz)
Recording current: Optimum recording current

Als Nächstes wurden die wiedergegebenen Signale in einen Spektrumanalysator (Spektrumanalyse) eingegeben. Ein wiedergegebener Ausgabewert von 10 MHz und ein durchschnittlicher Rauschwert von 10 MHz ± 1 MHz wurden gemessen und die Differenz zwischen ihnen wurde als C/N definiert. Die Ergebnisse sind in Tabelle 2 in der Form von Werten relativ zu dem C/N des Vergleichsbeispiels 1 als 0 dB gezeigt. Es wird angemerkt, dass, wenn das C/N 1,5 dB oder mehr beträgt, es möglich ist, ein Medium zu erzielen, das kurzen Wellenlängen und Schmalspurdichten standhalten kann. Next, the reproduced signals were input to a spectrum analyzer (spectrum analysis). A reproduced output value of 10MHz and an average noise value of 10MHz ± 1MHz were measured and the difference between them was defined as C/N. The results are shown in Table 2 in the form of values relative to the C/N of Comparative Example 1 as 0 dB. It is noted that when the C/N is 1.5 dB or more, it is possible to obtain a medium that can withstand short wavelengths and narrow gauge densities.

Eine Auswertung der Bewegungsstabilität wird zum Beispiel durch Verwenden einer in 8 veranschaulichten Aufzeichnung-und-Wiedergabe-Einrichtung durchgeführt. Zuerst werden Zufallsdaten in dem gesamten Datengebiet (über die gesamte Breite und die gesamte Länge des Bandes) des Bandes aufgezeichnet und es wird bestätigt, ob die Daten reproduzierbar sind. Danach wird eine Hin-und-Her-Bewegung an einem speziellen Bereich des Bandes (bei diesem Beispiel einer Position bis zu 20 m von dem Start des Datenaufzeichnungsbereichs auf dem Band) 20.000-mal durchgeführt. Nach den Hin-und-Her-Bewegungen werden die in dem gesamten Datengebiet (über die gesamte Breite und die gesamte Länge des Bandes) aufgezeichneten Daten wieder wiedergegeben, um zu bestätigen, ob die Daten reproduzierbar sind. Bänder, von denen die Daten reproduzierbar sind, werden als eine gute Bewegungsstabilität aufweisend definiert. Bänder mit einer schlechten Bewegungsstabilität verursachen Probleme, wie etwa nicht reproduzierbare Servosignale, eine höhere Fehlerrate und Schwierigkeiten beim Wiedergaben aller Daten.An evaluation of the movement stability is made, for example, by using an in 8th illustrated recording and reproducing device performed. First, random data is recorded in the entire data area (over the entire width and length of the tape) of the tape, and it is confirmed whether the data is reproducible. Thereafter, reciprocating movement is performed on a specific area of the tape (in this example, a position up to 20 m from the start of the data recording area on the tape) 20,000 times. After the to-and-fro movements, the data recorded in the entire data area (over the entire width and length of the tape) is played back to confirm whether the data is reproducible. Tapes from which the data is reproducible are defined as having good motion stability. Tapes with poor motion stability cause problems such as non-reproducible servo signals, a higher error rate, and difficulty in reproducing all of the data.

[Tabelle 2] Magnetpulver Band Ergebnis der Auswertung Nr. Zusammensetzung Form des Teilchens Durchschnittliches Aspektverhältnis Durchschnittliche Teilchengröße [nm] Teilchenvolumen [nm3] Medienkonfiguration Durchschnittliche Dicke der Unterschicht [µm] Durchschnittliche Dicke des Bandes [µm] Durchschnittliche Dicke der Magnetschicht [nm] Hc1 [Oc] Hc2 [Oc] Hc2 / Hc1 BETBand [m2/g] Reibungskoeffizientenverhältnis µC(1000)/µC(5) Magnetschicht Ra [nm] Magnetschicht ≤ PSD(5µm) [µm] C/N [dB] Bewegungsstabilität Beispiel 1 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 80 2750 2000 0,73 3,5 1,2 1,9 2,1 2,0 Zulässig Beispiel 2 2A BaFe12O19 plattenartig 2,6 18,6 1600 1 1,1 5.6 60 2920 1920 0,66 3,3 1,3 1,85 2 3,8 Zulässig Beispiel 3 3A BaFe12O19 plattenartig 3 21,3 2100 1 1,1 5,6 80 2750 2000 0,73 3,6 1,2 1,9 2,1 1,7 Zulässig Beispiel 4 1A BaFe12O19 plattenartig 2,8 211,3 1950 1 1,1 5,6 90 2750 2000 0,73 3,5 1,3 1,9 2,1 1,6 Zulässig Beispiel 5 4A BaFe12O19 plattenartig 2,9 211,9 2050 1 1,1 5,6 80 2980 2000 0,67 3,5 1,2 1,9 2,1 2,6 Zulässig Beispiel 6 7A ε-Fe2O3 sphärisch 1,3 15,7 2050 1 1,1 5,6 80 2850 2020 0,71 3,6 1,3 2 2,1 2,1 Zulässig Beispiel 7 8A CoO(Fe2O3) kubisch 1,1 12,6 2030 1 1,1 5,6 80 2800 2020 0,72 3,6 1,3 2 2,1 1,9 Zulässig Beispiel 8 5A BaFe12O19 plattenartie 2,3 17 1400 1 1,1 5,6 60 2550 1820 0,71 3,2 1,3 1,8 1,9 3 Zulässig Beispiel 9 6A BaFe12O19 plattenartig 2 15 1100 1 1,1 5,6 60 2500 1840 0,74 3,1 1,4 1,75 1,8 3,3 Zulässig Beispiel 10 1A BaFe12O19 plattenartig 2,8 20,3 1950 2 1,1 5,6 80 2750 2000 0,73 3,5 1,2 1,9 2,1 1,6 Zulässig Beispiel 11 2A BaFe12O19 plattenartig 2,6 18,6 1600 3 1,1 5,2 60 2920 1920 0,66 3,3 1,3 1,85 2 3,3 Zulässig Beispiel 12 5A BaFe12O19 plattenartig 2,3 17 1400 4 1,1 5,2 60 2550 1820 0,71 3,3 1,3 1,8 1,9 2,5 Zulässig Beispiel 13 5A BaFe12O19 plattenartig 2,3 17 1400 5 1,0 4,5 60 2550 1820 0,71 3,3 1,3 1,8 1,9 2 Zulässig Beispiel 14 6A BaFe12O19 plattenartig 2 15 1100 6 1,0 4,5 60 2500 1840 0,74 3 1,4 1,75 1,8 2,3 Zulässig Beispiel 15 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 90 2990 1500 0,5 3,5 1,2 1,85 2 3 Zulässig Beispiel 16 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 80 2690 2150 0,8 3,5 1,2 1,85 2 1,3 Zulässig Beispiel 17 7A ε-Fe2O3 sphärisch 1,3 15,7 2050 1 1,1 5,6 90 2900 1950 0,67 3,3 1,3 2 2,1 2,5 Zulässig Beispiel 18 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 80 2750 2000 0,73 2,5 1,8 1,6 1,7 3 Zulässig Beispiel 19 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 80 2750 2000 0,73 4,2 1,1 2,4 2,5 1,2 Zulässig Vergleichsbeispiel 1 2B BaFe12O19 plattenartig 3,5 23,6 2450 1 1,1 5,6 85 2820 2000 0,71 3,7 1,1 1,9 2,1 0 Zulässig Vergleichsbeispiel 2 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 100 2750 2000 0,73 3,5 1,2 1,9 2,1 1 Zulässig Vergleichsbeispiel 3 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 85 2500 2100 0,84 3,5 1,2 1,9 2,1 0,3 Zulässig Vergleichsbeispiel 4 9A BaFe12O19 plattenartig 3,0 21,3 2090 1 1,1 5,6 80 3100 2000 0,65 3,5 1,2 1,9 2,1 0,9 Zulässig Vergleichsbeispiel 5 7A ε-Fe2O3 sphärisch 1,3 15,7 2050 1 1,1 5,6 80 2550 2080 0,82 3,5 1,2 1,9 2,1 0,7 Zulässig Vergleichsbeispiel 6 8A CoO(Fe2O3) kubisch 1,1 12,6 2030 1 1,1 5,6 80 2450 2080 0,85 3,5 1,2 1,9 2,1 0,6 Zulässig Vergleichsbeispiel 7 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 80 2750 2000 0,73 3,7 1,1 2,55 3,2 0,2 Zulässig Vergleichsbeispiel 8 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 80 2750 2000 0,73 3,4 2,4 1,6 1,7 2,6 Nicht zulässig Vergleichsbeispiel 9 1A BaFe12O19 plattenartig 2,8 20,3 1950 1 1,1 5,6 80 2750 2000 0,73 2,4 2,4 1,3 1,4 3,2 Nicht zulässig [Table 2] magnetic powder tape Result of the evaluation No. composition shape of the particle Average aspect ratio Average particle size [nm] particle volume [nm 3 ] media configuration Average thickness of the sub-layer [µm] Average tape thickness [µm] Average thickness of the magnetic layer [nm] Hc1 [Oc] Hc2 [Oc] Hc2 / Hc1 BET tape [m2/g] Friction coefficient ratio µC (1000) /µC (5) Magnetic layer Ra [nm] Magnetic layer ≤ PSD (5µm) [µm] C/N [dB] motion stability example 1 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 80 2750 2000 0.73 3.5 1.2 1.9 2.1 2.0 Allowed example 2 2A BaFe12O19 _ plate-like 2.6 18.6 1600 1 1.1 5.6 60 2920 1920 0.66 3.3 1.3 1.85 2 3.8 Allowed Example 3 3A BaFe12O19 _ plate-like 3 21.3 2100 1 1.1 5.6 80 2750 2000 0.73 3.6 1.2 1.9 2.1 1.7 Allowed example 4 1A BaFe12O19 _ plate-like 2.8 211.3 1950 1 1.1 5.6 90 2750 2000 0.73 3.5 1.3 1.9 2.1 1.6 Allowed Example 5 4A BaFe12O19 _ plate-like 2.9 211.9 2050 1 1.1 5.6 80 2980 2000 0.67 3.5 1.2 1.9 2.1 2.6 Allowed Example 6 7A ε-Fe 2 O 3 spherical 1.3 15.7 2050 1 1.1 5.6 80 2850 2020 0.71 3.6 1.3 2 2.1 2.1 Allowed Example 7 8A CoO( Fe2O3 ) cubic 1.1 12.6 2030 1 1.1 5.6 80 2800 2020 0.72 3.6 1.3 2 2.1 1.9 Allowed example 8 5A BaFe12O19 _ platterartie 2.3 17 1400 1 1.1 5.6 60 2550 1820 0.71 3.2 1.3 1.8 1.9 3 Allowed example 9 6A BaFe12O19 _ plate-like 2 15 1100 1 1.1 5.6 60 2500 1840 0.74 3.1 1.4 1.75 1.8 3.3 Allowed Example 10 1A BaFe12O19 _ plate-like 2.8 20.3 1950 2 1.1 5.6 80 2750 2000 0.73 3.5 1.2 1.9 2.1 1.6 Allowed Example 11 2A BaFe12O19 _ plate-like 2.6 18.6 1600 3 1.1 5.2 60 2920 1920 0.66 3.3 1.3 1.85 2 3.3 Allowed Example 12 5A BaFe12O19 _ plate-like 2.3 17 1400 4 1.1 5.2 60 2550 1820 0.71 3.3 1.3 1.8 1.9 2.5 Allowed Example 13 5A BaFe12O19 _ plate-like 2.3 17 1400 5 1.0 4.5 60 2550 1820 0.71 3.3 1.3 1.8 1.9 2 Allowed Example 14 6A BaFe12O19 _ plate-like 2 15 1100 6 1.0 4.5 60 2500 1840 0.74 3 1.4 1.75 1.8 2.3 Allowed Example 15 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 90 2990 1500 0.5 3.5 1.2 1.85 2 3 Allowed Example 16 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 80 2690 2150 0.8 3.5 1.2 1.85 2 1.3 Allowed Example 17 7A ε-Fe 2 O 3 spherical 1.3 15.7 2050 1 1.1 5.6 90 2900 1950 0.67 3.3 1.3 2 2.1 2.5 Allowed Example 18 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 80 2750 2000 0.73 2.5 1.8 1.6 1.7 3 Allowed Example 19 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 80 2750 2000 0.73 4.2 1.1 2.4 2.5 1.2 Allowed Comparative example 1 2 B BaFe12O19 _ plate-like 3.5 23:6 2450 1 1.1 5.6 85 2820 2000 0.71 3.7 1.1 1.9 2.1 0 Allowed Comparative example 2 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 100 2750 2000 0.73 3.5 1.2 1.9 2.1 1 Allowed Comparative example 3 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 85 2500 2100 0.84 3.5 1.2 1.9 2.1 0.3 Allowed Comparative example 4 9A BaFe12O19 _ plate-like 3.0 21.3 2090 1 1.1 5.6 80 3100 2000 0.65 3.5 1.2 1.9 2.1 0.9 Allowed Comparative example 5 7A ε-Fe 2 O 3 spherical 1.3 15.7 2050 1 1.1 5.6 80 2550 2080 0.82 3.5 1.2 1.9 2.1 0.7 Allowed Comparative example 6 8A CoO( Fe2O3 ) cubic 1.1 12.6 2030 1 1.1 5.6 80 2450 2080 0.85 3.5 1.2 1.9 2.1 0.6 Allowed Comparative example 7 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 80 2750 2000 0.73 3.7 1.1 2.55 3.2 0.2 Allowed Comparative example 8 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 80 2750 2000 0.73 3.4 2.4 1.6 1.7 2.6 Not permitted Comparative example 9 1A BaFe12O19 _ plate-like 2.8 20.3 1950 1 1.1 5.6 80 2750 2000 0.73 2.4 2.4 1.3 1.4 3.2 Not permitted

Tabelle 2 zeigt die Magneteigenschaften und die Auswertungsergebnisse der Magnetaufzeichnungsmedien der Beispiele 1 bis 19 und der Vergleichsbeispiele 1 bis 9.Table 2 shows the magnetic properties and the evaluation results of the magnetic recording media of Examples 1 to 19 and Comparative Examples 1 to 9.

[Tabelle 3] Bandkonfiguration Durchschnittliche Dicke des Magnetbands [µm] Anzahl an Servospuren Durchschnittliche Dicke des Basisfilms [µm] W/L W [µm] L [µm] Medienkonfiguration 1 Magnetschicht/Unterschicht/Basisfilm/Rückschicht 5,6 5 4,0 50 2,9 0,052 Medienkonfiguration 2 Magnetschicht/Unterschicht/ Basisfilm/Rückschicht 5,6 5 4,0 30 1,5 0,048 Medienkonfiguration 3 Magnetschicht/Unterschicht/ Basisfilm/Rückschicht 5,2 5 3,6 23 0,95 0,042 Medienkonfiguration 4 Magnetschicht/Unterschicht/Basisfilm/Rückschicht 5,2 9 3,6 13 0,51 0,039 Medienkonfiguration 5 Magnetschicht/Unterschicht/Basisfilm/Rückschicht 4,5 9 3,1 21 0,83 0,039 Medienkonfiguration 6 Magnetschicht/Unterschicht/Basisfilm/Rückschicht 4,5 9 3,1 16 0,63 0,038 [Table 3] band configuration Average thickness of the magnetic tape [µm] Number of servo tracks Average thickness of base film [µm] w/l W [µm] L [µm] Media configuration 1 magnetic layer/underlayer/base film/back layer 5.6 5 4.0 50 2.9 0.052 media configuration 2 Magnetic layer/underlayer/base film/back layer 5.6 5 4.0 30 1.5 0.048 media configuration 3 Magnetic layer/underlayer/base film/back layer 5.2 5 3.6 23 0.95 0.042 media configuration 4 magnetic layer/underlayer/base film/back layer 5.2 9 3.6 13 0.51 0.039 Media configuration 5 magnetic layer/underlayer/base film/back layer 4.5 9 3.1 21 0.83 0.039 Media configuration 6 magnetic layer/underlayer/base film/back layer 4.5 9 3.1 16 0.63 0.038

Tabelle 3 zeigt die Medienkonfigurationen, die in Beispielen 1 bis 19 und Vergleichsbeispielen 1 bis 9 eingesetzt werden.Table 3 shows the media configurations used in Examples 1-19 and Comparative Examples 1-9.

Wie in Tabellen 2 und 3 gezeigt, beträgt in Beispielen 1 bis 19 die durchschnittliche Dicke der Magnetschicht 90 nm oder weniger, beträgt das durchschnittliche Aspektverhältnis der Magnetpulver 1,0 oder mehr und 3,0 oder weniger, beträgt die Koerzitivität Hc1 in der senkrechten Richtung 3000 Oe oder weniger, beträgt Hc2/Hc1 0,8 oder weniger und beträgt die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 2,5 m2/g oder mehr. Daher ist es möglich, vorteilhafte elektromagnetische Umwandlungscharakteristiken (C/N) sicherzustellen, während eine vorteilhafte Bewegungsstabilität des Magnetaufzeichnungsmediums beibehalten wird. Entsprechend ist es möglich, eine zur Aufzeichnung mit hoher Dichte vorteilhafte Konfiguration zu erzielen.As shown in Tables 2 and 3, in Examples 1 to 19, the average thickness of the magnetic layer is 90 nm or less, the average aspect ratio of the magnetic powders is 1.0 or more, and 3.0 or less, the coercivity is Hc1 in the perpendicular direction 3000 Oe or less, Hc2/Hc1 is 0.8 or less, and the total BET specific surface area of the de-lubricated magnetic recording medium is 2.5 m 2 /g or more. Therefore, it is possible to ensure favorable electromagnetic conversion (C/N) characteristics while maintaining favorable moving stability of the magnetic recording medium. Accordingly, it is possible to achieve a configuration favorable for high-density recording.

Insbesondere betrug in Beispielen 1 bis 17 und 19 die spezifischeBET-Oberfläche des gesamten Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 3,0 m2/g oder mehr und dementsprechend betrug das Reibungskoeffizientenverhältnis (µB/µA) 1,4 oder weniger. Entsprechend wurde die Änderung des dynamischen Reibungskoeffizienten aufgrund einer Variation einer Zugspannung zur Zeit der Bewegung kleiner, und die Bewegung des Magnetaufzeichnungsmediums wurde im Vergleich zu dem Fall, in dem die spezifische BET-Oberfläche weniger als 3,0 m2/g betrug, stabiler gemacht.Specifically, in Examples 1 to 17 and 19, the BET specific surface area of the entire magnetic recording medium from which the lubricant was removed was 3.0 m 2 /g or more, and accordingly the coefficient of friction ratio (µB/µA) was 1.4 or less. Accordingly, the change in dynamic friction coefficient due to a variation in tension at the time of movement became smaller, and the movement of the magnetic recording medium was made more stable compared to the case where the BET specific surface area was less than 3.0 m 2 /g .

Insbesondere betrug in Beispielen 1,3 bis 7,10,15,16 und 19 die spezifische BET-Oberfläche des gesamten Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 3,5 m2/g oder mehr und dementsprechend betrug das Reibungskoeffizientenverhältnis (µB/µA) 1,3 oder weniger. Entsprechend wurde die Änderung des dynamischen Reibungskoeffizienten aufgrund einer Variation einer Zugspannung zur Zeit der Bewegung viel kleiner, und die Bewegung des Magnetaufzeichnungsmediums wurde im Vergleich zu dem Fall, in dem die spezifische BET-Oberfläche weniger als 3,5 m2/g betrug, viel stabiler gemacht. Insbesondere betrug in Beispiel 19 die spezifische BET-Oberfläche des gesamten Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 4,2 m2/g und dementsprechend betrug das Reibungskoeffizientenverhältnis (µB/µA) 1,1 oder weniger. Entsprechend wurde die Bewegung des Magnetaufzeichnungsmediums viel stabiler gemacht.Specifically, in Examples 1, 3 to 7, 10, 15, 16 and 19, the BET specific surface area of the entire magnetic recording medium from which the lubricant was removed was 3.5 m 2 /g or more, and accordingly the coefficient of friction ratio (µB/ µA) 1.3 or less. Accordingly, the change in dynamic friction coefficient due to a variation in tension at the time of movement became much smaller, and the movement of the magnetic recording medium became much compared to the case where the BET specific surface area was less than 3.5 m 2 /g made more stable. Specifically, in Example 19, the BET specific surface area of the entire magnetic recording medium from which the lubricant was removed was 4.2 m 2 /g, and accordingly the coefficient of friction ratio (µB/µA) was 1.1 or less. Accordingly, the movement of the magnetic recording medium has been made much more stable.

Femer wurde in Beispielen 1 bis 19, da das Reibungskoeffizientenverhältnis (µC(1000)/µC(5)) 1,0 oder mehr und 1,8 oder weniger betrug, die Änderung des dynamischen Reibungskoeffizienten aufgrund der mehrmaligen Bewegung kleiner und wurde das Magnetaufzeichnungsmedium stabiler gemacht.Furthermore, in Examples 1 to 19, since the friction coefficient ratio (µC(1000)/µC(5)) was 1.0 or more and 1.8 or less, the change in dynamic friction coefficient due to repeated movement became smaller and the magnetic recording medium became more stable did.

Femer war es in Beispielen 1 bis 19, da die durchschnittliche Teilchengröße der Magnetpulver 8 nm oder mehr und 22 nm oder weniger beträgt, möglich, vorteilhafte elektromagnetische Umwandlungscharakteristiken (C/N) sicherzustellen.Furthermore, in Examples 1 to 19, since the average particle size of the magnetic powders is 8 nm or more and 22 nm or less, it was possible to ensure favorable electromagnetic conversion (C/N) characteristics.

Ferner war es in Beispielen 1 bis 19, da die arithmetisch gemittelteRauigkeit Ra der Oberfläche der Magnetschicht 2,5 nm oder weniger betrug, möglich, exzellente elektromagnetische Umwandlungscharakteristiken zu erhalten. In Beispielen 1 bis 19 wurde, da die PSD bis zu der räumlichen Wellenlänge von 5 µm 2,5 µm oder weniger betrug, eine Beabstandung zwischen dem Aufzeichnung-und-Wiedergabe-Kopf zum Aufzeichnen und Wiedergeben des bandartigen Magnetaufzeichnungsmediums kleiner, wobei das Magnetaufzeichnungsmedium für eine hohe Aufzeichnungsdichte geeignet gemacht wird.Furthermore, in Examples 1 to 19, since the arithmetic mean roughness Ra of the surface of the magnetic layer was 2.5 nm or less, it was possible to obtain excellent electromagnetic conversion characteristics. In Examples 1 to 19, since the PSD was 2.5 µm or less up to the spatial wavelength of 5 µm, a spacing between the recording-and-reproducing head for recording and reproducing the tape-like magnetic recording medium became smaller, the magnetic recording medium for a high recording density is made suitable.

In Vergleichsbeispiel 1 wurde, da das durchschnittliche Aspektverhältnis der Magnetpulver größer als 3,0 war, eine Stapelung des Magnetbandes erzeugt und wurden die elektromagnetischen Umwandlungscharakteristiken verschlechtert.In Comparative Example 1, since the average aspect ratio of the magnetic powders was larger than 3.0, stacking of the magnetic tape was generated and electromagnetic conversion characteristics were deteriorated.

In Vergleichsbeispiel 2 wurden, da die durchschnittliche Dicke der Magnetschicht groß war, die elektromagnetischen Umwandlungscharakteristiken bei kurzen Wellenlängen verschlechtert.In Comparative Example 2, since the average thickness of the magnetic layer was large, electromagnetic conversion characteristics at short wavelengths were deteriorated.

In Vergleichsbeispiel 3 war der Grad einer senkrechten Orientierung gering und wurden die elektromagnetischen Umwandlungscharakteristiken verschlechtert.In Comparative Example 3, the degree of perpendicular orientation was low and electromagnetic conversion characteristics were deteriorated.

In Vergleichsbeispiel 4 wurden, da die Koerzitivität Hc1 in der senkrechten Richtung zu groß war, ungesättigte Gebiete erzeugt und wurden die elektromagnetischen Übermittlungscharakteristiken verschlechtert.In Comparative Example 4, since the coercivity Hc1 in the perpendicular direction was too large, unsaturated regions were generated and electromagnetic transmission characteristics were deteriorated.

In Vergleichsbeispielen 5 und 6 war der Grad einer senkrechten Orientierung niedrig und wurden die elektromagnetischen Umwandlungscharakteristiken verschlechtert.In Comparative Examples 5 and 6, the degree of perpendicular orientation was low and electromagnetic conversion characteristics were deteriorated.

In Vergleichsbeispiel 7 wurden die elektromagnetischen Umwandlungscharakteristiken aufgrund der Verschlechterung der Oberflächeneigenschaft der Magnetschicht verschlechtert.In Comparative Example 7, the electromagnetic conversion characteristics were deteriorated due to the deterioration of the surface property of the magnetic layer.

In Vergleichsbeispiel 8 wurden die elektromagnetischen Umwandlungscharakteristiken verbessert, aber wurde eine Bewegung des Magnetaufzeichnungsmediums aufgrund einer Zunahme der Reibung der Oberfläche der Magnetschicht unmöglich gemacht.In Comparative Example 8, the electromagnetic conversion characteristics were improved, but movement of the magnetic recording medium was made impossible due to an increase in friction of the surface of the magnetic layer.

In Vergleichsbeispiel 9 wurden die elektromagnetischen Umwandlungscharakteristiken verbessert, aber wurde eine Bewegung des Magnetaufzeichnungsmediums aufgrund einer Zunahme der Reibung der Oberfläche der Magnetschicht unmöglich gemacht.In Comparative Example 9, the electromagnetic conversion characteristics were improved, but movement of the magnetic recording medium was made impossible due to an increase in friction of the surface of the magnetic layer.

Obwohl die vorliegende Offenbarung speziell unter Bezugnahme auf die Ausführungsformen und Modifikationsbeispiele davon beschrieben wurde, ist die vorliegende Offenbarung nicht auf die obigen Ausführungsformen und dergleichen beschränkt und verschiedene Modifikationen können vorgenommen werden.Although the present disclosure has been specifically described with reference to the embodiments and modification examples thereof, the present disclosure is not limited to the above embodiments and the like, and various modifications can be made.

Zum Beispiel sind die Konfigurationen, Verfahren, Prozesse, Formen, Materialien und numerischen Werte und dergleichen, die bei den obigen Ausführungsformen und Modifikationsbeispielen davon beschrieben sind, lediglich Beispiele und unterschiedliche Konfigurationen, Verfahren, Prozesse, Formen, Materialien, numerische Werte und dergleichen können nach Bedarf verwendet werden. Insbesondere kann das Magnetaufzeichnungsmedium der vorliegenden Offenbarung Komponenten außer der Basis, der Unterschicht, der Magnetschicht, der Rückschicht und der Barriereschicht beinhalten. Außerdem sind die chemischen Formeln der Verbindungen oder dergleichen repräsentative Beispiele und sind nicht auf die oben beschriebenen Valenzen und dergleichen beschränkt, solange die Verbindungen mit den gleichen allgemeinen Namen eingesetzt werden.For example, the configurations, methods, processes, shapes, materials, and numerical values and the like described in the above embodiments and modification examples thereof are only examples, and different configurations, methods, processes, shapes, materials, numerical values and the like can be claimed be used as needed. In particular, the magnetic recording medium of the present disclosure may include components other than the base, underlayer, magnetic layer, backing layer, and barrier layer. In addition, the chemical formulas of the compounds or the like are representative examples and are not limited to the valences and the like described above as long as the compounds having the same general names are employed.

Femer können die Konfigurationen, Verfahren, Prozesse, Formen, Materialien, numerischen Werte und dergleichen der oben beschriebenen Ausführungsformen und Modifikationsbeispiele davon miteinander kombiniert werden, ohne von der Idee der vorliegenden Offenbarung abzuweichen.Furthermore, the configurations, methods, processes, shapes, materials, numerical values, and the like of the above-described embodiments and modification examples thereof can be combined with each other without departing from the gist of the present disclosure.

Femer kann in den Bereichen numerischer Werte, die in Stufen hierin beschrieben sind, der obere Grenzwert oder der untere Grenzwert des Bereichs numerischer Werte in einer beliebigen Stufe mit dem oberen Grenzwert oder dem unteren Grenzwert des Bereichs numerischer Werte in einer anderen Stufe ersetzt werden. Sofem nichts anderes angegeben ist, können die hier exemplarisch genannten Materialien allein verwendet werden oder können zwei oder mehr davon in Kombination verwendet werden.Furthermore, in the ranges of numeric values described in levels herein, the upper limit or lower limit of the range of numeric values in any level may be replaced with the upper limit or lower limit of the range of numeric values in another level. Unless otherwise specified, the materials exemplified herein may be used alone, or two or more of them may be used in combination.

Wie oben beschrieben, ist es gemäß dem Magnetaufzeichnungsmedium einer Ausführungsform der vorliegenden Offenbarung möglich, eine Aufzeichnung mit höherer Dichte zu erreichen. Es ist anzumerken, dass der Effekt der vorliegenden Offenbarung nicht darauf beschränkt ist und beliebige hier beschriebene Effekte sein kann. Femer kann die vorliegende Technologie die folgenden Konfigurationen aufweisen.

  1. (1) Ein Magnetaufzeichnungsmedium mit einer bandartigen Form, wobei das Magnetaufzeichnungsmedium Folgendes beinhaltet:
    • eine Basis, die Polyester als einen Hauptbestandteil enthält; und
    • eine Magnetschicht, die auf der Basis bereitgestellt ist, mehrere Magnetpulver beinhaltet und zum Aufzeichnen eines Datensignals konfiguriert ist, wobei
    • eine durchschnittliche Dicke des Magnetaufzeichnungsmediums 5,6 µm oder weniger beträgt,
    • eine durchschnittliche Dicke der Basis 4,2 µm oder weniger beträgt,
    • eine durchschnittliche Dicke der Magnetschicht 90 nm oder weniger beträgt,
    • ein durchschnittliches Aspektverhältnis der Magnetpulver 1,0 oder mehr bis 3,0 oder weniger beträgt,
    • eine Koerzivität in einer senkrechten Richtung 3000 Oersted oder weniger beträgt,
    • ein Verhältnis einer Koerzivität in einer longitudinalen Richtung zu einer Koerzivität in einer senkrechten Richtung 0,8 oder weniger beträgt,
    • die Magnetschicht ein Gleitmittel beinhaltet, und
    • eine gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 2,5 m2/g oder mehr beträgt.
  2. (2) Das Magnetaufzeichnungsmedium nach (1), das oben beschrieben ist, wobei die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 3,0 m2/g oder mehr beträgt.
  3. (3) Das Magnetaufzeichnungsmedium nach (1), das oben beschrieben ist, wobei die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 3,5 m2/g oder mehr beträgt.
  4. (4) Das Magnetaufzeichnungsmedium nach (1), das oben beschrieben ist, wobei die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 4,0 m2/g oder mehr betrug.
  5. (5) Das Magnetaufzeichnungsmedium nach einem von (1) bis (4), das oben beschrieben ist, wobei ein Reibungskoeffizientenverhältnis µC(1000)/µC(5) zwischen einem dynamischen Reibungskoeffizienten µC(5) und einem dynamischen Reibungskoeffizienten µC(1000) 1,0 oder mehr und 1,8 oder weniger beträgt, wobei der dynamische Reibungskoeffizient µC(5) ein dynamischer Reibungskoeffizient zwischen einer Oberfläche des Magnetaufzeichnungsmediums und einem Magnetkopf bei einer fünften Bewegung seit einem Start einer Bewegung des Magnetaufzeichnungsmediums ist, falls eine Zugspannung von 0,6 N an das Magnetaufzeichnungsmedium angelegt wird, wobei der dynamische Reibungskoeffizient µC(1000) ein dynamischer Reibungskoeffizient zwischen der Oberfläche und dem Magnetkopf bei einer 1000. Bewegung seit dem Start einer Bewegung des Magnetaufzeichnungsmediums ist, falls eine Zugspannung von 0,6 N an das Magnetaufzeichnungsmedium angelegt wird.
  6. (6) Das Magnetaufzeichnungsmedium nach einem von (1) bis (6), das oben beschrieben ist, wobei ein durchschnittlicher Teilchendurchmesser der mehreren Magnetpulver 8 nm oder mehr und 22 nm oder weniger beträgt.
  7. (7) Das Magnetaufzeichnungsmedium nach einem von (1) bis (6), das oben beschrieben ist, wobei ein durchschnittliches Teilchenvolumen der mehreren Magnetpulver 2300 nm3 oder weniger beträgt.
  8. (8) Das Magnetaufzeichnungsmedium nach einem von (1) bis (7), das oben beschrieben ist, wobei eine arithmetisch gemittelte Rauigkeit Ra einer Oberfläche der Magnetschicht 2,5 nm oder weniger beträgt, und eine PSD (Leistungsspektraldichte) bis zu einer räumlichen Wellenlänge von 5 µm 2,5 µm oder weniger beträgt.
  9. (9) Das Magnetaufzeichnungsmedium nach einem von (1) bis (8), das oben beschrieben ist, wobei die Koerzitivität in der longitudinalen Richtung 2000 Oe oder weniger beträgt.
  10. (10) Das Magnetaufzeichnungsmedium nach einem von (1) bis (9), das oben beschrieben ist, wobei die durchschnittliche Dicke des Magnetaufzeichnungsmediums 5,6 µm oder weniger beträgt.
  11. (11) Das Magnetaufzeichnungsmedium nach einem von (1) bis (10), das oben beschrieben ist, wobei die durchschnittliche Dicke der Basis 4,2 µm oder weniger beträgt.
  12. (12) Das Magnetaufzeichnungsmedium nach einem von (1) bis (11), das oben beschrieben ist, wobei die Magnetpulver Folgendes beinhalten: hexagonalen Ferrit, der Ba (Barium) und/oder Sr (Strontium) enthält; ε-Eisenoxid, das Al (Aluminium) und/oder Ga (Gallium) enthält; oder Spinell-Ferrit, der Co (Cobalt) enthält.
  13. (13) Das Magnetaufzeichnungsmedium nach einem von (1) bis (12), das oben beschrieben ist, wobei die durchschnittliche Dicke der Magnetschicht 80 nm oder weniger beträgt.
  14. (14) Das Magnetaufzeichnungsmedium nach einem von (1) bis (13), das oben beschrieben ist, wobei die durchschnittliche Dicke der Magnetschicht 60 nm oder weniger beträgt.
  15. (15) Das Magnetaufzeichnungsmedium nach einem von (1) bis (14), das oben beschrieben ist, wobei das Magnetaufzeichnungsmedium den folgenden Bedingungsausdruck (1) erfüllt: Hc2/Hc1 ≤ 0,7 (1) wobei Hc1 die Koerzitivität in der senkrechten Richtung repräsentiert und Hc2 die Koerzitivität in der longitudinalen Richtung repräsentiert.
  16. (16) Das Magnetaufzeichnungsmedium nach einem von (1) bis (15), das oben beschrieben ist, wobei die Koerzitivität in der senkrechten Richtung 2200 Oe oder mehr beträgt.
  17. (17) Das Magnetaufzeichnungsmedium nach einem von (1) bis (16), das oben beschrieben ist, wobei die Magnetschicht mehrere Servostreifen beinhaltet, die jeweils zum Aufzeichnen mehrerer Servosignale konfiguriert sind, und ein Verhältnis einer Gesamtfläche der mehreren Servostreifen zu einer Fläche einer Oberfläche der Magnetschicht 4,0 % oder weniger beträgt.
  18. (18) Das Magnetaufzeichnungsmedium nach (17), das oben beschrieben ist, wobei die Anzahl der mehreren Servostreifen 5 oder mehr beträgt.
  19. (19) Das Magnetaufzeichnungsmedium nach (17) oder (18), das oben beschrieben ist, wobei die Servostreifen jeweils eine Breite von 95 nm aufweisen.
  20. (20) Das Magnetaufzeichnungsmedium nach einem von (1) bis (19), das oben beschrieben ist, wobei die Magnetschicht zum Bilden mehrerer Aufzeichnungsspuren konfiguriert ist, und die Aufzeichnungsspuren jeweils eine Breite von 3,0 µm oder weniger aufweisen.
  21. (21) Das Magnetaufzeichnungsmedium nach einem von (1) bis (20), das oben beschrieben ist, wobei die Magnetschicht zum Aufzeichnen von Daten konfiguriert ist, um einen minimalen Wert einer Entfernung zwischen Magnetisierungsumkehrungen auf 48 nm oder weniger festzulegen.
  22. (22) Eine Magnet-Aufzeichnung-und-Wiedergabe-Einrichtung, die Folgendes beinhaltet:
    • einen Zuführungsabschnitt, der zum sequentiellen Zuführen eines Magnetaufzeichnungsmediums mit einer bandartigen Form konfiguriert ist;
    • einen Trommelabschnitt, der zum Aufspulen des Magnetaufzeichnungsmediums konfiguriert ist, das von dem Zuführungsabschnitt zugeführt wird; und
    • einen Magnetkopf, der zum Schreiben von Daten in das Magnetaufzeichnungsmedium und Abrufen der Daten von dem Magnetaufzeichnungsmedium konfiguriert ist, während er sich in Kontakt mit dem Magnetaufzeichnungsmedium befindet, das sich von dem Zuführungsabschnitt zu dem Trommelabschnitt bewegt, wobei
    • das Magnetaufzeichnungsmedium Folgendes beinhaltet:
      • eine Basis, die Polyester als einen Hauptbestandteil beinhaltet, und
      • eine Magnetschicht, die auf der Basis bereitgestellt ist, mehrere Magnetpulver beinhaltet und zum Aufzeichnen eines Datensignals konfiguriert ist,
    • eine durchschnittliche Dicke des Magnetaufzeichnungsmediums 5,6 µm oder weniger beträgt,
    • eine durchschnittliche Dicke der Basis 4,2 µm oder weniger beträgt,
    • eine durchschnittliche Dicke der Magnetschicht 90 nm oder weniger beträgt,
    • ein durchschnittliches Aspektverhältnis der Magnetpulver 1,0 oder mehr bis 3,0 oder weniger beträgt,
    • eine Koerzivität in einer senkrechten Richtung 3000 Oersted oder weniger beträgt,
    • ein Verhältnis einer Koerzivität in einer longitudinalen Richtung zu der Koerzivität in der senkrechten Richtung 0,8 oder weniger beträgt,
    • die Magnetschicht ein Gleitmittel beinhaltet, und
    • eine gesamte spezifische BET-Fläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 2,5 m2/g oder mehr beträgt.
  23. (23) Ein Magnetaufzeichnungsmedium-Cartridge, das Folgendes beinhaltet:
    • ein Magnetaufzeichnungsmedium mit einer bandartigen Form; und
    • ein Gehäuse, das das Magnetaufzeichnungsmedium beherbergt, wobei
    • das Magnetaufzeichnungsmedium Folgendes beinhaltet:
      • eine Basis, die Polyester als einen Hauptbestandteil beinhaltet,
      • eine Magnetschicht, die auf der Basis bereitgestellt ist, mehrere Magnetpulver beinhaltet und zum Aufzeichnen eines Datensignals konfiguriert ist,
    • eine durchschnittliche Dicke des Magnetaufzeichnungsmediums 5,6 µm oder weniger beträgt,
    • eine durchschnittliche Dicke der Basis 4,2 µm oder weniger beträgt,
    • eine durchschnittliche Dicke der Magnetschicht 90 nm oder weniger beträgt,
    • ein durchschnittliches Aspektverhältnis der Magnetpulver 1,0 oder mehr bis 3,0 oder weniger beträgt,
    • eine Koerzivität in einer senkrechten Richtung 3000 Oersted oder weniger beträgt,
    • ein Verhältnis einer Koerzivität in einer longitudinalen Richtung zu einer Koerzivität in einer senkrechten Richtung 0,8 oder weniger beträgt,
    • die Magnetschicht ein Gleitmittel beinhaltet, und
    • eine gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 2,5 m2/g oder mehr beträgt.
As described above, according to the magnetic recording medium of an embodiment of the present disclosure, it is possible to achieve higher density recording. It is noted that the effect of the present disclosure is not limited thereto and may be any effects described here. Furthermore, the present technology can have the following configurations.
  1. (1) A magnetic recording medium having a tape-like shape, the magnetic recording medium including:
    • a base containing polyester as a main component; and
    • a magnetic layer provided on the base, including a plurality of magnetic powders and configured to record a data signal, wherein
    • an average thickness of the magnetic recording medium is 5.6 µm or less,
    • an average thickness of the base is 4.2 µm or less,
    • an average thickness of the magnetic layer is 90 nm or less,
    • an average aspect ratio of the magnetic powders is 1.0 or more to 3.0 or less,
    • a coercivity in a perpendicular direction is 3000 oersteds or less,
    • a ratio of a coercivity in a longitudinal direction to a coercivity in a perpendicular direction is 0.8 or less,
    • the magnetic layer includes a lubricant, and
    • a total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 2.5 m 2 /g or more.
  2. (2) The magnetic recording medium according to (1) described above, wherein the total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 3.0 m 2 /g or more.
  3. (3) The magnetic recording medium according to (1) described above, wherein the total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 3.5 m 2 /g or more.
  4. (4) The magnetic recording medium according to (1) described above, wherein the total BET specific surface area of the magnetic recording medium from which the lubricant was removed was 4.0 m 2 /g or more.
  5. (5) The magnetic recording medium according to any one of (1) to (4) described above, wherein a friction coefficient ratio µC(1000)/µC(5) between a dynamic friction coefficient µC(5) and a dynamic friction coefficient µC(1000) is 1 .0 or more and 1.8 or less, where the dynamic friction coefficient µC(5) is a dynamic friction coefficient between a surface of the magnetic recording medium and a magnetic head at a fifth movement from a start of movement of the magnetic recording medium if a tension of 0, 6 N is applied to the magnetic recording medium, where the dynamic coefficient of friction µC(1000) is a dynamic coefficient of friction between the surface and the magnetic head at a 1000th movement since the start of movement of the magnetic recording medium, if a tensile stress of 0.6 N is applied to the magnetic recording medium is created.
  6. (6) The magnetic recording medium according to any one of (1) to (6) described above, wherein an average particle diameter of the plural magnetic powders is 8 nm or more and 22 nm or less.
  7. (7) The magnetic recording medium according to any one of (1) to ( 6 ) described above, wherein an average particle volume of the plural magnetic powders is 2300 nm or less.
  8. (8) The magnetic recording medium according to any one of (1) to (7) described above, wherein an arithmetic mean roughness Ra of a surface of the magnetic layer is 2.5 nm or less, and a PSD (power spectral density) up to a spatial wavelength of 5 µm is 2.5 µm or less.
  9. (9) The magnetic recording medium according to any one of (1) to (8) described above, wherein the coercivity in the longitudinal direction is 2000 Oe or less.
  10. (10) The magnetic recording medium according to any one of (1) to (9) described above, wherein the average thickness of the magnetic recording medium is 5.6 µm or less.
  11. (11) The magnetic recording medium according to any one of (1) to (10) described above, wherein the average thickness of the base is 4.2 µm or less.
  12. (12) The magnetic recording medium according to any one of (1) to (11) described above, wherein the magnetic powders include: hexagonal ferrite containing Ba (barium) and/or Sr (strontium); ε-iron oxide containing Al (aluminum) and/or Ga (gallium); or spinel ferrite containing Co (cobalt).
  13. (13) The magnetic recording medium according to any one of (1) to (12) described above, wherein the average thickness of the magnetic layer is 80 nm or less.
  14. (14) The magnetic recording medium according to any one of (1) to (13) described above, wherein the average thickness of the magnetic layer is 60 nm or less.
  15. (15) The magnetic recording medium according to any one of (1) to (14) described above, wherein the magnetic recording medium satisfies the following conditional expression (1): Hc2/Hc1 ≤ 0.7 (1) where Hc1 represents the coercivity in the perpendicular direction and Hc2 represents the coercivity in the longitudinal direction.
  16. (16) The magnetic recording medium according to any one of (1) to (15) described above, wherein the coercivity in the perpendicular direction is 2200 Oe or more.
  17. (17) The magnetic recording medium according to any one of (1) to (16) described above, wherein the magnetic layer includes a plurality of servo stripes, each configured for recording a plurality of servo signals, and a ratio of a total area of the plurality of servo stripes to an area of a surface of the magnetic layer is 4.0% or less.
  18. (18) The magnetic recording medium according to (17) described above, wherein the number of the plurality of servo stripes is 5 or more.
  19. (19) The magnetic recording medium according to (17) or (18) described above, wherein the servo stripes each have a width of 95 nm.
  20. (20) The magnetic recording medium according to any one of (1) to (19) described above, wherein the magnetic layer is configured to form a plurality of recording tracks, and the recording tracks each have a width of 3.0 µm or less.
  21. (21) The magnetic recording medium according to any one of (1) to (20) described above, wherein the magnetic layer for recording data is configured to set a minimum value of a distance between magnetization inversions to 48 nm or less.
  22. (22) A magnetic recording and playback device that includes:
    • a feeding section configured to sequentially feed a magnetic recording medium having a tape-like shape;
    • a drum section configured to wind up the magnetic recording medium fed from the feed section; and
    • a magnetic head configured to write data to the magnetic recording medium and retrieve the data from the magnetic recording medium while in contact with the magnetic recording medium moving from the feed section to the drum section, wherein
    • the magnetic recording medium includes:
      • a base including polyester as a main component, and
      • a magnetic layer provided on the base, including a plurality of magnetic powders and configured to record a data signal,
    • an average thickness of the magnetic recording medium is 5.6 µm or less,
    • an average thickness of the base is 4.2 µm or less,
    • an average thickness of the magnetic layer is 90 nm or less,
    • an average aspect ratio of the magnetic powders is 1.0 or more to 3.0 or less,
    • a coercivity in a perpendicular direction is 3000 oersteds or less,
    • a ratio of a coercivity in a longitudinal direction to the coercivity in the perpendicular direction is 0.8 or less,
    • the magnetic layer includes a lubricant, and
    • a total BET specific area of the magnetic recording medium from which the lubricant has been removed is 2.5 m 2 /g or more.
  23. (23) A magnetic recording media cartridge containing:
    • a magnetic recording medium having a tape-like shape; and
    • a housing housing the magnetic recording medium, wherein
    • the magnetic recording medium includes:
      • a base containing polyester as a main ingredient,
      • a magnetic layer provided on the base, including a plurality of magnetic powders and configured to record a data signal,
    • an average thickness of the magnetic recording medium is 5.6 µm or less,
    • an average thickness of the base is 4.2 µm or less,
    • an average thickness of the magnetic layer is 90 nm or less,
    • an average aspect ratio of the magnetic powders is 1.0 or more to 3.0 or less,
    • a coercivity in a perpendicular direction is 3000 oersteds or less,
    • a ratio of a coercivity in a longitudinal direction to a coercivity in a perpendicular direction is 0.8 or less,
    • the magnetic layer includes a lubricant, and
    • a total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 2.5 m 2 /g or more.

Die vorliegende Anmeldung beansprucht die Priorität basierend auf der japanischen Patentanmeldung Nr. 2019-176039 , eingereicht beim japanischen Patentamt am 26. September 2019, deren gesamte Inhalte hiermit durch Bezugnahme aufgenommen sind.The present application claims priority based on Japanese Patent Application No. 2019-176039 , filed with the Japan Patent Office on September 26, 2019, the entire contents of which are hereby incorporated by reference.

Es versteht sich, dass ein Fachmann verschiedene Modifikationen, Kombinationen, Unterkombinationen und Veränderungen in Abhängigkeit von Gestaltungsanforderungen und anderen Faktoren vornehmen wurde und sie innerhalb des Schutzumfangs der angehängten Ansprüche oder der Äquivalente davon liegen.It is understood that one skilled in the art would make various modifications, combinations, sub-combinations and changes depending on design requirements and other factors and they are within the scope of the appended claims or the equivalents thereof.

ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDED IN DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents cited by the applicant was generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturPatent Literature Cited

  • JP 2014199706 [0004]JP 2014199706 [0004]
  • JP 2019176039 [0247]JP 2019176039 [0247]

Claims (21)

Magnetaufzeichnungsmedium mit einer bandartigen Form, wobei das Magnetaufzeichnungsmedium Folgendes umfasst: eine Basis, die Polyester als einen Hauptbestandteil enthält; und eine Magnetschicht, die auf der Basis bereitgestellt ist, mehrere Magnetpulver beinhaltet und zum Aufzeichnen eines Datensignals konfiguriert ist, wobei eine durchschnittliche Dicke des Magnetaufzeichnungsmediums 5,6 µm oder weniger beträgt, eine durchschnittliche Dicke der Basis 4,2 µm oder weniger beträgt, eine durchschnittliche Dicke der Magnetschicht 90 nm oder weniger beträgt, ein durchschnittliches Aspektverhältnis der Magnetpulver 1,0 oder mehr bis 3,0 oder weniger beträgt, eine Koerzivität in einer senkrechten Richtung 3000 Oersted oder weniger beträgt, ein Verhältnis einer Koerzivität in einer longitudinalen Richtung zu einer Koerzivität in einer senkrechten Richtung 0,8 oder weniger beträgt, die Magnetschicht ein Gleitmittel beinhaltet, und eine gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 2,5 m2/g oder mehr beträgt.A magnetic recording medium having a tape-like shape, the magnetic recording medium comprising: a base containing polyester as a main component; and a magnetic layer provided on the base, including a plurality of magnetic powders and configured to record a data signal, wherein an average thickness of the magnetic recording medium is 5.6 µm or less, an average thickness of the base is 4.2 µm or less, a average thickness of the magnetic layer is 90 nm or less, an average aspect ratio of the magnetic powders is 1.0 or more to 3.0 or less, a coercivity in a perpendicular direction is 3000 oersted or less, a ratio of a coercivity in a longitudinal direction to one coercivity in a perpendicular direction is 0.8 or less, the magnetic layer includes a lubricant, and a total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 2.5 m 2 /g or more. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 3,0 m2/g oder mehr beträgt.magnetic recording medium claim 1 , wherein the total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 3.0 m 2 /g or more. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 3,5 m2/g oder mehr beträgt.magnetic recording medium claim 1 , wherein the total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 3.5 m 2 /g or more. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 4,0 m2/g oder mehr beträgt.magnetic recording medium claim 1 , wherein the total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 4.0 m 2 /g or more. Magnetaufzeichnungsmedium nach Anspruch 1, wobei ein Reibungskoeffizientenverhältnis µC(1000)/µC(5) zwischen einem dynamischen Reibungskoeffizienten µC(5) und einem dynamischen Reibungskoeffizienten µC(1000) 1,0 oder mehr und 1,8 oder weniger beträgt, wobei der dynamische Reibungskoeffizient µC(5) ein dynamischer Reibungskoeffizient zwischen einer Oberfläche des Magnetaufzeichnungsmediums und einem Magnetkopf bei einer fünften Bewegung seit einem Start einer Bewegung des Magnetaufzeichnungsmediums ist, falls eine Zugspannung von 0,6 N an das Magnetaufzeichnungsmedium angelegt wird, wobei der dynamische Reibungskoeffizient µC(1000) ein dynamischer Reibungskoeffizient zwischen der Oberfläche und dem Magnetkopf bei einer 1000. Bewegung seit dem Start einer Bewegung des Magnetaufzeichnungsmediums ist, falls eine Zugspannung von 0,6 N an das Magnetaufzeichnungsmedium angelegt wird.magnetic recording medium claim 1 , wherein a friction coefficient ratio µC(1000)/µC(5) between a dynamic friction coefficient µC(5) and a dynamic friction coefficient µC(1000) is 1.0 or more and 1.8 or less, the dynamic friction coefficient µC(5) is a dynamic friction coefficient between a surface of the magnetic recording medium and a magnetic head at a fifth movement since a start of movement of the magnetic recording medium if a tensile stress of 0.6 N is applied to the magnetic recording medium, the dynamic friction coefficient µC(1000) being a dynamic friction coefficient between of the surface and the magnetic head at a 1000th movement since the start of movement of the magnetic recording medium if a tensile stress of 0.6 N is applied to the magnetic recording medium. Magnetaufzeichnungsmedium nach Anspruch 1, wobei ein durchschnittlicher Teilchendurchmesser der mehreren Magnetpulver 8 nm oder mehr und 22 nm oder weniger beträgt.magnetic recording medium claim 1 , wherein an average particle diameter of the plurality of magnetic powders is 8 nm or more and 22 nm or less. Magnetaufzeichnungsmedium nach Anspruch 1, wobei ein durchschnittliches Teilchenvolumen der mehreren Magnetpulver 2300 nm3 oder weniger beträgt.magnetic recording medium claim 1 , wherein an average particle volume of the plurality of magnetic powders is 2300 nm 3 or less. Magnetaufzeichnungsmedium nach Anspruch 1, wobei eine arithmetisch gemittelte Rauigkeit Ra einer Oberfläche der Magnetschicht 2,5 nm oder weniger beträgt, und eine PSD (Leistungsspektraldichte) bis zu einer räumlichen Wellenlänge von 5 µm 2,5 µm oder weniger beträgt.magnetic recording medium claim 1 , wherein an arithmetic mean roughness Ra of a surface of the magnetic layer is 2.5 nm or less, and a PSD (power spectral density) up to a spatial wavelength of 5 µm is 2.5 µm or less. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die Koerzitivität in der longitudinalen Richtung 2000 Oe oder weniger beträgt.magnetic recording medium claim 1 , wherein the coercivity in the longitudinal direction is 2000 Oe or less. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die Magnetpulver Folgendes beinhalten: hexagonalen Ferrit, der Ba (Barium) und/oder Sr (Strontium) enthält; ε-Eisenoxid, das Al (Aluminium) und/oder Ga (Gallium) enthält; oder Spinell-Ferrit, der Co (Cobalt) enthält.magnetic recording medium claim 1 wherein the magnetic powders include: hexagonal ferrite containing Ba (barium) and/or Sr (strontium); ε-iron oxide containing Al (aluminum) and/or Ga (gallium); or spinel ferrite containing Co (cobalt). Magnetaufzeichnungsmedium nach Anspruch 1, wobei die durchschnittliche Dicke der Magnetschicht 80 nm oder weniger beträgt.magnetic recording medium claim 1 , wherein the average thickness of the magnetic layer is 80 nm or less. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die durchschnittliche Dicke der Magnetschicht 60 nm oder weniger beträgt.magnetic recording medium claim 1 , wherein the average thickness of the magnetic layer is 60 nm or less. Magnetaufzeichnungsmedium nach Anspruch 1, wobei der folgende Bedingungsausdruck (1) erfüllt wird: Hc2/Hc1 ≤ 0,7 (1) wobei Hc1 die Koerzitivität in der senkrechten Richtung repräsentiert und Hc2 die Koerzitivität in der longitudinalen Richtung repräsentiert.magnetic recording medium claim 1 , where the following conditional expression (1) is satisfied: Hc2/Hc1 ≤ 0.7 (1) where Hc1 represents the coercivity in the perpendicular direction and Hc2 represents the coercivity in the longitudinal direction. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die Koerzitivität in der senkrechten Richtung 2200 Oe oder mehr beträgt.magnetic recording medium claim 1 , where the coercivity in the perpendicular direction is 2200 Oe or more. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die Magnetschicht mehrere Servostreifen beinhaltet, die jeweils zum Aufzeichnen mehrerer Servosignale konfiguriert sind, und ein Verhältnis einer Gesamtfläche der mehreren Servostreifen zu einer Fläche einer Oberfläche der Magnetschicht 4,0 % oder weniger beträgt.magnetic recording medium claim 1 wherein the magnetic layer includes a plurality of servo stripes each configured to record a plurality of servo signals, and a ratio of a total area of the plurality of servo stripes to an area of a surface of the magnetic layer is 4.0% or less. Magnetaufzeichnungsmedium nach Anspruch 15, wobei die Anzahl der mehreren Servostreifen 5 oder mehr beträgt.magnetic recording medium claim 15 , where the number of the multiple servo stripes is 5 or more. Magnetaufzeichnungsmedium nach Anspruch 15, wobei die Servostreifen jeweils eine Breite von 95 nm aufweisen.magnetic recording medium claim 15 , the servo stripes each having a width of 95 nm. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die Magnetschicht zum Bilden mehrerer Aufzeichnungsspuren konfiguriert ist, und die Aufzeichnungsspuren jeweils eine Breite von 3,0 µm oder weniger aufweisen.magnetic recording medium claim 1 wherein the magnetic layer is configured to form a plurality of recording tracks, and the recording tracks each have a width of 3.0 µm or less. Magnetaufzeichnungsmedium nach Anspruch 1, wobei die Magnetschicht zum Aufzeichnen von Daten konfiguriert ist, um einen minimalen Wert einer Entfernung zwischen Magnetisierungsumkehrungen auf 48 nm oder weniger festzulegen.magnetic recording medium claim 1 wherein the magnetic layer for recording data is configured to set a minimum value of a distance between magnetization reversals to 48 nm or less. Magnet-Aufzeichnung-und-Wiedergabe-Einrichtung die Folgendes umfasst: einen Zuführungsabschnitt, der zum sequentiellen Zuführen eines Magnetaufzeichnungsmediums mit einer bandartigen Form konfiguriert ist; einen Trommelabschnitt, der zum Aufspulen des Magnetaufzeichnungsmediums konfiguriert ist, das von dem Zuführungsabschnitt zugeführt wird; und einen Magnetkopf, der zum Schreiben von Daten in das Magnetaufzeichnungsmedium und Abrufen der Daten von dem Magnetaufzeichnungsmedium konfiguriert ist, während er sich in Kontakt mit dem Magnetaufzeichnungsmedium befindet, das sich von dem Zuführungsabschnitt zu dem Trommelabschnitt bewegt, wobei das Magnetaufzeichnungsmedium Folgendes beinhaltet: eine Basis, die Polyester als einen Hauptbestandteil beinhaltet, und eine Magnetschicht, die auf der Basis bereitgestellt ist, mehrere Magnetpulver beinhaltet und zum Aufzeichnen eines Datensignals konfiguriert ist, eine durchschnittliche Dicke des Magnetaufzeichnungsmediums 5,6 µm oder weniger beträgt, eine durchschnittliche Dicke der Basis 4,2 µm oder weniger beträgt, eine durchschnittliche Dicke der Magnetschicht 90 nm oder weniger beträgt, ein durchschnittliches Aspektverhältnis der Magnetpulver 1,0 oder mehr bis 3,0 oder weniger beträgt, eine Koerzivität in einer senkrechten Richtung 3000 Oersted oder weniger beträgt, ein Verhältnis einer Koerzivität in einer longitudinalen Richtung zu einer Koerzivität in einer senkrechten Richtung 0,8 oder weniger beträgt, die Magnetschicht ein Gleitmittel beinhaltet, und eine gesamte spezifische BET-Fläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 2,5 m2/g oder mehr beträgt.A magnetic recording and reproducing device comprising: a feeding section configured to sequentially feed a magnetic recording medium having a tape-like shape; a drum section configured to wind up the magnetic recording medium fed from the feed section; and a magnetic head configured to write data to the magnetic recording medium and retrieve the data from the magnetic recording medium while in contact with the magnetic recording medium moving from the feed section to the drum section, the magnetic recording medium including: a base containing polyester as a main component, and a magnetic layer provided on the base containing a plurality of magnetic powders and configured to record a data signal, an average thickness of the magnetic recording medium is 5.6 µm or less, an average thickness of the base is 4, is 2 µm or less, an average thickness of the magnetic layer is 90 nm or less, an average aspect ratio of magnetic powders is 1.0 or more to 3.0 or less, a coercivity in a perpendicular direction is 3000 oersteds or less, a ratio a coercivity in a longitudinal direction to a coercivity in a perpendicular direction is 0.8 or less, the magnetic layer includes a lubricant, and a total BET specific area of the magnetic recording medium from which the lubricant has been removed is 2.5 m 2 /g or more. Magnetaufzeichnungsmedium-Cartridge, das Folgendes umfasst: ein Magnetaufzeichnungsmedium mit einer bandartigen Form; und ein Gehäuse, das das Magnetaufzeichnungsmedium beherbergt, wobei das Magnetaufzeichnungsmedium Folgendes beinhaltet: eine Basis, die Polyester als einen Hauptbestandteil beinhaltet, eine Magnetschicht, die auf der Basis bereitgestellt ist, mehrere Magnetpulver beinhaltet und zum Aufzeichnen eines Datensignals konfiguriert ist, eine durchschnittliche Dicke des Magnetaufzeichnungsmediums 5,6 µm oder weniger beträgt, eine durchschnittliche Dicke der Basis 4,2 µm oder weniger beträgt, eine durchschnittliche Dicke der Magnetschicht 90 nm oder weniger beträgt, ein durchschnittliches Aspektverhältnis der Magnetpulver 1,0 oder mehr bis 3,0 oder weniger beträgt, eine Koerzivität in einer senkrechten Richtung 3000 Oersted oder weniger beträgt, ein Verhältnis einer Koerzivität in einer longitudinalen Richtung zu einer Koerzivität in einer senkrechten Richtung 0,8 oder weniger beträgt, die Magnetschicht ein Gleitmittel beinhaltet, und eine gesamte spezifische BET-Oberfläche des Magnetaufzeichnungsmediums, von dem das Gleitmittel entfernt wurde, 2,5 m2/g oder mehr beträgt.A magnetic recording medium cartridge, comprising: a magnetic recording medium having a tape-like shape; and a case accommodating the magnetic recording medium, the magnetic recording medium including: a base containing polyester as a main component, a magnetic layer provided on the base containing a plurality of magnetic powders and configured to record a data signal, an average thickness of the magnetic recording medium is 5.6 µm or less, an average thickness of the base is 4.2 µm or less, an average thickness of the magnetic layer is 90 nm or less, an average aspect ratio of the magnetic powders is 1.0 or more to 3.0 or less, a coercivity in a perpendicular direction is 3000 oersted or less, a ratio of a coercivity in a longitudinal direction to a coercivity in a perpendicular direction is 0.8 or less, the magnetic layer includes a lubricant, and a total BET specific surface area of the magnetic recording medium from which the lubricant has been removed is 2.5 m 2 /g or more.
DE112019007754.6T 2019-09-26 2019-10-31 MAGNETIC RECORDING MEDIUM, MAGNETIC RECORDING AND PLAYBACK DEVICE AND MAGNETIC RECORDING MEDIA CARTRIDGE Pending DE112019007754T5 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019176039A JP6838633B1 (en) 2019-09-26 2019-09-26 Magnetic recording medium, magnetic recording / playback device and magnetic recording medium cartridge
JP2019-176039 2019-09-26
PCT/JP2019/042752 WO2021059542A1 (en) 2019-09-26 2019-10-31 Magnetic recording medium, magnetic recording and playback device, and magnetic recording medium cartridge

Publications (1)

Publication Number Publication Date
DE112019007754T5 true DE112019007754T5 (en) 2022-06-15

Family

ID=74673596

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112019007754.6T Pending DE112019007754T5 (en) 2019-09-26 2019-10-31 MAGNETIC RECORDING MEDIUM, MAGNETIC RECORDING AND PLAYBACK DEVICE AND MAGNETIC RECORDING MEDIA CARTRIDGE

Country Status (4)

Country Link
US (1) US20220399039A1 (en)
JP (1) JP6838633B1 (en)
DE (1) DE112019007754T5 (en)
WO (1) WO2021059542A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210903A1 (en) * 2021-03-31 2022-10-06 ソニーグループ株式会社 Magnetic recording medium and cartridge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199706A (en) 2013-03-15 2014-10-23 ソニー株式会社 Magnetic recording medium, servo signal recording apparatus and method of producing magnetic recording medium
JP2019176039A (en) 2018-03-29 2019-10-10 リンテック株式会社 Independent part formation device and independent part formation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06195687A (en) * 1992-03-30 1994-07-15 Konica Corp Magnetic recording method
JP2003338023A (en) * 2002-05-17 2003-11-28 Fuji Photo Film Co Ltd Magnetic recording medium
JP2007273036A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Magnetic recording medium
US7910234B2 (en) * 2006-04-28 2011-03-22 Imation Corp. Magnetic recording medium having improved durability for high density applications
JP6565908B2 (en) * 2014-06-24 2019-08-28 ソニー株式会社 Magnetic recording medium
JP6556101B2 (en) * 2016-06-23 2019-08-07 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP6927405B2 (en) * 2018-02-16 2021-08-25 ソニーグループ株式会社 Magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199706A (en) 2013-03-15 2014-10-23 ソニー株式会社 Magnetic recording medium, servo signal recording apparatus and method of producing magnetic recording medium
JP2019176039A (en) 2018-03-29 2019-10-10 リンテック株式会社 Independent part formation device and independent part formation method

Also Published As

Publication number Publication date
JP2021057089A (en) 2021-04-08
WO2021059542A1 (en) 2021-04-01
JP6838633B1 (en) 2021-03-03
US20220399039A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
DE102020110198A1 (en) MAGNETIC RECORDING CASSETTE
DE102020108642A1 (en) CASSETTE AND CASSETTE MEMORY
DE112018007412T5 (en) MAGNETIC RECORDING MEDIUM
DE112018007099T5 (en) MAGNETIC RECORDING TAPE AND METHOD FOR MANUFACTURING THE SAME AND MAGNETIC RECORDING TAPE CARTRIDGE
DE102020111841A1 (en) MAGNETIC RECORDING MEDIUM AND CASSETTE
DE112019005285T5 (en) CASSETTE, MEMORY, DATA RECORDING DEVICE AND DATA PLAYING DEVICE
DE112020000045T5 (en) MAGNETIC RECORDING MEDIA
DE112019000191T5 (en) MAGNETIC RECORDING MEDIUM AND CASSETTE
DE112019000144T5 (en) MAGNETIC RECORDING MEDIUM, MAGNETIC RECORDING / PLAYBACK DEVICE AND CASSETTE FOR A MAGNETIC RECORDING MEDIUM
DE112019000103T5 (en) MAGNETIC RECORDING MEDIUM, CASSETTE AND RECORDING AND PLAYBACK DEVICE
JP2021034074A (en) Magnetic recording medium, magnetic recording/playback device and magnetic recording medium cartridge
JPWO2019159464A1 (en) Magnetic recording medium and cartridge
DE112019000102T5 (en) Magnetic recording medium
DE112019000151T5 (en) MAGNETIC RECORDING MEDIUM, MAGNETIC RECORDING / PLAYBACK DEVICE AND CASSETTE FOR A MAGNETIC RECORDING MEDIUM
JP6635215B1 (en) Magnetic recording medium, magnetic recording / reproducing device, and magnetic recording medium cartridge
JP7063411B2 (en) Magnetic recording medium, magnetic recording / playback device and magnetic recording medium cartridge
DE112019000104T5 (en) MAGNETIC RECORDING MEDIUM
DE112019002655T5 (en) MAGNETIC RECORDING MEDIUM
DE112019007754T5 (en) MAGNETIC RECORDING MEDIUM, MAGNETIC RECORDING AND PLAYBACK DEVICE AND MAGNETIC RECORDING MEDIA CARTRIDGE
JP2021034101A (en) Magnetic recording medium, magnetic recording/playback device and magnetic recording medium cartridge
DE112017000744T5 (en) Magnetic powder and process for its preparation and magnetic recording medium and process for its preparation
DE112021000666T5 (en) MAGNETIC RECORDING MEDIA AND CASSETTE
DE112020007016T5 (en) MAGNETIC RECORDING MEDIA
JP7359168B2 (en) Magnetic recording media, magnetic recording/reproducing devices, and magnetic recording media cartridges
DE112020001677T5 (en) MAGNETIC RECORDING MEDIA AND SERVO SIGNAL RECORDING DEVICE