DE1047757B - Electrical semiconductor suitable as resistor or rectifier - Google Patents

Electrical semiconductor suitable as resistor or rectifier

Info

Publication number
DE1047757B
DE1047757B DET10180A DET0010180A DE1047757B DE 1047757 B DE1047757 B DE 1047757B DE T10180 A DET10180 A DE T10180A DE T0010180 A DET0010180 A DE T0010180A DE 1047757 B DE1047757 B DE 1047757B
Authority
DE
Germany
Prior art keywords
oxygen
nickel titanate
resistor
rectifier
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DET10180A
Other languages
German (de)
Inventor
Arthur Linz
Leon Merker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan GmbH
Original Assignee
Titan GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan GmbH filed Critical Titan GmbH
Publication of DE1047757B publication Critical patent/DE1047757B/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/51Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on compounds of actinides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/479Application of electric currents or fields, e.g. for electroforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

Als Widerstand oder Gleichrichter geeigneter elektrischer Halbleiter Elektrische Halbleiter sind an sich in verschiedener Art und aus verschiedenen Materialien bekannt.Electrical semiconductor suitable as resistor or rectifier Electrical semiconductors are inherently of different types and made of different materials known.

Es wurde erkannt, daß sich ein elektrischer Halbleiter mit besonders günstigen Eigenschaften ergibt, wenn er aus einem monokristallinen Nickeltitanatkörper besteht, der durch Kristallisation geschmolzenen, pulverförmigen Nickeltitanats gebildet wurde.It was recognized that an electrical semiconductor with special results in favorable properties if it consists of a monocrystalline nickel titanate body consists of powdered nickel titanate melted by crystallization was formed.

Dieser monokristalline Körper besitzt in der Tat wertvolle elektrische Eigenschaften, die ihn zur Verwendung als Widerstand u. dgl. geeignet machen. Monokristallines Nickeltitanat besitzt eine Dielektrizitätskonstante von 20 und einen dielektrischen Leistungsfaktor von 0;05 % bei Raumtemperatur in einem Frequenzbereich von 100 Hz bis 10 MHz. Der Temperaturkoeffizient der Dielektrizitätskonstante beträgt im Bereich. von -50 bis -f-150° C 0,00022 pro ° C. Wenn dem Ausgangsmaterial Zusätze. zugegeben werden, die die Aufnahme und Abgabe von Elektronen bewirken, wird das monokristalline Nickeltitanat zu einem Halbleiter, und wenn verschiedene Arten von Zusätzen wechselweise dem Ausgangscnaterial zugegeben werden, können in dem Einkristall ri- und p-Übergänge gebildet werden, wodurch ein Gleichrichter entsteht.This monocrystalline body does indeed have valuable electrical properties Properties that make it suitable for use as a resistor and the like. Monocrystallines Nickel titanate has a dielectric constant of 20 and a dielectric constant Power factor of 0.05% at room temperature in a frequency range of 100 Hz up to 10 MHz. The temperature coefficient of the dielectric constant is in the range. from -50 to -f-150 ° C 0.00022 per ° C. If the starting material has additives. admitted that cause the uptake and release of electrons, the monocrystalline Nickel titanate to a semiconductor, and if different kinds of additives alternately are added to the starting material, ri and p junctions in the single crystal are formed, creating a rectifier.

Der erfindungsgemäße elektrische Halbleiter wird unter Anwendung des an sich bekannten Verfahrens von Verneuil hergestellt, indem einem Sauerstoffstrom zugeführtes pulverförmiges Nickeltitanat in einer Sauerstoff-Wasserstoff-Flamme mit zentralem Sauerstoffkegel geschmolzen und die Schmelze in der Nähe der Spitze des Sauerstoffkegels kristallisiert wird, wobei die Flamme um den entstandenen Körper herum aufrechterhalten wird.The electrical semiconductor according to the invention is made using the per se known method produced by Verneuil by a stream of oxygen supplied powdery nickel titanate in an oxygen-hydrogen flame melted with central oxygen cone and the melt near the top of the oxygen cone is crystallized, with the flame around the resulting body is kept around.

Als Nickeltitanat kann sowohl reines als auch verunr einigtes Ni Ti O3 verwendet werden, auch solches, dem geringe Mengen Färbe- oder Modifizierungsmittel, die ihrer Art und Menge nach die monokristalline Struktur nicht nachteilig beeinflussen und. die geforderten physikalischen Eigenschaften des Halbleiters nicht verändern, zugesetzt werden. Meistens werden die Verunreinigungen auf einem Minimum gehalten und überschreiten in der Regel wenige Zehntel Prozente nicht. Die Modifizierungs- und Färbemittel werden in Mengen zugegeben, die zur Erzielung der jeweils gewünschten Wirkung erforderlich sind.Both pure and impure Ni Ti can be used as the nickel titanate O3 are used, including those containing small amounts of coloring or modifying agent, which, according to their type and quantity, do not adversely affect the monocrystalline structure and. do not change the required physical properties of the semiconductor, can be added. Most of the time, contamination is kept to a minimum and usually do not exceed a few tenths of a percent. The Modification and coloring agents are added in amounts sufficient to achieve the desired Effect are required.

Die Zeichnung stellt eine beispielsweise Ausführungsform der zur Durchführung des Verfahrens erforderlichen Vorrichtung dar.The drawing represents an exemplary embodiment of the implementation the device required for the process.

Der Brenner besteht aus drei konzentrisch zueinander angeordneten Rohren 1, 2, 3. Das pulverförmige Nickeltitanat wird durch das mittlere Rohr 1 mit einem Teil des Sauerstoffs dem Brenner zugeführt. Der restliche Sauerstoff wird durch das äußere Rohr 3 -zugeführt, während der Wasserstoff durch das mittlere Rohr 2 eingeleitet wird. Das Rohr 3 ist zweckmäßigerweise etwas länger als die Rohre 1 und 2. Der flaschenförmige Kristallkörper 4 wird auf einem Fuß 5 aus geeignetem schwerschmelzendem Material, wie Schamotte oder Zirkonoxyd, gebildet. In dem Maße, wie der Kristallkörper wächst, wird der Fuß 5 gesenkt, so daß die Spitze des Kristallkörpers praktisch immer in gleicher Stellung zur Flamme verbleibt.The burner consists of three concentric to each other Tubes 1, 2, 3. The powdery nickel titanate is through the middle tube 1 with some of the oxygen supplied to the burner. The remaining oxygen will through the outer tube 3 -feed, while the hydrogen through the middle tube 2 is initiated. The tube 3 is expediently somewhat longer than the tubes 1 and 2. The bottle-shaped crystal body 4 is on a foot 5 of suitable refractory material such as chamotte or zirconium oxide. In this scale, as the crystal body grows, the foot 5 is lowered so that the tip of the crystal body practically always remains in the same position to the flame.

Der Kristallkörper 4 und das obere Ende des Fußes 5 sind von einer Kammer 6 aus Schamotte od. dgl. umschlossen; zweckmäßigerweise schließt sich die Kammer an das untere Ende des äußeren Rohres 3 an. Die Gase werden zweckmäßigerweise mit solchen Geschwindigkeiten zugeführt, daß die Flamme die gesamte Kammer 6 um den Kristallkörper herum ausfüllt. Auf diese Weise werden die Temperatur und die übrigen Bedingungen um den Kristallkörper herum praktisch konstant gehalten. Es wurde gefunden, daß kleinere Flammen auf Grund der in der Kammer herrschenden Strömungen unbeständig sind; jegliche Veränderungen in der Flamme können zu Beschädigungen des Kristallkörpers führen.The crystal body 4 and the upper end of the foot 5 are of one Chamber 6 made of chamotte or the like enclosed; expediently closes the Chamber to the lower end of the outer tube 3. The gases are expedient fed at such speeds that the flame covers the entire chamber 6 µm fills the crystal body around. This way the temperature and the other conditions around the crystal body kept practically constant. It it was found that smaller flames due to the currents in the chamber are impermanent; any changes in the flame can cause damage of the crystal body lead.

In der Praxis wird das pulverförmige Nickeltitanat im allgemeinen periodisch in das Rohr 1 zusammen mit dem geringeren Teil des Sauerstoffs eingeführt, während der größere Teil des Sauerstoffs durch das Rohr 3 eingeleitet wird. Beispielsweise können bei einem Brenner der Sauerstoff durch das innereRohr 1, der Sauerstoff durch das äußere Rohr 3 und der Wasserstoff durch das mittlere Rohr 2 in dem Verhältnis von 4 :26 :16 zugeführt werden. In der Flamme bildet sich ein Kegel unterhalb der Rohre 1 und 2; der Fuß 5 wird vorzugsweise so angeordnet, daß die flüssige Spitze des Kristallkörpers 4 in oder in der Nähe der Spitze des Flammkegels liegt. Um die Bildung eines Einkristallkörpers einzuleiten, ist es erforderlich, zunächst auf dem Fuß 5 einen kleinen Anfangskörper zu bilden, auf den sich allmählich ein flaschen- oder karottenförmiger Einkristallkörper anbaut. Die Größe der Öffnungen des Sauerstoff-Wasserstoff-Gebläses bestimmt die Größe der intensiv beheizten Zone, die wiederum bestimmend für den Durchmesser des karottenförmigen Einkristallkörpers ist.In practice, the powdered nickel titanate is generally introduced periodically into the tube 1 together with the minor part of the oxygen, while the major part of the oxygen is introduced through the tube 3. For example, the oxygen through the inner tube 1, the oxygen through the outer tube 3 and the hydrogen through the central tube 2 in the ratio of 4 in a burner: are fed 16: 26th In the flame a cone forms below the tubes 1 and 2; the foot 5 is preferably arranged so that the liquid tip of the crystal body 4 lies in or near the tip of the flame cone. In order to initiate the formation of a single crystal body, it is necessary first of all to form a small initial body on the foot 5, onto which a bottle-shaped or carrot-shaped single crystal body gradually grows. The size of the openings in the oxygen-hydrogen blower determines the size of the intensely heated zone, which in turn determines the diameter of the carrot-shaped single crystal body.

Zweckmäßigerweise wird Nickeltitanat in feinverteilter Form angewendet. Das als Ausgangsmaterial verwendete Nickeltitanat muß praktisch frei sein von ungeeigneten oder unverträglichen Verunreinigungen, die die Kristallstruktur oder die physikalischen Eigenschaften des Kristalls nachteilig beeinflussen würden. Das Ausgangsmaterial muß fein verteilt und von gleichmäßiger Korngröße sein. Ein Nickeltitanatmaterial mit einer Partikelgröße unterhalb 1 #L hat sich als besonders vorteilhaft erwiesen. Aggregate aus diesen kleinen Partikeln, die ein Sieb mit 0,15 mm. lichter Maschenweite nicht mehr passieren, sollten vermieden werden, da sie nicht vollständig geschmolzen werden können.It is expedient to use nickel titanate in finely divided form. The nickel titanate used as the starting material must be practically free from unsuitable materials or incompatible impurities that affect the crystal structure or the physical Would adversely affect properties of the crystal. The source material must be finely divided and of uniform grain size. A nickel titanate material with a particle size below 1 #L has proven to be particularly advantageous. Aggregates from these small particles forming a sieve of 0.15 mm. clear mesh size no longer happen should be avoided as they are not completely melted can be.

Das Ausgangsmaterial muß frei fließend genug sein, um dem Brenner einwandfrei zugeführt werden zu können. Als Ausgangsmaterial kann mit befriedigenden Ergebnissen ein Nickeltitanat benutzt werden, das aus frei fließendem, fein verteiltem, praktisch: reinem und gleichförmigem, durch Calcinieren von Nickeltitansulfat gebildetem Nickeltitanat besteht und das eine Partikelgröße zwischen 0,1 und 1,0 #t besitzt.The starting material must be free flowing enough to allow the torch to flow to be fed properly. As a starting material can be satisfactory with Results, a nickel titanate can be used, which consists of free-flowing, finely divided, practical: pure and uniform, formed by calcining nickel titanium sulphate Nickel titanate and which has a particle size between 0.1 and 1.0 #t.

Dem Brenner werden beispielsweise 161 pro Minute Wasserstoff durch das mittlere Brennerrohr zugeführt, während bei einer Sauerstoffzufuhr von insgesamt 301 pro Minute 41 pro Minute durch das zentrale Rohr und 261 pro Minute durch das äußere Rohr zugeführt werden. Der sich bildende flaschenförmige Kristallkörper wurde anschließend bei Temperaturen zwischen, 650 und 1500° C geglüht zwecks Entfernung der Spannungen. Die Glühdauer hängt von der Größe des Körpers und von der angewendeten Temperatur ab; es wurde gefunden, daß eine Glühdauer von 6 bis 24 Stunden ausreicht, um praktisch spannungsfreie Kristalle zu erreichen. Es können jedoch erforderlichenfalls auch längere Glühzeiten angewendet werden.For example, 161 hydrogen per minute are passed through the burner fed to the middle burner tube, while with a total oxygen feed 301 per minute 41 per minute through the central tube and 261 per minute through the outer tube to be fed. The resulting bottle-shaped crystal body became then annealed at temperatures between, 650 and 1500 ° C for the purpose of removal of tensions. The duration of the glow depends on the size of the body and on the one used Temperature from; it has been found that an annealing time of 6 to 24 hours is sufficient, to achieve practically tension-free crystals. However, it can if necessary longer glow times can also be used.

Claims (2)

PATENTANSPRÜCHE: 1. Als Widerstand oder Gleichrichter geeigneter elektrischer Halbleiter, dadurch gekennzeichnet, daß er aus einem monokristallinem Nickeltitanatkörper besteht, der durch Kristallisation geschmolzenen, pulverförmigen Nickeltitanats erhalten wird. PATENT CLAIMS: 1. Electrical suitable as a resistor or rectifier Semiconductor, characterized in that it consists of a monocrystalline nickel titanate body consists of powdered nickel titanate melted by crystallization is obtained. 2. Verfahren zur Herstellung des monokristallinen Nickeltitanat-Halbleiters, dadurch gekennzeichnet, daß einem. Sauerstoffstrom zugeführtes pulverförmiges Nickeltitanat in einer Sauerstoff-Wasserstoff-Flammemitzentralem Sauerstoftkegel geschmolzen und die Schmelze in der Nähe der Spitze des Sauerstoffkegels unter allmählichem Aufbau eines Körpers kristallisiert wird, wobei die Flamme um den Körper herum aufrechterhalten wird. In Betracht gezogene Druckschriften: Deutsche Patentschriften Nr. 524 985, 525 649; USA.-Patentschrift Nr. 2 634 554.2. Process for the production of the monocrystalline nickel titanate semiconductor, characterized in that one. Powdered nickel titanate supplied with oxygen stream melted in an oxygen-hydrogen flame with a central oxygen cone and the melt near the top of the oxygen cone with a gradual build-up of a body is crystallized with the flame being maintained around the body will. Considered publications: German patent specifications No. 524 985, 525,649; U.S. Patent No. 2,634,554.
DET10180A 1953-11-05 1954-11-04 Electrical semiconductor suitable as resistor or rectifier Pending DE1047757B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1047757XA 1953-11-05 1953-11-05

Publications (1)

Publication Number Publication Date
DE1047757B true DE1047757B (en) 1958-12-31

Family

ID=22302304

Family Applications (1)

Application Number Title Priority Date Filing Date
DET10180A Pending DE1047757B (en) 1953-11-05 1954-11-04 Electrical semiconductor suitable as resistor or rectifier

Country Status (1)

Country Link
DE (1) DE1047757B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE524985C (en) * 1927-12-07 1931-05-18 Swiss Jewel Co Sa Device for the production of synthetic gemstones
DE525649C (en) * 1926-05-18 1931-11-19 I G Farbenindustrie Akt Ges Process for the payment of artificial gemstones
US2634554A (en) * 1953-04-14 Synthetic gem production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634554A (en) * 1953-04-14 Synthetic gem production
DE525649C (en) * 1926-05-18 1931-11-19 I G Farbenindustrie Akt Ges Process for the payment of artificial gemstones
DE524985C (en) * 1927-12-07 1931-05-18 Swiss Jewel Co Sa Device for the production of synthetic gemstones

Similar Documents

Publication Publication Date Title
DE1667657C3 (en) Process for making silicon carbide whiskers
DE2360699A1 (en) GLASS FIBER WITH HIGH MODULE OF ELASTICITY AND THE METHOD OF MANUFACTURING IT
DE1234699B (en) Process for the production of lanthanum aluminate single crystals
DE19514412C2 (en) Double crucible for growing a silicon single crystal
DE3111657A1 (en) METHOD FOR PRODUCING MAGNETIC FILM SUBSTRATE COMPOSITIONS
DE1596949B2 (en) FAST AND AT RELATIVELY LOW TEMPERATURE DE-GLASS COMPOSITIONS
DE2550706A1 (en) METHOD OF MANUFACTURING ARTICLES FROM QUARTZ GLASS BY DRAWING
DE1047757B (en) Electrical semiconductor suitable as resistor or rectifier
DE1767394A1 (en) Process for the production of Mg-Al spinel crystals with stoechiometric composition for integrated circuits
DE685688C (en) Process for the manufacture of copper ruby glasses
DE304857C (en)
DE1186387B (en) Refractory materials and processes for their manufacture
DE2635373A1 (en) METHOD AND DEVICE FOR THE CONTINUOUS GROWING OF SINGLE CRYSTALS OF A CERTAIN SHAPE
DE968734C (en) Monocrystalline mass of high refractive index and high color dispersion and the method and apparatus for their manufacture
DE2605585B2 (en) Process for the production of beryl single crystals
DE2435455B2 (en) METHOD OF MANUFACTURING TELLURITE GLASS
DE913676C (en) Process for producing germanium crystals
DE2441298C3 (en) Process for making soft hexagonal boron nitride crystals
DE977436C (en) Process for the production of crystalline, in particular semiconducting elements by means of electrical gas discharge
DE391874C (en) Process for the production of blocks, rods, bars and similar shaped pieces of the highest melting metals, like tungsten, consisting of one or very few macro crystals
DE2523346C2 (en) Method and device for recrystallizing a silver alloy powder for dental amalgam
CH666290A5 (en) GOLDBERYLL SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME.
AT240333B (en) Process for the thermal deposition of elemental silicon or another semiconducting element
DE1197862B (en) Method and apparatus for producing calcium titanate single crystals free of twinning
DE1226993B (en) Process for the production of thallium telluride of the composition Tl Te or isomorphic mixed crystal compounds based on Tl Te