DE10357354A1 - Process for producing a precursor ceramic - Google Patents

Process for producing a precursor ceramic Download PDF

Info

Publication number
DE10357354A1
DE10357354A1 DE2003157354 DE10357354A DE10357354A1 DE 10357354 A1 DE10357354 A1 DE 10357354A1 DE 2003157354 DE2003157354 DE 2003157354 DE 10357354 A DE10357354 A DE 10357354A DE 10357354 A1 DE10357354 A1 DE 10357354A1
Authority
DE
Germany
Prior art keywords
aluminum
precursor
ceramic
matrix
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2003157354
Other languages
German (de)
Inventor
Alexander Klonczynski
Ralf Riedel
Martin Koehne
Herwig Schiefer
Rahul Harshe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE2003157354 priority Critical patent/DE10357354A1/en
Priority to PCT/DE2004/002234 priority patent/WO2005056494A1/en
Priority to EP04789943A priority patent/EP1704129A1/en
Publication of DE10357354A1 publication Critical patent/DE10357354A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5603Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Abstract

Es wird ein Verfahren zur Herstellung einer Precursor-Keramik durch Pyrolyse von sauerstoffhaltigen elementorganischen Precursor-Polymeren vorgestellt. Die Precursor-Polymere enthalten Aluminium als Additiv.A process for producing a precursor ceramic by pyrolysis of oxygen-containing element-organic precursor polymers is presented. The precursor polymers contain aluminum as an additive.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Precursor-Keramik nach dem Oberbegriff des unabhängigen Anspruchs.The The invention relates to a method for producing a precursor ceramic according to the generic term of the independent Claim.

Bei der Herstellung von keramischen Glühstiftkerzen aus Keramik-Verbundwerkstoffen werden durch die Pyrolyse von elementorganischen Precursoren amorphe SiOC-Keramiken gewonnen. Vorteile des Precursor-Thermolyse-Verfahrens gegenüber den konventionellen Herstellungsverfahren für Keramiken (Sintern) sind die wesentlich niedrigeren Prozesstemperaturen und die einfache Verarbeitbarkeit und Formbarkeit von Polysiloxanharzen.at the production of ceramic glow plugs from ceramic composites become amorphous by the pyrolysis of elemental organic precursors SiOC ceramics won. Advantages of the precursor thermolysis process across from the conventional manufacturing method for ceramics (sintering) are the much lower process temperatures and the simple Processability and moldability of polysiloxane resins.

Die Herstellung von Formkörpern ist aber nur bei Einsatz von zusätzlichen Füllstoffen möglich, da sonst Schwindungsrisse und Poren während der Pyrolyse auftreten. Mittels geeigneter Füllstoffe lassen sich auf diese Weise die Eigenschaften (Wärmeausdehnungskoeffizient, Wärmeleitfähigkeit, spezifischer elektrischer Widerstand) des Komposits genau einstellen. Hierbei ist es möglich, wie in der EP-B-0 412 428 offenbart, reaktive Füller einzusetzen, um eine bessere Anbindung der Füllstoffe an die Matrix zu erreichen oder auch inerte Füllstoffe zu verwenden.The Production of moldings but only with the use of additional fillers possible, otherwise shrinkage cracks and pores during pyrolysis occur. By means of suitable fillers In this way, the properties (thermal expansion coefficient, thermal conductivity, specific electrical resistance) of the composite. Here it is possible as disclosed in EP-B-0 412 428, to use reactive fillers for a better Connection of fillers to reach the matrix or to use inert fillers.

Durch die Wahl der Füllstoffe wird das elektrische und physikalische Eigenschaftsprofil des nach der Pyrolyse resultierenden Keramik-Verbund-Werkstoffes der Glühstiftkerze exakt auf das Anforderungsprofil zugeschnitten. Die Verwendung eines sauerstoffhaltigen Polysiloxan-Precursors als Ausgangsmaterial ermöglicht die einfache Verarbeitbarkeit unter Luft und damit die Herstellung kostengünstiger Produkte. Das Pyrolyse-Produkt des gefüllten Polysiloxans besitzt dabei eine gute Festigkeit, hohe chemische Stabilität (Oxidation, Korrosion) und ist gesundheitlich unbedenklich. Allgemein liegt einer der großen Vorteile des Precursor-Thermolyse-Verfahrens gegenüber den konventionellen Herstelllungsverfahren (Sintern) für Keramik-Verbund-Werkstoffe in der Möglichkeit, daß ein größeres Spektrum von Füllstoffen zur Verfügung steht. Zum einen, weil die Pyrolyse im allgemeinen bei wesentlich niedrigeren Temperaturen abläuft als der Sinterprozeß, wodurch bei Sintertemperaturen flüssige oder flüchtige Füllstoffe bei dem Precursor-Pyrolyse-Prozeß noch verwendet und zudem bei höheren Temperaturen auftretende Phasenreaktionen vermieden werden können; zum anderen, weil die Polysiloxanharze als schmelzbare duroplastische und in organischen Lösungsmitteln lösliche Polymere ein einfaches und extrem homogenes Einarbeiten von Füllstoffen in den Precursor ermöglichen (Kneten, Lösen). Dies ist deshalb so interessant, weil mit einer großen Auswahl an Füllern die Eigenschaften des Precursor-Verbund-Werkstoffes über ein weites Spektrum eingestellt werden können.By the choice of fillers becomes the electrical and physical property profile of the pyrolysis resulting ceramic composite material of the glow plug exactly tailored to the requirement profile. The use of a oxygen-containing polysiloxane precursor as starting material possible the ease of processing under air and thus the production cost-effective Products. The pyrolysis product of the filled polysiloxane has good strength, high chemical stability (oxidation, corrosion) and is harmless to health. Generally one of the big advantages the precursor thermolysis process over the conventional manufacturing process (Sintering) for Ceramic composite materials in the possibility of having a wider range of fillers to disposal stands. First, because pyrolysis is generally essential lower temperatures expires as the sintering process, whereby liquid at sintering temperatures or fleeting fillers still used in the precursor pyrolysis process and also at higher Temperatures occurring phase reactions can be avoided; to the other, because the polysiloxane resins as fusible thermoset and organic solvent-soluble polymers a simple and extremely homogeneous incorporation of fillers allow in the precursor (Kneading, loosening). This is so interesting because with a large selection on fillers the properties of the precursor composite material over a wide range can be adjusted.

Um jedoch die Einstellung der Eigenschaften über die Füllstoffe zu gewährleisten, muss der Einfluss der Matrix auf die jeweilige Eigenschaft möglichst gering sein. Da die Matrix in allen hergestellten Verbunden der keramischen Glühstiftkerze ein zusammenhängendes Netzwerk bildet, ergibt sich für die Herstellung der isolierenden Zwischenschicht des Glühstifts ein Problem, falls die Matrix nach dem Herstellungsprozess einen zu niedrigen spezifischen elektrischen Widerstand besitzt. Ein weiteres Problem ergibt sich für den Fall, dass die Matrix beziehungsweise der Verbund aufgrund von Phasenumwandlungen, Kristallisation und Oxidation an Hochtemperaturfestigkeit und Thermoschockbeständigkeit verliert. Die Problematik des niedrigen spezifischen elektrischen Widerstands sowie der unerwünschten Kristallisation des Matrixmaterials konnte durch den Einsatz von borhaltigen Füllstoffen wesentlich eingeschränkt werden. Das Vorliegen eines amorphen Glases kann jedoch bei hohen Temperaturen zu einer nur unzureichenden Kriechbeständigkeit des Matrixmaterials führen. Dies kann sich insbesondere in der lokalen Verformung des Materials in den heißen Bereichen des Glühstifts auswirken.Around However, to ensure the adjustment of the properties of the fillers the influence of the matrix on the respective property must be as much as possible be low. Since the matrix in all manufactured composites of ceramic glow plug a coherent one Network forms, results for the production of the insulating intermediate layer of the glow plug a problem if the matrix becomes one after the manufacturing process has low electrical resistivity. Another one Problem arises for the case that the matrix or the composite due to Phase transformations, crystallization and oxidation at high temperature strength and thermal shock resistance loses. The problem of low specific electrical Resistance as well as the unwanted Crystallization of the matrix material could be achieved through the use of boron-containing fillers significantly limited become. The presence of an amorphous glass can, however, at high Temperatures to insufficient creep resistance of the matrix material. This especially in the local deformation of the material in the hot ones Areas of the glow plug.

Ziel der vorliegenden Erfindung ist es daher, die spezifischen elektrischen Widerstände des verwendeten Materials zu erhöhen und zu stabilisieren und eine Erhöhung der Hochtemperaturkriechbeständigkeit zu erzielen.aim It is therefore the object of the present invention to provide the specific electrical resistors of the material used and to stabilize and increase the high temperature creep resistance to achieve.

Vorteile der ErfindungAdvantages of invention

Das erfindungsgemäße Verfahren zur Herstellung von Precursor-Keramiken durch Pyrolyse von sauerstoffhaltigen elementorganischen Precursor-Polymeren hat gegenüber dem Stand der Technik den Vorteil, dass das entstehende Material einen erhöhten spezifischen Widerstand aufweist.The inventive method for the production of precursor ceramics by pyrolysis of oxygen-containing element-organic precursor polymers has over the prior art Advantage that the resulting material has an increased resistivity having.

Weiterhin ist vorteilhaft, dass es eine wesentlich verbesserte Hochtemperatur-Kriechbeständigkeit zeigt.Farther is advantageous in that it shows a substantially improved high temperature creep resistance.

Ein weiterer Vorteil liegt darin, dass das entsehende Material keine Phasenumwandlungen im Material erfährt, die zu seiner mechanischen Zerstörung führen (Dauerhaltbarkeit).One Another advantage is that the resulting material no Phase transformations in the material undergoes, leading to its mechanical destruction to lead (Durability).

Zudem liegt ein Vorteil des erfindungsgemäßen Verfahrens darin, dass keine Alterung des spezifischen elektrischen Widerstands und somit keine Alterung der Funktionseigenschaften des entstehenden Materials auftritt.moreover an advantage of the method according to the invention is that no aging of the specific electrical resistance and thus no aging of the functional properties of the resulting material occurs.

Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.advantageous Further developments of the invention will become apparent from the measures mentioned in the dependent claims.

Ausführungsbeispieleembodiments

Kern der Erfindung ist die Verwendung von Aluminium als Zusatz durch eine Modifizierung des Polymers und/oder durch Zusatz als Additiv in Form aluminiumhaltiger Füllstoffe. Bei der Modifizierung handelt es sich um eine Synthese (bspw. Sol-Gel-Synthese) eines aluminiumhaltigen Polymers. Bei der Verwendung als Additiv ist aufgrund des niedrigen Schmelzpunkts des Aluminiums die Verwendung als feinstes Nanopulver eine Grundvoraussetzung, die gewünschten Effekte zu erzielen. Als entscheidend kann hierbei die Reaktion des Aluminiums mit dem Sauerstoff aus der SiOC Matrix angesehen werden. Diese Reaktion führt zur Bildung eines Mullits, der wesentlich hochtemperaturbeständiger und speziell hochtemperaturkriech-beständiger ist als amorphes SiOC-Glas. Damit verbessert sich die Dauerhaltbarkeit des entstehenden Materials und die Alterung des elektrischen Widerstandes wird verringert.core The invention is the use of aluminum as an additive a modification of the polymer and / or by addition as an additive in the form of aluminum-containing fillers. The modification is a synthesis (eg sol-gel synthesis) an aluminum-containing polymer. When used as an additive is the use due to the low melting point of aluminum as the finest nanopowder a prerequisite, the desired To achieve effects. The reaction of the Aluminum can be viewed with the oxygen from the SiOC matrix. This reaction leads to form a mullite, which is substantially high temperature resistant and especially high temperature creep-resistant than amorphous SiOC glass. This improves the durability of the resulting material and the aging of the electrical resistance is reduced.

Es werden aluminiumhaltige SiO(A1)C Proben, die entweder durch Zusatz von Aluminiumnanopulver zum Polysiloxan oder durch Modifizierung der polymeren Vorstufen hergestellt wurden, in einer für den Anwendungsfall bestimmten Atmosphäre (d.h., unter Argon, H2, N2, CH4, etc.) im Temperaturbereich zwischen 600°C–1400°C pyrolisiert. Dabei ist das Vorgehen wie folgt: In Isolationsmassen, d.h., Massen, die nach einer Wärmebehandlung elektrisch isolierend sind (keramische Materialien mit einem spezifischen elektrischen Widerstand R > 103 Ωcm), beziehungsweise Leitmassen, d.h., Massen, die nach einer Wärmebehandlung elektrisch leitfähig sind (keramische Materialien mit einem spezifischen elektrischen Widerstand R < 100 Ωcm), der Glühstiftkerze werden während der Aufbereitung aluminiumhaltige Zusätze eingearbeitet.Aluminum-containing SiO (A1) C samples prepared either by adding aluminum nanopowders to the polysiloxane or by modifying the polymeric precursors are prepared in an intended atmosphere (ie, under argon, H 2 , N 2 , CH 4 , etc .) In the temperature range between 600 ° C-1400 ° C pyrolyzed. The procedure is as follows: In insulating compounds, ie, masses which are electrically insulating after a heat treatment (ceramic materials with a specific electrical resistance R> 10 3 Ωcm), or conductive materials, ie, masses which are electrically conductive after heat treatment (Ceramic materials with a specific electrical resistance R <10 0 Ωcm), the glow plug are incorporated during the preparation aluminum-containing additives.

Die Menge an eingearbeitetem Aluminium liegt im Bereich von 0,1 bis 60 Masse-%, vorzugsweise zwischen 0,1 und 5 Masse-%.The Amount of incorporated aluminum is in the range of 0.1 to 60% by mass, preferably between 0.1 and 5% by mass.

Die Pyrolysen der Isolationsmassen wurden alle unter Standardbedingungen (Aufheizen von 20°C auf 1300°C mit 30 K/h, Halten für 1 h bei 1300°C, und Abkühlen mit 300 K/h) durchgeführt, um den Vergleich mit dem Eigenschaftsprofil herkömmlicher Standardmassen zu gewährleisten.The Pyrolyses of the insulation masses were all under standard conditions (Heating up to 20 ° C at 1300 ° C with 30 K / h, hold for 1 h at 1300 ° C, and cooling with 300 K / h), for comparison with the property profile of conventional standard masses guarantee.

Beispiel 1:Example 1:

Herstellung von zwei Massen mit gleichem Volumenanteil an Füllstoffen:

  • – Masse 1: 65 Vol-% Polymer (MK-Polymer, Polysilsesquioxan)/30 Vol-% SiO2/5 Vol% Aluminiumnanopulver
  • – Masse 2: 65 Vol-% Polymer (MK-Polymer, Polysilsesquioxan)/25 Vol-% SiO2/10 Vol% Aluminiumnanopulver
Preparation of two masses with equal volume fraction of fillers:
  • - Mass 1: 65% by volume of polymer (MK polymer, polysilsesquioxane) / 30% by volume SiO 2 /5% by volume of aluminum nanopowder
  • - Mass 2: 65% by volume of polymer (MK polymer, polysilsesquioxane) / 25% by volume SiO 2 /10% by volume of aluminum nanopowder

Die Aufbereitung der Massen erfolgte über das Einmahlen der Pulver in der Planetenkugelmühle und anschließendem Sieben mit einer Maschenweite zwischen ungefähr 100 μm und ungefähr 500 μm. Danach wurden die Proben mit Hilfe eines Warmpressvorgangs formgegeben und vernetzt. Die Pyrolyse der Proben erfolgte mit Aufheizraten im Bereich 25 K/h, um kompakte Proben zu gewährleisten.The Preparation of the masses took place by grinding in the powders in the planetary ball mill and then Sieves with a mesh size between about 100 μm and about 500 μm. After that, the samples became formed and networked with the help of a hot pressing process. The Pyrolysis of the samples was carried out at heating rates in the range 25 K / h, to ensure compact samples.

Um die Phasenentwicklung bei steigender Pyrolyseendtemperatur zu beobachten, wurden die Pyrolysen bei 1100°C, 1200°C, 1300°C und 1400°C durchgeführt.Around to observe the phase evolution with increasing pyrolysis end temperature, the pyrolyses were at 1100 ° C, 1200 ° C, 1300 ° C and 1400 ° C performed.

Die Röntgenbeugungs-Untersuchungen an den Materialien zeigen die Reaktion des Aluminiums mit dem Sauerstoff der SiOC Matrix zu Mullit sowie die gleichzeitige Bildung von SiC. Dies deutet darauf hin, dass es durch den Einsatz von Aluminiumnanopulver möglich ist, den überschüssigen Kohlenstoff aus der Matrix zu binden. Somit leistet offenbar der Kohlenstoff keinen Beitrag zur Leitfähigkeit.The X-ray diffraction studies on the materials show the reaction of the aluminum with the oxygen of the SiOC matrix to mullite as well as the simultaneous formation of SiC. This indicates that the use of aluminum nanopowders makes it possible to bind the excess carbon from the matrix. Thus, apparently the carbon does not contribute to the conductivity.

Da die Separation des Kohlenstoffs als Hauptgrund für die Verringerung des spezifischen elektrischen Widerstandes angesehen werden kann, ließ sich durch die Messung des spezifischen elektrischen Widerstandes der Proben eine Korrelation zur Ausscheidung beziehungsweise Entwicklung des freien Kohlenstoffs in der SiOC-Keramik nachweisen. Es zeigt sich, dass sich der spezifische elektrische Widerstand der Proben auch bei Pyrolysetemperaturen oberhalb 1300°C nicht verringert. Weiterhin ist zu erkennen, dass das Niveau des spezifischen Widerstandes mit 106 Ωcm um 3-4 Größenordnungen höher liegt als für aluminiumfreie SiOC/SiO2-Komposite.Since the separation of the carbon can be regarded as the main reason for the reduction of the electrical resistivity, the measurement of the electrical resistivity of the samples showed a correlation to the precipitation or evolution of the free carbon in the SiOC ceramic. It turns out that the specific electrical resistance of the samples does not decrease even at pyrolysis temperatures above 1300 ° C. Furthermore, it can be seen that the level of the resistivity of 10 6 Ωcm is 3-4 orders of magnitude higher than for aluminum-free SiOC / SiO 2 composites.

Beispiel 2:Example 2:

Es wurden aluminiumhaltige Leitmassen und Isolationsmassen für eine keramische Glühstiftkerze mit einem Durchmesser von ungefähr 3 mm hergestellt. Die Herstellung erfolgte über das Einmahlen der Füllstoffe in der Planetenkugelmühle und anschließendem Sieben mit einer Maschenweite von 150 μm. Danach wurden die Proben mittels eines Warmpresvorgangs formgegeben und vernetzt. Die Zusammensetzungen der keramischen Ausgangsmassen lagen im folgendem Bereich: 50-80 Vol-% Polysiloxan mit einem bereits im Polymer enthaltenen Anteil an Aluminiumnanopulver von 5 Vol-% sowie 1 Masse-% Zirkonacetylacetonat (bezogen auf den Polymeranteil) 0-10 Vol.-% SiC 0-20 Vol.-% Al2O3 0-30 Vol.-% MoSi2 0-5 Masse-% Bor Aluminum-containing conductive compounds and insulating compounds for a ceramic glow plug with a diameter of approximately 3 mm were produced. The preparation was carried out by milling the fillers in the planetary ball mill and subsequent sieving with a mesh size of 150 microns. Thereafter, the samples were molded by means of a hot press and crosslinked. The compositions of the ceramic starting materials were in the following range: 50-80% by volume Polysiloxane with a content of aluminum nanopowder already contained in the polymer of 5% by volume and 1% by mass of zirconium acetylacetonate (based on the polymer content) 0-10% by volume SiC 0-20% by volume Al 2 O 3 0-30% by volume MoSi 2 0-5% by mass boron

Die Pyrolyse wurde mit einer Aufheizrate von 25K/h bis 1300°C, einer Stunde Haltezeit bei Endtemperatur und einem Argonfluß von 21/h durchgeführt. Der Füllgrad in einem Graphitofen der Firma FCT betrug 12%. Danach wurden die Proben in einem Nabertherm Ofen für 8h/1350°C an Luft ausgelagert.The Pyrolysis was carried out at a heating rate of 25K / h to 1300 ° C, a Hour holding time at final temperature and an argon flow of 21 / h carried out. The degree of filling in a graphite furnace of the company FCT was 12%. After that, the Samples are stored in air in a Nabertherm oven for 8h / 1350 ° C.

Es konnte gezeigt werden, dass sich der spezifische elektrische Widerstand des Isolationsmaterials auch bei Zugabe von Aluminium auf einem Wert oberhalb 106 Ohm cm stabilisieren läßt. Auch nach Auslagerungstemperaturen von 1350°C ist keine Widerstandsalterung zu erkennen.It could be shown that the specific electrical resistance of the insulating material can be stabilized even with the addition of aluminum to a value above 10 6 ohm cm. Even after aging temperatures of 1350 ° C no resistance aging can be seen.

Die nur sehr geringe Nachschwindung des Materials bei Auslagerungen von 1350°C deutet auf eine signifikant höhere Kriechbeständigkeit des Matrixmaterials hin.The only very slight shrinkage of the material during outsourcing from 1350 ° C indicates a significantly higher creep resistance of the matrix material.

Die Alterung der elektrischen Eigenschaften des leitfähigen Materials ergibt sich zu einem großen Teil durch die Nachschwindung des Matrixmaterials und der damit einhergehenden Annäherung der MoSi2-Partikel (Verschiebung der Perkolationskurve). Daher folgt aus einer geringeren Nachschwindung gleichzeitig eine geringe Alterung des spezifischen elektrischen Widerstands der Leitmassen.The aging of the electrical properties of the conductive material results to a large extent from the shrinkage of the matrix material and the concomitant approximation of the MoSi 2 particles (displacement of the percolation curve). Therefore, a slight decrease in shrinkage simultaneously results in a slight aging of the electrical resistivity of the conductive compounds.

Dies ist der entscheidende Vorteil zur Verwendung von Aluminium als Additiv zur Erhöhung der Hochtemperaturstabilität.This is the key advantage of using aluminum as an additive to increase the high temperature stability.

Das Kristallisationsverhalten bezüglich der Bildung von Cristobalit wurde anhand von dilatometrischen Messungen untersucht. Damit konnte gezeigt werden, dass sich auch bei Temperaturen von 1350°C an Luft kein Cristobalit im Bulk der unterschiedlichen Materialen gebildet hat. Cristobalit besitzt nämlich einen wesentlich höheren Wärmeausdehnungskoeffizienten als die anderen Materialien in den entsprechenden Massen. Im Vergleich zu den Systemen ohne Aluminium lassen diese Ergebnisse auf eine wesentlich verbesserte Thermowechselbeständigkeit schließen.The Crystallization behavior with respect The formation of cristobalite was assessed by dilatometric measurements examined. This could be shown that even at temperatures from 1350 ° C in air no cristobalite in bulk of different materials has formed. Cristobalite has a much higher thermal expansion coefficient than the other materials in the corresponding masses. Compared to the systems without aluminum let these results on one Significantly improved thermal shock resistance close.

Beispiel 3:Example 3:

Es wurde ein aluminiummodifiziertes Harz über einen Sol-Gel-Prozeß hergestellt. Hierzu wurde MK-Polymer mit 1 Masse % Zirkonacetylacetonat als Katalysator in Isopropanol gelöst und ein Anteil von 9,1 Masse-% Alumatran (AKA005 der Firma ABCR) (bezogen auf das Polymer) zugegeben. Nach der Gelierung wurde das Gel bei 120°C 5h lang getrocknet. Danach wurde das getrocknete Gel gemahlen und anschließend bei 180°C warmgepresst. Die Pyrolysetemperatur betrug 1100°C in Argonatmosphäre.An aluminum-modified resin was prepared by a sol-gel process. For this purpose, MK polymer was dissolved with 1 mass% Zirkonacetylacetonat as a catalyst in isopropanol and a proportion of 9.1 Mass% alumatran (AKA005 from ABCR) (based on the polymer) was added. After gelation, the gel was dried at 120 ° C for 5 hours. Thereafter, the dried gel was ground and then hot-pressed at 180 ° C. The pyrolysis temperature was 1100 ° C in argon atmosphere.

Die Proben wurden nach der Pyrolyse für ungefähr 10 bis ungefähr 50 Stunden bei Temperaturen von 1200°C–1700°C in Argonatmosphäre nachbehandelt.The Samples were after pyrolysis for about 10 to about 50 hours post-treated at temperatures of 1200 ° C-1700 ° C in argon atmosphere.

In den Röntgenbeugungsdiagrammen für unterschiedliche Auslagerungstemperaturen ist zu erkennen, dass sich ein Mullit/SiC-Gefüge in einer amorphen Matrix bildet. Gleichzeitg ist festzustellen, dass auch bei Temperaturen von 1700°C ein großer Anteil des Materials amorph vorliegt.In X-ray diffraction diagrams for different Auslagerstemperaturen can be seen that a mullite / SiC microstructure in a forms amorphous matrix. At the same time it should be noted that also at Temperatures of 1700 ° C a large Proportion of the material is amorphous.

Die Proben lagen nach der thermischen Behandlung rissfrei vor. Sie zeigten keinerlei Anzeichen von carbothermischer Reduktion, was auf eine signifikante Verbesserung der Hochtemperaturbeständigkeit im Vergleich zu aluminiumfreien SiOC-Materialien hindeutet.The Samples were crack-free after the thermal treatment. They showed no signs of carbothermic reduction, indicating a significant improvement in high temperature resistance compared to aluminum free SiOC materials indicates.

Mit aluminiummodifizierten Polymeren sowie bei der Verwendung von Alumiumnanopulver als Füllstoff lassen sich somit signifikant verbesserte Hochtemperatureigenschaften bei Temperaturen>1600°C erreichen.With aluminum-modified polymers and when using aluminum nanopowder as a filler thus significantly improved high temperature properties Temperatures> 1600 ° C reach.

Durch Verwendung von Aluminiumnanopulver ist eine signifikante Steigerung des spezifischen elektrischen Widerstandes der SiOC Matrix möglich. Die Reaktion des Aluminium mit dem Sauerstoff aus der SiOC Matrix führt dabei zur Bildung eines stabilen Mullit/SiC-Verbundes.By Use of aluminum nanopowder is a significant increase the specific electrical resistance of the SiOC matrix possible. The Reaction of the aluminum with the oxygen from the SiOC matrix leads to this to form a stable mullite / SiC composite.

Die Glasübergangstemperatur von Alumosilikatgläsern liegt nach Literaturangaben bei T > 1500°C und damit mindestens 150°C höher als bei SiO2 beziehungsweise Borosilikatgläsern. Gleichzeitig liegt das erreichbare Festigkeitsniveau von einem Mullit/SiC-Verbund wesentlich höher (ungefähr 400 MPa) als das von reinen SiOC-Keramiken (ungefähr 150 MPa).The glass transition temperature of aluminosilicate glass is according to literature data at T> 1500 ° C and thus at least 150 ° C higher than SiO 2 or borosilicate glasses. At the same time, the achievable strength level of a mullite / SiC composite is much higher (about 400 MPa) than that of pure SiOC ceramics (about 150 MPa).

Bei der Verwendung von Aluminiumadditiven im Verbundmaterial von zum Beispiel Glühstiftkerzen konnten auch nach längeren Auslagerungszeiten (1400°C/50h) keine anderen Oxidationsprodukte (z.B. MoO3, Mo5Si3, SiO2) im Bulk des Materials nachgewiesen werden.When using aluminum additives in the composite material of, for example, glow plugs, no other oxidation products (eg MoO 3 , Mo 5 Si 3 , SiO 2 ) could be detected in the bulk of the material even after longer removal times (1400 ° C./50 h).

Die mit dem erfindungsgemäßen Verfahren erreichbaren Verbesserungen durch Einbau von Aluminium in die Polymermatrix sind:

  • – Bildung von Aluminiumoxid mit dem Sauerstoff aus der SiOC-Matrix und dem elementaren Aluminium als Füllstoff. Aus den zusätzlichen freien Bindungen am Silizium die vorher durch Sauerstoff belegt waren, bildet sich mit dem überschüssigen Kohlenstoff aus der SiOC-Matrix Siliziumcarbid. Dies führt zu einer Erhöhung des spezifischen elektrischen Widerstands des Materials unabhängig von den noch zusätzlich verwendeten Füllstoffen
  • – Wesentlich verbesserte Hochtemperaturkriechbeständigkeit durch Bildung eines Mullit/SiC-Komposits mit signifikant erhöhter Glasübergangstemperatur [Werte?]
  • – Keine Bildung von Cristobalit und damit eine verbesserte Dauerhaltbarkeit
  • – Insbesondere aufgrund der höheren Glasübergangstemperatur ergibt sich aufgrund der geringen Neigung zur Nachschwindung keine Alterung des spezifischen elektrischen Widerstands des Leitmaterials und damit keine Alterung der Funktionseigenschaften des entstehenden Materials bezüglich Aufheizzeit und Glühtemperatur
The improvements achievable by the process according to the invention by incorporation of aluminum into the polymer matrix are:
  • - Formation of alumina with the oxygen from the SiOC matrix and the elemental aluminum as filler. From the additional free bonds on the silicon, which were previously occupied by oxygen, silicon carbide forms with the excess carbon from the SiOC matrix. This leads to an increase in the specific electrical resistance of the material, regardless of the fillers additionally used
  • - Significantly improved high temperature creep resistance by forming a mullite / SiC composite with significantly increased glass transition temperature [values?]
  • - No formation of cristobalite and thus improved durability
  • - Especially due to the higher glass transition temperature is due to the low tendency to Nachschwindung no aging of the electrical resistivity of the conductive material and thus no aging of the functional properties of the resulting material with respect to heating and annealing temperature

Claims (8)

Verfahren zur Herstellung einer Precursor-Keramik durch Pyrolyse von sauerstoffhaltigen elementorganischen Precursor-Polymeren, dadurch gekennzeichnet, dass die Precursor-Polymere Aluminium als Additiv enthalten.A process for producing a precursor ceramic by pyrolysis of oxygen-containing organoelement precursor polymers, characterized in that the precursor polymers contain aluminum as an additive. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Aluminium in Form von Aluminum-Nanopulver als Füllstoff den Precursor-Polymeren zugegeben wird.Method according to claim 1, characterized in that that the aluminum in the form of aluminum nanopowder as a filler is added to the precursor polymers. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass aluminiummodifizierte elementorganische Precursor-Polymere als Ausgangsstoffe verwendet werden.Method according to claim 1, characterized in that that aluminum-modified element-organic precursor polymers be used as starting materials. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Aluminium mit dem Sauerstoff des elementorganischen Precursor-Polymeren zu Mullit reagiert.Method according to one of claims 1 to 3, characterized that the aluminum with the oxygen of the organoelement precursor polymer reacted to mullite. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der überschüssige Kohlenstoff des elementorganischen Precursor-Polymeren unter Bildung von SiC reagiert.Method according to one of claims 1 to 4, characterized that the excess carbon of the organo-organic precursor polymer to form SiC responding. Verfahren nach Anspruch 4 und 5, dadurch gekennzeichnet, dass sich ein stabiler Mullit/SiC-Verbund bildet.Method according to claims 4 and 5, characterized that forms a stable mullite / SiC composite. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der spezifische Widerstand der Precursor-Keramik > 106 Ohm cm beträgt.Method according to one of the preceding claims, characterized in that the specific resistance of the precursor ceramic is> 10 6 ohm cm. Verwendung von aluminiumhaltigen Precursor-Keramiken zur Herstellung von Glühstiftkerzen.Use of aluminum-containing precursor ceramics for the production of glow plugs.
DE2003157354 2003-12-09 2003-12-09 Process for producing a precursor ceramic Withdrawn DE10357354A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2003157354 DE10357354A1 (en) 2003-12-09 2003-12-09 Process for producing a precursor ceramic
PCT/DE2004/002234 WO2005056494A1 (en) 2003-12-09 2004-10-08 Method for producing a precursor ceramic
EP04789943A EP1704129A1 (en) 2003-12-09 2004-10-08 Method for producing a precursor ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2003157354 DE10357354A1 (en) 2003-12-09 2003-12-09 Process for producing a precursor ceramic

Publications (1)

Publication Number Publication Date
DE10357354A1 true DE10357354A1 (en) 2005-07-07

Family

ID=34638503

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2003157354 Withdrawn DE10357354A1 (en) 2003-12-09 2003-12-09 Process for producing a precursor ceramic

Country Status (3)

Country Link
EP (1) EP1704129A1 (en)
DE (1) DE10357354A1 (en)
WO (1) WO2005056494A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635250A (en) * 1985-04-26 1997-06-03 Sri International Hydridosiloxanes as precursors to ceramic products
US5418298A (en) * 1993-03-19 1995-05-23 Regents Of The University Of Michigan Neutral and mixed neutral/anionic polymetallooxanes
DE10055082A1 (en) * 2000-11-07 2002-05-16 Bosch Gmbh Robert Ceramic composite

Also Published As

Publication number Publication date
EP1704129A1 (en) 2006-09-27
WO2005056494A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
DE2449662C2 (en) Process for the production of a sealed object made of silicon carbide ceramic as well as preformed, pressure-free sintered ceramic object made of silicon carbide
DE3734274C2 (en) Ceramic glow plug and process for its manufacture
DE4113059C2 (en) Process for the production of black glass
EP1339652A2 (en) Ceramic composite
DE19906720B4 (en) Molybdenum disilicide heating element and process for its preparation
DE3103167C2 (en) The method for producing and using flaky β-silicon carbide
DE4440005A1 (en) Silicon nitride ceramic heater used, e.g. for household appliances
DE3041762A1 (en) MASS OF POLYSILANE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR THE PRODUCTION OF CERAMIC MATERIALS FROM SILICON CARBIDE
DE4016569A1 (en) SILICON OXY CARBIDE GLASS AND METHOD FOR THE PRODUCTION THEREOF
DE4105325C2 (en) A process for producing a machinable green boron carbide body, a process for producing a sintered boron carbide body and a uniform mixture comprising boron carbide powder and a preceramic organosilicon polymer
DE19519864B4 (en) Silicon nitride intermediate and process for its preparation
DE19545346C2 (en) Process for the production of ceramic nanocomposites
DE10357354A1 (en) Process for producing a precursor ceramic
EP1472197A1 (en) Ceramic composite material, method for the production thereof, and pencil-type glow plug containing such a composite material
DE102008062155B4 (en) A method for producing a solidified, ready-to-use ceramic sintered body, sintered body and use of a ceramic mass
DE10333961A1 (en) Process for producing a precursor ceramic
DE10243017B4 (en) Ceramic composite and glow plug with such a composite material
WO2006134086A1 (en) Conductive paste for producing an electric strip conductor and method for producing the electric strip conductor while using the conductive paste
EP0005198A1 (en) Process for manufacturing a dense ceramic material with a high purity mullite content
WO2006018347A1 (en) Ceramic electrical resistance
DE4015358A1 (en) High strength silicon carbide body - contg. dispersed acicular silicon carbide particles
DE102008059780B3 (en) Rod-shaped ceramic resistant heating body useful for guide- and calendar rollers in polymer film technique, comprises carbon nanotubes embedded as electric conductive phase in a silicate- or oxide ceramic matrix
DE10326565A1 (en) Process for producing an insulating ceramic composite material and insulating ceramic composite material
DE102013006118B3 (en) Production of high-purity, dense silicon carbide sintered bodies and thus obtainable sintered bodies
DE10326567A1 (en) Process for the production of a ceramic composite material and ceramic composite material

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee