DE10336128A1 - Heat-sensitive element for IR detectors comprises a flat pyroelectric with electrodes made from a ferromagnetic conducting metal oxide arranged on both side surfaces - Google Patents

Heat-sensitive element for IR detectors comprises a flat pyroelectric with electrodes made from a ferromagnetic conducting metal oxide arranged on both side surfaces Download PDF

Info

Publication number
DE10336128A1
DE10336128A1 DE10336128A DE10336128A DE10336128A1 DE 10336128 A1 DE10336128 A1 DE 10336128A1 DE 10336128 A DE10336128 A DE 10336128A DE 10336128 A DE10336128 A DE 10336128A DE 10336128 A1 DE10336128 A1 DE 10336128A1
Authority
DE
Germany
Prior art keywords
pyroelectric
metal oxide
heat
electrode
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE10336128A
Other languages
German (de)
Inventor
Mohammed Prof. Dr. Es-Souni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fachhochschule Kiel
Original Assignee
Fachhochschule Kiel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fachhochschule Kiel filed Critical Fachhochschule Kiel
Priority to DE10336128A priority Critical patent/DE10336128A1/en
Publication of DE10336128A1 publication Critical patent/DE10336128A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Abstract

Heat-sensitive element comprises a flat pyroelectric (14) with electrodes (16) arranged on both side surfaces. At least one of the electrodes is made from a ferromagnetic conducting metal oxide. An independent claim is also included for a process for the production of a heat-sensitive element.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines wärmesensitiven Elements z.B. aus einer pyroelektrischen Funktionskeramik, die insbesondere in Form eines keramischen Filmes mit Hilfe des Sol-Gel-Verfahrens auf ein nahezu beliebiges Substrat aufgebracht werden kann. Das Verfahren kann weiterhin auf pyroelektrische Keramikfilme, die als Heterostrukturen ausgebildet sind, und IR-Detektoren Anwendung finden und betrifft das hergestellte Element.The The invention relates to a method for producing a heat-sensitive Elements e.g. from a pyroelectric functional ceramics, in particular in the form of a ceramic film using the sol-gel method can be applied to almost any substrate. The Method may further be applied to pyroelectric ceramic films as Heterostructures are formed, and find IR detectors application and concerns the manufactured element.

Im Stand der Technik sind eine Vielzahl von pyroelektrischen Materialien bekannt, von denen in der Industrie bevorzugt monokristalline Metalloxide Verwendung finden, z.B. Lithiumtantalat (LiTaO3) oder Strontiumbariumniobat Sr(BaxNb1–x)O3, kurz: SBN). Dabei ist ein pyroelektrischer Koeffizient p für Kristalle mit Spontanpolarisation – in Abwesen heit eines äußeren Feldes – als Änderung der Polarisation mit der Temperatur definiert. Eine Maßzahl für die Qualität eines Pyroelektrikums ist die so genannte Güte M (eng.: figure of merit), die auf verschiedene Weise in der Literatur definiert wird. Allen Definitionen gemein ist, dass M proportional zu p und invers proportional zum Wärmespeichervermögen (spezifische Wärme) und zum Absorptionsvermögen des Materials für elektromagnetische Strahlung erklärt ist und Idealerweise einen großen Wert annehmen sollte. Da alle Pyroelektrika zugleich relativ hohe Dielektrizitätskonstanten (DK) besitzen – schon deshalb, weil es sich dabei meist auch um Ferroelektrika handelt, bei denen sich Dipoldomänen ausbilden – zieht die Materialantwort auf elektrische Wechselfelder i. a. hohe Absorptionsverluste bei der Bewegung der Elementardipole (durch Dissipation von Wärme) nach sich, die es möglichst zu minimieren gilt.In the prior art, a variety of pyroelectric materials are known, of which in the industry preferably monocrystalline metal oxides are used, for example, lithium tantalate (LiTaO 3 ) or strontium barium niobate Sr (Ba x Nb 1-x ) O 3 , in short: SBN). In this case, a pyroelectric coefficient p for crystals with spontaneous polarization - in the absence of an external field - defined as a change in polarization with the temperature. A measure of the quality of a pyroelectric is the so-called quality M (eng: figure of merit), which is defined in various ways in the literature. Common to all definitions is that M is proportional to p and inversely proportional to the heat storage capacity (specific heat) and the absorptivity of the material for electromagnetic radiation and should ideally assume a high value. Since all pyroelectrics have at the same time relatively high dielectric constants (DK) - if only because they are usually ferroelectrics, where dipole domains are formed - the material response to alternating electric fields generally involves high absorption losses during the movement of the elementary dipoles (through dissipation of heat ), which should be minimized as far as possible.

Aufgrund der genannten Eigenschaften liegt eine wichtige Anwendung der Pyroelektrika in der Fertigung von IR-Sensoren.by virtue of the properties mentioned is an important application of pyroelectrics in the production of IR sensors.

Neben Einkristallen kennt der Stand der Technik auch polykristalline Schichten aus pyroelektrischen Keramiken, die normalerweise auf Substrate aufgetragen werden. Zu den gängigsten Methoden ihrer Herstellung zählt das Sol-Gel-Verfahren. Dabei werden zuerst die metallischen Komponenten der späteren Metalloxid-Beschichtung als organische Moleküle (typisch: Metallalkoholat, Metallsalze) in einem geeigneten Lösungsmittel (zum Beispiel Essigsäure, oder Methoxyethanol oder einem Gemisch aus diesen) in den gewünschten Massenverhältnissen vermischt. In einem solchen als Sol bezeichneten Gemisch können die Metallalkoholate durch Zugabe von Wasser hydrolysiert werden. Damit die Metalle nicht aus der Lösung ausfallen, ist das Sol zuerst zu stabilisieren, z.B. durch Zugabe von Acetylaceton, Essigsäure oder Diethyleneamin. Die teilweise hydrolysierten Alkoholate können langkettige Makromoleküle (Polymerisation) bilden, und bei Entzug des Lösungsmittels bildet sich ein organisches Gel, in dem alle Teilchen miteinander verbunden sind (hohe Viskosität). Das Aufbringen der keramischen Schichten erfolgt dann z.B. durch Aufschleudern des Gels auf hochreine Substrate (z.B. platiniertes Silizium, Aluminiumoxyd, Lanthanaluminat (LaAlO3), Glas, Metallsubstrate). Das aufgebrachte Material wird schließlich erhitzt (mehrere 100°C) zur Entfernung des Lösungsmittels und in vielen Fällen bei Temperaturen bis 1000°C noch gesintert, um möglichst gleichmäßige Schichten zu erzielen.In addition to single crystals, the prior art also knows polycrystalline layers of pyroelectric ceramics, which are normally applied to substrates. One of the most common methods of their preparation is the sol-gel process. In this case, first the metallic components of the later metal oxide coating are mixed as organic molecules (typically: metal alkoxide, metal salts) in a suitable solvent (for example acetic acid, or methoxyethanol or a mixture of these) in the desired mass ratios. In such a mixture referred to as sol, the metal alcoholates can be hydrolyzed by the addition of water. So that the metals do not precipitate out of the solution, the sol must first be stabilized, for example by adding acetylacetone, acetic acid or diethyleneamine. The partially hydrolyzed alkoxides can form long-chain macromolecules (polymerization), and upon removal of the solvent, an organic gel is formed, in which all the particles are bound together (high viscosity). The ceramic layers are then applied, for example, by spin-coating the gel onto high-purity substrates (eg, platinized silicon, aluminum oxide, lanthanum aluminate (LaAlO 3 ), glass, metal substrates). The applied material is finally heated (several 100 ° C) to remove the solvent and sintered in many cases at temperatures up to 1000 ° C in order to achieve the most uniform layers possible.

Aus einer Veröffentlichung von Pintilie und Constantin (Ferroelectrics, 173, 111-124, 1995) ist ferner bekannt, dass das Kontaktieren verschiedener piezoelektrischer Kerami ken auf Heterostrukturen führt, deren elektrische Eigenschaften sich wesentlich von denen der Konstituenten unterscheiden können. Am konkreten Beispiel von Bleilanthanzirkonattitanat (PLZT) mit verschiedenen weiteren Dotierungen wird insbesondere nachgewiesen, dass sich eine Heterostruktur herstellen lässt, die mit 540 μC/m2K einen wesentlich höheren pyroelektrischen Koeffizienten besitzt als jede der Einzelkomponenten (hier 360 bzw. 430 μC/m2K) für sich genommen. Die DK der Heterostruktur liegt zudem zwischen denen der Einzelschichten (und deutlich näher am niedrigeren Wert), weil es sich beim Kontaktieren zweier Dielektrika im Prinzip um eine Reihenschaltung von Kondensatoren handelt.It is further known from a publication by Pintilie and Constantin (Ferroelectrics, 173, 111-124, 1995) that contacting various piezoelectric ceramics leads to heterostructures whose electrical properties may differ substantially from those of the constituents. Using the specific example of lead-lantanzirconate titanate (PLZT) with various other dopants, it is demonstrated in particular that a heterostructure can be produced which has a significantly higher pyroelectric coefficient with 540 μC / m 2 K than each of the individual components (in this case 360 or 430 μC / m 2 K) taken alone. In addition, the DK of the heterostructure lies between those of the individual layers (and much closer to the lower value) because, in principle, contacting two dielectrics is a series connection of capacitors.

Die Patentanmeldung DE 102 46 584 A1 beschreibt weiter die Herstellung einer pyroelektrischen Heterostruktur aus Erbium-dotiertem PZT der Stöchiometrie (Pb1–x,Erx)Ti O3 mit x = 0 bis 10%, kurz PET, sowie aus Fe- und Nb-modifiziertem PZT, kurz PZFNT. Diese Struktur weist eine pyroelektrische Güte auf, die mit der von Einkristallen vergleichbar ist.The patent application DE 102 46 584 A1 further describes the preparation of a pyroelectric heterostructure of erbium-doped PZT of stoichiometry (Pb 1-x , Er x ) Ti O 3 with x = 0 to 10%, PET for short, and Fe and Nb-modified PZT, PZFNT for short. This structure has a pyroelectric quality comparable to that of single crystals.

Das kostspielige Züchten und Bearbeiten von Einkristallen kann hiernach durch den heterogenen Aufbau aus polykristallinen Keramikschichten umgangen werden, ohne dass signifikante Einbußen in den pyroelektrischen Eigenschaften in Kauf zu nehmen sind. Außerdem erlaubt der schichtweise Aufbau des Pyroelektrikums zugleich die Anwendung von Beschichtungstechniken, z.B. des Sol-Gel-Verfahrens, zur Erzeugung von Funktionsschichten auf fast beliebigen Substraten. Eine mögliche Anwendung solcher Filme liegt in der Fertigung nicht-gekühlter Infrarot-Sensoren, wobei die sensitive Schicht wie eine Lackierung aufgetragen wird.The costly growth and processing of single crystals can then be circumvented by the heterogeneous structure of polycrystalline ceramic layers, without significant losses in the pyroelectric properties are to be accepted. In addition, the layered structure of the pyroelectric also allows the application of coating techniques, such as the sol-gel process, for the production of functional layers on almost any substrates. One possible application of such films is in the production of non-cooled infrared sensors, wherein the sensitive layer is applied like a paint.

Bis heute sind dem Stand der Technik aber nur wenige zur Sol-Gel-Herstellung geeigneten Schicht-Systeme bekannt, die vergleichbar sensitiv sind wie das in der DE 102 46 584 beschriebene.To date, however, only a few suitable for sol-gel preparation layer systems are known in the prior art, which are comparable sensitive as that in the DE 102 46 584 . described

Es ist deshalb Aufgabe der Erfindung, ein Verfahren zur Herstellung wärmesensitiver Elemente mit einer Steigerung der Güte bei Verwendung weitgehend beliebiger Pyroelektrika anzugeben, wobei vorgeschlagen wird, sie mit einem Sol-Gel-Verfahren auf ein Substrat aufzubringen.It It is therefore an object of the invention to provide a process for the preparation heat sensitive Elements with an increase in quality when used largely to indicate any pyroelectrics, it being suggested they applied to a substrate by a sol-gel method.

Die Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Die Unteransprüche geben vorteilhafte Ausgestaltungen des Verfahrens an.The Task is solved by a method having the features of claim 1. The subclaims give advantageous embodiments of the method.

Die Erfindung wird anhand folgender Figuren bzw. einer Tabelle erläutert. Dabei zeigtThe The invention will be explained with reference to the following figures and a table. there shows

1 den typischen Aufbau einer pyroelektrischen Schicht auf einem Substrat; 1 the typical structure of a pyroelectric layer on a substrate;

2 die gemessene Pyrospannung von Detektorelementen mit Unterelektroden aus (La0,8,Sr0,2)MnO3 (LSMO) im Vergleich zu Platinunterelektroden. 2 the measured pyroscopy of detector elements with sub-electrodes made of (La 0.8 , Sr 0.2 ) MnO 3 (LSMO) compared to platinum sub-electrodes.

3 ein Ablaufdiagramm der Herstellung eines Sols für ein leitfähiges, ferromagnetisches Oxid auf der Basis von Lanthan-Strontium-Manganat (LSMO) (Stöchiometrie (La1–x, Srx)MnO3; x ≥ 0,175) bei Raumtemperatur; 3 a flow chart of the preparation of a sol for a conductive, ferromagnetic oxide based on lanthanum strontium manganate (LSMO) (stoichiometry (La 1-x , Sr x ) MnO 3 , x ≥ 0.175) at room temperature;

Tab. 1 den exemplarischen Ablauf der Herstellung einer Heterostruktur LSMO/-(Pb0,95,Er0,05)TiO3 (PET5) auf Si-Substrat mit Hilfe des Sol-Gel-Spin-Coating-Verfahrens.Tab. 1 shows the exemplary procedure of producing a heterostructure LSMO / - (Pb 0.95 , Er 0.05 ) TiO 3 (PET5) on Si substrate by means of the sol-gel spin coating method.

Der typische Aufbau einer pyroelektrischen Schicht auf einem Substrat ist 1 zu entnehmen. Dabei wird ein nicht leitendes Substrat 10 (z.B. Silizium, Aluminiumoxid, Glas o. ä.) zunächst mit einem leitfähigen Elektrodenmaterial 12 großflächig bedeckt (z.B. ein Edelmetall wie Platin oder Gold), auf welches seinerseits das Pyroelektrikum 14 aufgebracht wird. Es ist heute gängig, die Unterelektrode 12 durch Sputtern aufzubringen und das Pyroelektrikum mit einem Sol-Gel-Verfahren, etwa durch Aufschleudern oder Sprayen und anschließender Pyrolyse, herzustellen. Auf dem Pyroelektrikum werden noch eine oder – im gezeigten Fall – mehrere Deckelektroden 16 angeordnet, die ebenfalls typisch aus Edelmetallen bestehen. Die Verwendung der pyroelektrischen Schicht liegt in der Messung der Pyrospannung zwischen Deck- und Unterelektrode, die von der auf das Pyroelektrikum einfallenden elektromagnetischen Strahlung abhängt. Folglich muss die Deckelektrode so ausgestaltet sein, dass sie den Einfall der Strahlung nicht unterbindet, was z.B. durch fleckenhafte, gitterartige oder auch sehr dünnschichtige Kontaktierung zu erreichen ist.The typical structure of a pyroelectric layer on a substrate is 1 refer to. This is a non-conductive substrate 10 (For example, silicon, alumina, glass o. Ä.) First with a conductive electrode material 12 Large area covered (eg a precious metal such as platinum or gold), on which in turn the pyroelectric 14 is applied. It is common today, the sub-electrode 12 by sputtering and to produce the pyroelectric with a sol-gel process, such as by spin coating or spraying and subsequent pyrolysis. On the pyroelectric are still one or - in the case shown - several cover electrodes 16 arranged, which also typically consist of precious metals. The use of the pyroelectric layer is in the measurement of the pyroelectric voltage between the top and bottom electrodes, which depends on the incident on the pyroelectric electromagnetic radiation. Consequently, the cover electrode must be designed so that it does not prevent the incidence of radiation, which can be achieved for example by patchy, latticed or very thin-layered contacting.

In 1 nicht dargestellt ist eine ggf. aufzubringende, für die Strahlung transparente Schutzschicht, die oberhalb der Deckelektroden angeordnet werden kann, und das Gefüge vor Beschädigung (mechanisch, korrosiv) schützen soll.In 1 not shown is a possibly applied, transparent to the radiation protective layer which can be arranged above the cover electrodes, and to protect the structure from damage (mechanical, corrosive).

Das erfindungsgemäße Verfahren zur Steigerung der Funktionalität solcher IR-sensitiven Strukturen besteht darin, anstelle der üblichen metallischen Unterelektrode eine leitfähige, ferromagnetische Metalloxidschicht auf das Substrat aufzubringen.The inventive method to increase functionality such IR-sensitive structures is, instead of the usual metallic subelectrode a conductive, ferromagnetic metal oxide layer to apply to the substrate.

Ein leitfähiger, ferromagnetischer Metalloxidfilm lässt sich mittels eines Sol-Gel-, CVD-, Aufdampf- oder Sputterverfahrens auf dem Substrat erzeugen. Nachfolgend werden auf die ferromagnetische Schicht eine oder mehrere pyroelektrische Schichten aus anorganischem oder polymerem Material in einer dem Fachmann bekannten Weise abgeschieden. An der Grenzfläche zwischen ferromagnetischem Metalloxid und Pyroelektrikum finden Umladungs- und/oder Ionendiffusionsprozesse statt, die zumindest im Nahbereich der Grenzfläche eine Zone mit intermediärem Material erzeugen, das über eine außergewöhnlich hohe pyroelektrische Güte verfügt. Die am Sensorelement messbare Pyrospannung kann durch die Verwendung leitfähiger, ferromagnetischer Metalloxide als Unterelektroden durchaus um einige Größenordnungen gesteigert werden.One conductive, ferromagnetic metal oxide film can be deposited by means of a sol-gel, Create CVD, vapor deposition or sputtering on the substrate. Subsequently, one or more of the ferromagnetic layer will be used pyroelectric layers of inorganic or polymeric material deposited in a manner known to those skilled in the art. At the interface between ferromagnetic metal oxide and pyroelectric find transhipment and / or ion diffusion processes taking place, at least in the vicinity the interface a zone with intermediary Create material that over an exceptionally high pyroelectric quality features. The measurable on the sensor element Pyrospannung can by the use conductive, ferromagnetic Metal oxides as sub-electrodes by a few orders of magnitude be increased.

Als ein Beispiel zeigt 2 den Vergleich der gemessenen Pyrospannungen an einer Schicht aus (Pb0,95,Er0,05)TiO3 (PET5), die mit Deckelektroden aus Silber oder Platin und mit Unterelektroden aus Platin oder leitendem Lanthanstrontiummanganat (kurz: LSMO, (La1–x, Srx)MnO3; x ≥ 0,175) ausgestattet wurde. Die Laserstrahlung zur Erwärmung der Probe wird mit einem Chopper amplitudenmoduliert. Die Pyrospannung ist gegen die Frequenz dieser Modulation aufgetragen. Man erkennt auf der logarithmischen Skala vom nieder- zum hochfrequenten Bereich hin einen Anstieg der Pyrospannung um 1-3 Zehnerpotenzen. PET5 gilt gemeinhin als relativ schlechtes Pyroelektrikum. Durch die ferromagnetischen Metalloxidelektroden erreicht das beschriebene Schichtsystem, das auch als Heterostruktur zu bezeichnen ist, nunmehr eine überraschend große Empfindlichkeit.As an example shows 2 comparing the measured Pyrospannungen to a layer of (Pb 0.95, Er 0.05) TiO 3 (PET5) provided with top electrodes of silver or platinum, and with sub-electrodes of platinum or conductive lanthanum strontium manganate (short: LSMO, (La 1- x , Sr x ) MnO 3 ; x ≥ 0.175). The laser radiation for heating the sample is amplitude modulated with a chopper. The pyro voltage is plotted against the frequency of this modulation. On the logarithmic scale from the low to the high frequency range one can see an increase of the pyro voltage by 1-3 orders of magnitude. PET5 is commonly considered a relatively bad pyroelectric. Due to the ferromagnetic metal oxide electrodes, the layer system described, which can also be described as a heterostructure, now reaches a surprisingly high sensitivity.

Nach bisherigen Untersuchungen eignet sich nicht nur LSMO als Unterelektrode. Vielmehr kommen alle perovskitartigen Manganate der allgemeinen Stöchiometrie (A1–x A'x)MnO3 in Frage, wobei A eines der 15 Lanthanide (Ordnungszahlen 57 bis 71) und A' ein schweres Erdalkalimetall (Ca, Sr, Ba) repräsentiert. Die Erdalkalimetalle ersetzen teilweise die Lanthaniden im Perovskitgitter und modifizieren durch zusätzliche positive Ladungen die Bandstruktur. Bei geeigneter Wahl des Mischparameters x zeigen viele – aber nicht alle – dieser Mischkristalle Ferromagnetismus und metallische Leitfähigkeit. Typischerweise ist dies für x ≥ 0,15 und grundsätzlich für x < 0,5 der Fall. Als weitere Beispiele seien hier außer LSMO etwa noch (Nd1–x,Srx)MnO3 oder (La1–x,Cax)MnO3 mit den beschriebenen Eigenschaften genannt.According to previous investigations, not only LSMO is suitable as sub-electrode. Rather, all perovskite-type manganates of the general stoichiometry (A 1-x A ' x ) MnO 3 are suitable, where A represents one of the 15 lanthanides (atomic numbers 57 to 71) and A' represents a heavy alkaline earth metal (Ca, Sr, Ba). The alkaline earth metals partially replace the lanthanides in the perovskite lattice and modify the band structure by additional positive charges. With a suitable choice of the mixing parameter x, many - but not all - of these mixed crystals show ferromagnetism and metallic conductivity. This is typically the case for x ≥ 0.15 and generally for x <0.5. As further examples, besides LSMO, mention may still be made of (Nd 1-x , Sr x ) MnO 3 or (La 1-x , Ca x ) MnO 3 with the described properties.

Die günstige Wirkung der ferromagnetischen Metalloxidelektroden kann sich bei einer Vielzahl pyroelektrischer Materialien einstellen, wenn es um die Herstellung IR-sensitiver Sensoren geht. Dies betrifft etwa Bleititanat PbTiO3 und dotiertes PZT sowie Bariumtitanat BaTiO3, Bariumstrontiumtitanat oder Bariumcalciumtitanat, um nur eine nahe liegende Auswahl zu nennen. Ferner kommen ausdrücklich auch organische Pyroelektrika (z.B. Polyvinyldifluorid, PVDF) in Betracht, die mit dem Spin-Coating-Verfahren aufzutragen sind.The beneficial effect of the ferromagnetic metal oxide electrodes can be achieved in a variety of pyroelectric materials when it comes to the production of IR-sensitive sensors. This concerns, for example, lead titanate PbTiO 3 and doped PZT, as well as barium titanate BaTiO 3 , barium strontium titanate or barium calcium titanate, to name only a few obvious choices. Furthermore, organic pyroelectrics (eg polyvinyl difluoride, PVDF), which are to be applied by the spin-coating method, are also expressly considered.

Von besonderem Interesse für kommerzielle Fertigungsprozesse ist beim erfindungsgemäßen Verfahren, dass die Unterelektroden nun unmittelbar mit einem Sol-Gel-Verfahren herzustellen sind. Dies bietet bei großtechnischen Anlagen zunächst den Vorteil, dass das Substrat mindestens bis zum Aufbringen der Deckelektroden in einer einzigen Anlage verbleiben kann, wobei nur das Sol auszuwechseln ist. Zudem kann bei den Elektroden auf teures Edelmetall verzichtet werden, was zumindest bei Massenfertigung erhebliches Einsparungspotenzial bedeutet. 3 gibt exemplarisch ein Mischrezept (im Labormaßstab) für ein LSMO-Sol an, das auch bei dem Testsystem aus 2 verwendet wurde.Of particular interest in commercial manufacturing processes in the process of the invention is that the sub-electrodes are now to be produced directly by a sol-gel process. In the case of large-scale systems, this initially offers the advantage that the substrate can remain in a single system at least until the cover electrodes are applied, with only the sol being replaced. In addition, the electrodes can be dispensed with expensive precious metal, which means considerable savings potential, at least in mass production. 3 gives an example of a mixed recipe (on a laboratory scale) for a LSMO sol, which also in the test system 2 has been used.

Es ist ein genereller Vorteil des Sol-Gel-Verfahrens, dass mit seiner Hilfe polykristalline Schichten sehr variabler Zusammensetzung allein durch Anpassung der Rezeptur des Sols herstellbar sind. Die hier beschriebene Erfindung will sich deshalb nicht auf bestimmte Stöchiometrien eingeschränkt verstanden wissen. Sie bezieht sich vielmehr auf alle ferromagnetischen, leitfähigen Metalloxide, insbesondere Manganate, die mit einem Sol-Gel-Prozess herstellbar sind, insbesondere auch auf solche, die mehrere Lanthanide und/oder mehrere Erdalkalimetalle enthalten.It is a general advantage of the sol-gel process that with its Help polycrystalline layers of very variable composition alone can be produced by adapting the formulation of the sol. This one Therefore, the invention described does not want to be specific stoichiometries limited understood know. It rather refers to all ferromagnetic, conductive Metal oxides, in particular manganates, which can be prepared by a sol-gel process are, in particular on those, the more lanthanides and / or contain several alkaline earth metals.

Ein vollständiges Ablaufschema zur Herstellung einer Heterostruktur aus Pyroelektrikum, Metalloxidelektroden und Edelmetallelektroden (Top) zeigt Tab. 1. Die einzelnen Schritte benötigen jeweils nur wenige Minuten, so dass sich komplette IR-Sensoren mit den erfindungsgemäßen Merkmalen und den daraus folgenden vorteilhaften Eigenschaften im Stundentakt herstellen lassen.One complete Flow chart for the preparation of a pyroelectric heterostructure, Metal oxide electrodes and precious metal electrodes (top) are shown in Tab. 1. The individual steps need only a few minutes, so that complete IR sensors with the features of the invention and the consequent advantageous properties in the hourly rate let produce.

Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht in der „Veredelung" monokristalliner Pyroelektrika, die sich beispielsweise in Scheibenform kommerziell erwerben lassen. In diesem Fall ist es zweckmäßig, das Pyroelektrikum als Substrat anzusehen und mit ferromagnetischen Metalloxidelektroden mindestens auf der. Seite zu kontaktieren, die später der zu messenden IR-Strahlung abgewandt sein wird.A Another advantageous embodiment of the invention consists in the "refinement" monocrystalline Pyroelectrics, for example, in disk form commercially acquire. In this case it is useful to use the pyroelectric as View substrate and with ferromagnetic metal oxide at least on the. Contact side, later the will be turned away to be measured IR radiation.

Figure 00080001
Tabelle 1
Figure 00080001
Table 1

Claims (10)

Wärmesensitives Elements mit einem flächigen Pyrolektrikum und mit auf beiden Seitenflächen flächig angeordneten Elektroden, dadurch gekennzeichnet, dass wenigstens eine der Elektroden aus einem im wesentlichen ferromagnetischen und leitfähigen Metalloxid ausgebildet ist.Heat-sensitive element having a planar Pyrolektrikum and with electrodes arranged flat on both side surfaces, characterized in that at least one of the electrodes is formed of a substantially ferromagnetic and conductive metal oxide. Element nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens eine Elektrode im wesentlichen aus einem Manganat der seltenen Erden (Lanthanide) dotiert mit wenigstens einem Erdalkalimetall besteht.Element according to claim 1, characterized that the at least one electrode consists essentially of a manganate rare earth (Lanthanide) doped with at least one alkaline earth metal consists. Element nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das nicht leitende Substrat ein scheibenförmiger Abschnitt eines pyroelektrischen Einkristalls ist.Element according to one of the preceding claims, characterized characterized in that the non-conductive substrate is a disk-shaped portion a pyroelectric single crystal. Verfahren zur Herstellung eines wärmesensitiven Elements nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die wenigstens eine Elektrode mit Pyroelektrikum im wesentlichen über dessen gesamte Fläche kontaktiert wird.Process for producing a heat-sensitive element according to Claim 1, 2 or 3, characterized in that the at least an electrode with pyroelectric substantially over the contacted the entire surface becomes. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die wenigstens eine Elektrode mittels eines Sol-Gel-Verfahrens auf ein nicht leitendes Substrat aufgebracht wird.Method according to claim 4, characterized in that that the at least one electrode by means of a sol-gel method is applied to a non-conductive substrate. Verfahren nach einem der vorangehenden Ansprüche 4 oder 5, dadurch gekennzeichnet, daß das Pyroelektrikum mittels eines Schleuder-Verfahrens auf die flächig ausgebildete ferromagnetische Metalloxidelektrode aufgebracht wird.Method according to one of the preceding claims 4 or 5, characterized in that the Pyroelectric by means of a centrifugal process on the surface formed ferromagnetic metal oxide electrode is applied. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß das Pyroelektrikum mittels eines Sprüh-Verfahrens auf die flächig ausgebildete ferromagnetische Metalloxidelektrode aufgebracht wird.Method according to one of claims 4 or 5, characterized that this Pyroelectric by means of a spray process on the surface formed ferromagnetic metal oxide electrode is applied. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß das Pyroelektrikum mittels eines Tauch-Verfahrens auf die flächig ausgebildete ferromagnetische Metalloxidelektrode aufgebracht wird.Method according to one of claims 4 or 5, characterized that this Pyroelectric by means of a dip process on the surface trained ferromagnetic metal oxide electrode is applied. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass das Pyroelektrikum mittels Sol-Gel-Verfahren und anschließender Pyrolyse als polykristalline Keramikschicht ausgebildet wird.Method according to one of claims 4 or 5, characterized that the pyroelectric by means of sol-gel method and subsequent pyrolysis is formed as a polycrystalline ceramic layer. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Pyroelektrikum aus einem organischen Polymer gebildet wird.Method according to Claim 6, characterized that the pyroelectric is formed from an organic polymer.
DE10336128A 2003-08-04 2003-08-04 Heat-sensitive element for IR detectors comprises a flat pyroelectric with electrodes made from a ferromagnetic conducting metal oxide arranged on both side surfaces Ceased DE10336128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10336128A DE10336128A1 (en) 2003-08-04 2003-08-04 Heat-sensitive element for IR detectors comprises a flat pyroelectric with electrodes made from a ferromagnetic conducting metal oxide arranged on both side surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10336128A DE10336128A1 (en) 2003-08-04 2003-08-04 Heat-sensitive element for IR detectors comprises a flat pyroelectric with electrodes made from a ferromagnetic conducting metal oxide arranged on both side surfaces

Publications (1)

Publication Number Publication Date
DE10336128A1 true DE10336128A1 (en) 2005-03-17

Family

ID=34201424

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10336128A Ceased DE10336128A1 (en) 2003-08-04 2003-08-04 Heat-sensitive element for IR detectors comprises a flat pyroelectric with electrodes made from a ferromagnetic conducting metal oxide arranged on both side surfaces

Country Status (1)

Country Link
DE (1) DE10336128A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009083181A1 (en) * 2007-12-21 2009-07-09 Pyreos Ltd. Device for the detection of heat radiation having a pyroelectric detector array, method for the production thereof, and use of the device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500397A (en) * 1981-07-27 1985-02-19 Sony Corporation Method for the preparation of a pyroelectric material
EP0345048A2 (en) * 1988-06-01 1989-12-06 THORN EMI plc Thermal imaging device
US5743006A (en) * 1995-01-03 1998-04-28 Texas Instruments Incorporated Method for fabricating a focal plane array for thermal imaging system
US6495828B1 (en) * 2000-04-17 2002-12-17 The United States Of America As Represented By The Secretary Of The Army Ferroelectric/pyroelectric infrared detector with a colossal magneto-resistive electrode material and rock salt structure as a removable substrate
US6518609B1 (en) * 2000-08-31 2003-02-11 University Of Maryland Niobium or vanadium substituted strontium titanate barrier intermediate a silicon underlayer and a functional metal oxide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500397A (en) * 1981-07-27 1985-02-19 Sony Corporation Method for the preparation of a pyroelectric material
EP0345048A2 (en) * 1988-06-01 1989-12-06 THORN EMI plc Thermal imaging device
US5743006A (en) * 1995-01-03 1998-04-28 Texas Instruments Incorporated Method for fabricating a focal plane array for thermal imaging system
US6495828B1 (en) * 2000-04-17 2002-12-17 The United States Of America As Represented By The Secretary Of The Army Ferroelectric/pyroelectric infrared detector with a colossal magneto-resistive electrode material and rock salt structure as a removable substrate
US6518609B1 (en) * 2000-08-31 2003-02-11 University Of Maryland Niobium or vanadium substituted strontium titanate barrier intermediate a silicon underlayer and a functional metal oxide film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOYAL,A., u.a.: Material characteristics of perovskite manganese oxide thin films for bolometric applications. In: Appl. Phys. Lett., 1997, Vol. 71, S. 2535-2537 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009083181A1 (en) * 2007-12-21 2009-07-09 Pyreos Ltd. Device for the detection of heat radiation having a pyroelectric detector array, method for the production thereof, and use of the device

Similar Documents

Publication Publication Date Title
Thomas et al. Optical and electrical properties of BaTiO3 thin films prepared by chemical solution deposition
DE69735011T2 (en) Method for producing a piezoelectric thin-film arrangement
EP0459575B1 (en) Process of making a film capacitor
DE69632769T2 (en) A method of fabricating a ferroelectric layer element and the ferroelectric layer element and the ferroelectric memory element, which are manufactured by means of this method
DE112011102278B4 (en) Piezoelectric film element and piezoelectric film device
Tu et al. Processing and characterization of Pb (Zr, Ti) O3 films, up to 10 μm thick, produced from a diol sol-gel route
DE60124529T2 (en) BLEIC ACID TITANATE DIELECTRIC FILM COMPOSITE ON METALLIC FOILS
DE102008021827B4 (en) Ceramic material, method for producing the ceramic material, component with the ceramic material and its use
DE10018683A1 (en) Piezoelectric paste and piezoelectric film and piezoelectric part using same
Lozinski et al. PLZT thick films for pyroelectric sensors
Kim et al. Electro-optic characteristics of (001)-oriented Ba 0.6 Sr 0.4 TiO 3 thin films
Shimizu et al. Preparation and Electrical Properties of Lanthanum‐Doped Lead Titanate Thin Films by Sol–Gel Processing
Bhaskar et al. Diffuse phase transition and relaxor behavior in (PbLa) TiO 3 thin films
DE69923635T2 (en) Piezoelectric ceramics
EP0676384B1 (en) Perovskite containing composite material, process for its preparation, electronic component and module
DE102020115315A1 (en) Piezoelectric assembly and process for forming a piezoelectric assembly
DE10336128A1 (en) Heat-sensitive element for IR detectors comprises a flat pyroelectric with electrodes made from a ferromagnetic conducting metal oxide arranged on both side surfaces
DE102009013336A1 (en) Pyroelectric material, radiation sensor, method of making a radiation sensor and use of lithium tantalate and lithium niobate
DE19844755C2 (en) Process for making thin layers of functional ceramics
Aegerter Ferroelectric thin coatings
DE10246584B4 (en) Substrate with ceramic film on it and its use
DE4218789A1 (en) Microelectronic compatible pyroelectric detector - has first contact in radiation receiving area and further contact between pyroelectric layer and supporting silicon substrate, which is etched away below pyroelectric layer to form free-supporting layer.
DE4416245C1 (en) Process for the production of PZT coatings from a PZT powder with a low sintering temperature
US5571495A (en) Dielectric thin film of substituted lead titanate
Patel et al. Preparation and properties of PbTiO/sub 3/and Pb (Sc/sub 0.5/Ta/sub 0.5/) O/sub 3/thin films by sol-gel processing

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection