DE10209427A1 - Verfahren und Vorrichtung zur Analyse von Schmelzen - Google Patents

Verfahren und Vorrichtung zur Analyse von Schmelzen

Info

Publication number
DE10209427A1
DE10209427A1 DE10209427A DE10209427A DE10209427A1 DE 10209427 A1 DE10209427 A1 DE 10209427A1 DE 10209427 A DE10209427 A DE 10209427A DE 10209427 A DE10209427 A DE 10209427A DE 10209427 A1 DE10209427 A1 DE 10209427A1
Authority
DE
Germany
Prior art keywords
sample
sample chamber
melt
vessel
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10209427A
Other languages
English (en)
Other versions
DE10209427B4 (de
Inventor
Wolfgang Baumgart
Ulrich Jantzen
Uwe Kuehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE10209427A priority Critical patent/DE10209427B4/de
Priority to AU2003233910A priority patent/AU2003233910A1/en
Priority to PCT/DE2003/000722 priority patent/WO2003074996A2/de
Publication of DE10209427A1 publication Critical patent/DE10209427A1/de
Application granted granted Critical
Publication of DE10209427B4 publication Critical patent/DE10209427B4/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • G01N25/04Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/205Metals in liquid state, e.g. molten metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Es wird ein Verfahren zur Analyse von Schmelzen und den daraus entstehenden Festkörpern vorgeschlagen, umfassend die Verfahrensschritte: Einbringen einer verhältnismäßig kleinen Probe (9) der Schmelze in ein Probengefäß (1) mit mindestens einem Temperaturfühler (4), wobei das Probengefäß mindestens eine Probenkammer (2) mit Wänden (3) aufweist, Erfassen der Temperatur-Zeit-Kurve der Probenmenge während der Abkühlung, Auswerten der Temperatur-Zeit-Kurve mit einem Computerprogramm, Bewerten des chemischen und physikalischen Zustandes der Schmelze, wobei die Gasdurchlässigkeit der Wände (3) der Probenkammer (2) definiert wird. Es wird auch eine Vorrichtung zur Analyse von Schmelzen vorgeschlagen.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Analyse von Schmelzen und den daraus entstehenden Festkörpern umfassend die Verfahrensschritte: Einbringen einer verhältnismässig kleinen Probe der Schmelze in ein Probengefäss mit mindestens einem Temperaturfühler, wobei das Probengefäss mindestens eine Probenkammer mit Wänden aufweist, Erfassen der Temperatur-Zeit-Kurve der Probenmenge während der Abkühlung, Auswerten der Temperatur-Zeit-Kurve mit einem Computerprogramm und Bewerten des chemischen und physikalischen Zustandes der Schmelze. Die Erfindung bezieht sich auch auf eine Vorrichtung zur Analyse von Schmelzen.
  • Beim Abkühlen einer Schmelze, die zusammengesetzt ist aus den verschiedenen Elementen oder Komponenten einer Legierung, kann der Temperaturverlauf der Schmelze als Funktion der Zeit aufgezeichnet werden. Für die Aufzeichnung ist eine kleine Probemenge der Schmelze, ein Probengefäss und eine möglichst genaue Temperaturmessung notwendig. Die so erhaltene Temperatur-Zeit-Kurve zeigt, je nach der Zusammensetzung, einen besonderen Verlauf. Bei der Abkühlung eines reinen Stoffes können beispielsweise aus der Temperatur-Zeit- Kurve Phasenumwandlungen, modifizierte Kristallformen und Unterkühlungseffekte abgelesen werden. Aus dem Verlauf der Temperatur-Zeit- Kurve kann der Anteil der verschiedenen Komponenten und der verschiedenen Kristallisationsformen der Legierung berechnet werden. Eine wichtige Voraussetzung für die Aussagekraft der Temperatur-Zeit-Kurve über die Eigenschaften der Schmelze ist die Vergleichbarkeit des Abkühlvorganges im Probengefäss mit dem Abkühlvorgang in der Giessform in der Produktion. Die Geometrie des Probengefässes spielt also eine wichtige Rolle. Wenn man dieses Verfahren sowie die Vorrichtung für die Angleichung der Zusammensetzung der Schmelze an der Produktspezifikation einsetzen will, spielt die Zeit, die für die Probennahme, die Durchführung der Analyse und dem Vorliegen der Resultate gebraucht wird, ebenfalls eine wichtige Rolle.
  • Aus der DE-199 51 618-A1 ist eine Vorrichtung zur Analyse von Metallschmelzen mit einem Thermoelement bekannt. Ein zylindrischer Körper aus Keramik mit einer Probenkammer weist am Boden des Körpers einen Einlass für die Schmelzeprobe auf. Die Probenkammer wird über einen Kanal an der Oberseite des Körpers entlüftet. Am Körper ist eine weitere Bohrung ausgebildet. Durch diese Bohrung wird das Thermoelement in der Probenkammer angeschlossen und in diese Bohrung wird ein Stiel zur Handhabung des Körpers eingebracht.
  • Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, ein Verfahren anzugeben, das in möglichst kurzer Zeit möglichst genaue Aussagen über die physikalischen und chemischen Eigenschaften der Schmelze gewährleistet.
  • Diese Aufgabe wird gelöst durch ein Verfahren zur Analyse von Schmelzen und den daraus entstehenden Festkörpern umfassend die Verfahrensschritte:
    Einbringen einer verhältnismässig kleinen Probe der Schmelze in ein Probengefäss mit mindestens einem Temperaturfühler, wobei das Probengefäss mindestens eine Probenkammer mit Wänden aufweist, Erfassen der Temperatur- Zeit-Kurve der Probenmenge während der Abkühlung, Auswerten der Temperatur- Zeit-Kurve mit einem Computerprogramm, Bewerten des chemischen und physikalischen Zustandes der Schmelze, wobei die Gasdurchlässigkeit der Wände der Probenkammer definiert eingestellt wird. Diese Aufgabe wird auch gelöst durch eine Vorrichtung nach diesem Verfahren.
  • Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Gasblasen besitzen andere Wärmeflussmechanismen und andere Wärmekapazitäten als die Schmelze und beeinflussen so die Temperatur-Zeit- Kurve. Es ist von Vorteil, dass in die Probe keine Fehlstellen in der Form von Gasblasen entstehen können. Es ist auch von Vorteil, dass bei offenen Probengefässen die Gase noch entweichen können, nachdem sich die Probenoberfläche verfestigt hat. Dies wird dadurch erreicht, dass die Gasdurchlässigkeit der Wände der Probenkammer definiert eingestellt wird.
  • Es ist auch von Vorteil, dass das Gas, das sich aufgrund der abnehmenden Löslichkeit bei der Abkühlung aus der Schmelze freisetzt, vollständig und über den gesamten Zeitraum der Analyse aus der Probe abgeführt werden kann. Dies wird dadurch erreicht, dass die Gasdurchlässigkeit über mindestens einen Luftkanal mit mindestens einem Drosselventil und/oder mit einer Membrane definiert eingestellt wird. Dies wird auch dadurch erreicht, dass das Probengefäss aus einem Werkstoff mit einer bestimmten Korngrösse und mit einer bestimmten Bindemittelzusammensetzung ausgebildet ist, der eine definierte Gasdurchlässigkeit aufweist. Dies wird weiter auch dadurch erreicht, dass die Gasdurchlässigkeit der Wände der Probenkammer über Kapillaren eingestellt wird, die in einer bestimmten Anzahl und mit einem bestimmten Querschnitt in den Wänden der Probenkammer angeordnet sind. Die Gasdurchlässigkeit der Wände kann in unterschiedlichen Wandbereichen unterschiedlich eingestellt werden.
  • Es ist auch von Vorteil, dass die Erfassung der Temperatur-Zeit-Kurve nicht durch den Füllvorgang und den Füllgrad der Probenkammer beeinflusst wird. Dies wird dadurch erreicht, dass das Probengefäss derart ausgebildet ist, dass das Volumen der Probenkammer vollständig befüllt wird.
  • Es ist weiter auch von Vorteil, dass der Einfluss der Zugabe von Hilfsstoffen zu der Schmelze mit gesicherten Aussagen aus dem Verlauf der Temperatur-Zeit-Kurven bewertet werden kann. Dies wird dadurch erreicht, dass ein oder mehrere Hilfsstoffe mit einem definierten Gewichtsverhältnis zum Gewicht der Probe in die Probenkammer oder in den Zulauf zur Probenkammer eingebracht werden. Dies wird auch dadurch erreicht, dass die Hilfsstoffe in Form eines Pulvers, einer Kapsel, einer Pille oder einer Beschichtung in die Probenkammer eingebracht werden.
  • Es ist auch von Vorteil, dass die Maximaltemperatur der Schmelze vor und während dem Einbringen der Schmelzeprobe in die Probenkammer richtig erfasst werden kann. Dies wird dadurch erreicht, dass der Temperaturfühler vor dem Einbringen der Probe in die Probenkammer vorgewärmt wird. Dies wird auch dadurch erreicht, dass in dem Probengefäss mindestens ein zusätzlicher Temperaturfühler zur Messung der Maximaltemperatur der Schmelze angeordnet ist.
  • Es ist weiter auch von Vorteil, dass die Probe auch ohne Erzeugung eines Vakuums in die Probenkammer des Probengefässes eingebracht werden kann. Dies wird dadurch erreicht, dass die Probenkammer des Probengefässes aufgrund des metallostatischen Druckes gefüllt wird.
  • Ausführungsbeispiele der Vorrichtung zu diesem erfindungsgemässen Verfahren zur Analyse von Schmelzen werden anhand der Figuren beschrieben. Es zeigen:
  • Fig. 1 einen Schnitt durch eine erfindungsgemässe Vorrichtung zur Analyse von Schmelzen,
  • Fig. 2 bis 12 Schnitte durch weitere Vorrichtungen analog der Fig. 1,
  • Fig. 13 einen Schnitt durch einen Temperaturfühler zur Vorrichtung aus Fig. 1 und
  • Fig. 14 bis 19 Schnitte durch weitere Vorrichtungen analog der Fig. 1.
  • In Fig. 1 ist schematisch ein Probengefäss 1 zur Verwendung in einem Verfahren zur Analyse von Schmelzen geschnitten dargestellt. Das Probengefäss 1 hat Wände 3, die beispielsweise aus einem anorganischen Material aufgebaut sind.
  • Das Probengefäss 1 nimmt in einer Probenkammer 2 die Schmelzeprobe 9 auf. In der Probenkammer 2 ist ein Temperaturfühler 4 in einem Schutzrohr 5 angeordnet. Die Wände des Probengefässes 1 werden ähnlich wie die Giessformen in einer Giesserei aus einem Formstoff hergestellt. Als anorganischer Formstoff wird beispielsweise ein feuerfester Quarzsand mit einer Korngrösse von 0,1 bis 0,8 mm verwendet. Als Bindemittel für den Sand kann ein Gemisch von Siliziumoxiden und Natriumoxiden, wie beispielsweise Natriumwasserglas, verwendet werden. Das Verhältnis Bindemittel zu Sand beträgt etwa 2 bis 3%. Die Korngrösse des Formstoffes und der Bindemittelgehalt werden so gewählt, dass eine Biegefestigkeit von mindestens 250 N/cm2 und eine Gasdurchlässigkeit von mindestens 160 Einheiten, gemessen mit einem üblichen Messgerät zur Gasdurchlässigkeitsprüfung, erreicht wird.
  • In Fig. 2 ist ein weiteres Ausführungsbeispiel eines Probengefässes 1 dargestellt. Das Probengefäss 1 kann in die Schmelze eingetaucht werden und die Probenkammer 2 füllt sich dabei über einen Einlasskanal oder über eine Füllleitung 6, die so in die Wand 3 angeordnet ist, dass die Schmelze durch den metallostatischen Druck in die Kammer 2 gedrückt wird. Die Probenkammer 2 weist weiter einen Luftkanal 7 mit einem darin angeordneten Drosselventil 8 auf. Der Luftkanal 7 ist in der Wand 3 oberhalb der Probe 9 ausgebildet. Das Drosselventil 8 bewirkt eine definierte Be- und/oder Entlüftung der Probenkammer 2. Mit dem Drosselventil 8 wird ein kontrolliertes Befüllen der Probenkammer 2 ermöglicht.
  • Die Strömungsgeschwindigkeit der in die Probenkammer 2 einströmenden Schmelze kann mit dem Drosselventil 8 kontrolliert werden. Somit wird verhindert, dass die Schmelze zu schnell in die Kammer einströmen oder sogar durch den Luftkanal 7 wieder austreten kann. Wenn sich in der Kammer 2 ein Hilfsstoff befindet, wird mit dem Drosselventil 8 verhindert, dass der Hilfsstoff mit der Schmelze wieder ausgespült wird und so ein undefiniertes Verhältnis vom Hilfsstoffgewicht zum Probengewicht in der Probenkammer 2 entstehen kann.
  • In Fig. 3 ist ein Probengefäss 1 analog zum Probengefäss von Fig. 2 dargestellt. Im Luftkanal 7 ist anstelle des Drosselventils eine Membrane 10 angeordnet. Die Membrane 10 ist durchlässig für den Gasstrom, jedoch nicht durchlässig für die Schmelze. Die Membrane kann beispielsweise realisiert werden durch ein Metallgitter, das den Gasstrom durch den Luftkanal 7 durchlässt, das aber die Temperatur der Schmelze durch Wärmeentzug erniedrigt und die Viskosität der Schmelze soweit erhöht, dass diese nicht aus den Luftkanal 7 austritt.
  • In Fig. 4 ist ein Probengefäss 1 analog zum Probengefäss von Fig. 1 dargestellt. In den seitlichen Wänden 3 der Probenkammer 2 sind Kapillaren 11 ausgebildet. Die einzelne Kapillare 11 ist so dimensioniert, dass diese für den Gasstrom durchlässig ist, für die Schmelze jedoch nicht. Die Kapillaren 11 werden in den Wänden 3 beispielsweise hergestellt durch dem Formstoff beigemischten Fäden aus Polystyrol, die durch die Temperaturbeaufschlagung beim Einbringen der Schmelze zersetzen und verdampfen. Durch die Anzahl und die Verteilung der Polystyrolfäden kann die Gasdurchlässigkeit der Wände 3 definiert eingestellt werden.
  • In Fig. 5 ist ein weiteres Ausführungsbeispiel eines Probengefässes 1 analog zum Gefäss von Fig. 1 und 4 dargestellt. Die Wände 3 weisen unterschiedliche Wandbereiche 12, 13 mit einer unterschiedlichen Gasdurchlässigkeit auf. Es ist vorteilhaft, die Wände 3 aus Werkstoffen mit einer höheren und den Boden aus Werkstoffen mit einer tieferen Gasdurchlässigkeit auszubilden. Die Wandbereiche, die eine höhere Gasdurchlässigkeit aufweisen, haben üblicherweise eine geringere mechanische Festigkeit.
  • In den Fig. 6, 7 und 8 sind Probengefässe 1 dargestellt, die alle beispielsweise derart ausgebildet sind, dass das Volumen der Probenkammer 2 vollständig befüllt wird. Wenn das Füllvolumen der Probenkammer 2 von Analyse zu Analyse konstant bleibt, hat das Volumen der Probenkammer 2 einen gleichbleibenden Einfluss auf die Erfassung der Temperatur-Zeit-Kurve und kann daher mathematisch berücksichtigt werden. In Fig. 6 ist der eigentlichen Probenkammer 2 ein sogenanntes Füllsystem 14 mit einem Zulauftrichter 15 vorgeschaltet. Das eigentliche Probengefäss 1 weist eine Probenkammer 2 auf und ist bis auf eine Einfüllöffnung 16 geschlossen.
  • Die Schmelzeprobe 9 ist von der Umgebung des Probengefässes 1 abgeschlossen, was den Zutritt von störender Umgebungsluft ausschliesst. Das Probenvolumen der Kammer 2 ist definiert und es wird erreicht, dass jedes mal das gleiche Probengewicht eingefüllt wird. Wenn Hilfsstoffe zur Schmelzeprobe zugegeben werden, wird erreicht, dass das Verhältnis des Probengewichtes zum Gewicht der Hilfsstoffe konstant und reproduzierbar bleibt. Die Strömungsverhältnisse in der Schmelze an der Einfüllöffnung 16 sind klar definiert.
  • In Fig. 7 ist anstelle des vorgeschalteten Füllsystems 14 von Fig. 6 ein Auffangsystem 17 nach der Probenkammer 2 nachgeschaltet. Zwischen der Probenkammer 2 und dem Auffangsystem 17 ist im Probengefäss 1 von Fig. 7 ein Überlauf 18 ausgebildet. Auch hiermit wird sichergestellt, dass immer die gleiche Schmelzemenge in die Probenkammer 2 eingebracht wird.
  • In Fig. 8 ist ein Probengefäss 1 dargestellt, bei dem die Fläche, die die Grenze zwischen der Schmelzeprobe in der Probenkammer 2 und der Umgebungsluft bildet, möglichst klein gehalten wird. Das Überlaufen der Schmelze ist abhängig von der Oberflächenspannung der Schmelze. Wenn die Flächen 19, 20, auf die die Oberflächenspannung zwischen Luft und Schmelze wirksam ist, möglichst klein gehalten werden, dann ist der Einfluss der Oberflächenspannung auf das Überlaufen der Schmelze möglichst gering. Die Schmelze wird immer beim gleichen Einfüllvolumen aus der Probenkammer 2 überlaufen. Wenn das Schmelzevolumen reproduzierbar und konstant gehalten wird, ist die Aussagekraft der Temperatur-Zeit-Kurve gesichert.
  • Vor der Probenahme können in die Probenkammer 2 oder die Füllleitung 6 Hilfsstoffe eingebracht werden. Als Hilfsstoffe werden alle Zusätze bezeichnet, die in der Produktion zugegeben werden, um die Eigenschaften der Schmelze zu beeinflussen. Die Hilfsstoffe müssen so eingebracht werden, dass sie mit der Schmelze reagieren können. Um eine reproduzierbare Reaktion zu gewährleisten, dürfen die Hilfsstoffe nicht von der Schmelze aus der Kammer 2 herausgespült werden. Die Hilfsstoffe dürfen nicht aufschwimmen und müssen von der Schmelze gut benetzt werden.
  • Um die Hilfsstoffe einfacher und geschützt vor der Umgebung transportieren zu können, ist es vorteilhaft, die Hilfsstoffe in eine gut handhabbare Form zu bringen. Die Hilfsstoffe können in Form eines Pulvers, einer Kapsel oder einer Pille in die Probenkammer eingebracht werden. Die Probenkammer 2 kann auf der Innenseite auch mit dem oder den Hilfsstoffen beschichtet werden. Wenn beispielsweise Tellur oder Schwefel als Hilfsstoffe verwendet werden, müssen diese eingekapselt werden, weil der Siedepunkt unterhalb der Temperatur der Schmelze liegt. Die Hilfsstoffe können vor dem Einbringen in die Kammer beispielsweise mit Hartgelatine zu einer Pille geformt werden.
  • In den Fig. 9, 10, 11 und 12 sind weitere Ausführungsbeispiele des Probengefässes 1 schematisch geschnitten dargestellt. In Fig. 9 ist ein Probengefäss 1 mit zwei identischen Probenkammern 2 dargestellt. Jede Probenkammer 2 weist einen Speiser 21 auf. Als Speiser bezeichnet man einen Hohlraum benachbart zum eigentlichen Gussformteil. Aus diesem Hohlraum fliesst während dem Abkühlen und Schwinden des Gussformteiles Schmelze nach. Hiermit wird erreicht, dass im Gussformteil selbst Lunker vermieden werden.
  • Wenn bei der Schmelzeprobe 9 ein Speiser 21 angeordnet ist, wird erreicht, dass die Probe 9 überall die gleiche Dichte, und somit die gleiche Wärmeleitfähigkeit und die gleiche Wärmekapazität hat. Dabei ist der Speiser 21 prinzipbedingt der Teilbereich der Schmelzeprobe 9, der als letzter abkühlt und erstarrt. Bei der Bildung von Teilbereichen mit unterschiedlicher Dichte aufgrund unterschiedlicher Abkühlgeschwindigkeiten treten mechanische Spannungen auf. Um den Temperaturfühler 4 vor diesen mechanischen Spannungen zu schützen, darf dieser nicht im Bereich des Speisers 21 angeordnet sein. Aus dem gleichen Grund darf der Temperaturfühler sich nicht im thermischen Zentrum der Probe befinden.
  • Die Probenkammern 2 werden über eine gemeinsame Hauptfüllleitung 22, die mit dem Füllsystem 14 in Verbindung steht, gefüllt. Die Füllleitung 22 ist so mit den Probenkammern 2 verbunden, dass sämtliche Kammern gleichzeitig und gleichmässig befüllt werden. Die Füllleitung 22 ist auch so mit der Probenkammer 2 verbunden, dass der Temperaturfühler 4 sowohl mechanisch als auch punktuell thermisch keine übermässigen Belastungen ausgesetzt ist. In Fig. 10 ist die Füllleitung 22 tangential mit der Probenkammer 2 verbunden. Die übermässige Belastung wird weiter auch vermieden, wenn die Probenkammer 2 von unten her angeströmt wird. Durch diese Anordnung wird auch erreicht, dass die Hilfsstoffe gut durchwirbelt werden.
  • In den Fig. 11 und 12 sind Probenkammern 2 mit unterschiedlichen Geometrien dargestellt. Die Probenkammer kann beispielsweise ein kubische, eine zylindrische, eine kegelförmige, eine keilförmige oder eine stufenkeilförmige Geometrie aufweisen. Je nach Geometrie der Probenkammer 2 können unterschiedliche Abkühlgeschwindigkeiten erreicht werden. Je nach Abkühlgeschwindigkeit der Probe 9 können unterschiedliche Phasenumwandlungen beobachtet werden. In verschiedenen Bereichen der Probenkammer 2 können mehrere Temperaturfühler 4 angeordnet werden, um diese Phasenumwandlungen zu beobachten. Für symmetrisch ausgebildete Wärmeflusslinien ist eine sphärische Geometrie der Probenkammer 2 mit dem Temperaturfühler 4 im Kugelmittelpunkt optimal. Für die Bestimmung der Wärmleitfähigkeit der erstarrten Schmelzeprobe 9 ist eine kubische Geometrie der Probenkammer 2 optimal.
  • In Fig. 13 ist der Temperaturfühler 4 für sich alleine dargestellt. Der Temperaturfühler 4 besteht aus einem temperatursensitiven Element 23, das in einem Schutzrohr 5 angeordnet ist. Das Schutzrohr 5 kann aus Quarzglas oder einem anderen keramischen, temperatur- und schmelzebeständigen Werkstoff bestehen. Das temperatursensitive Element 23 liegt möglichst flach, ohne Spalt auf der Innenwand des Schutzrohres 5 an. Hiermit wird verhindert, dass ein weiteres Medium mit Temperaturübergangseffekten die Temperaturmessung nachteilig beeinflusst.
  • Das Schutzrohr 5 dient auch zur elektrischen Isolation der Temperaturmessleitungen gegen die elektrisch leitende Schmelze. Wenn das Schutzrohr aus Quarzglas hergestellt ist, findet eine gute optische Ankoppelung des temperatursensitiven Elementes 23 an die Schmelze statt, da es gut durchlässig ist für optische Strahlung. Das Schutzrohr 5 hat einen möglichst geringen Durchmesser d. Die Grösse des Schutzrohres beeinflusst das Abkühlverhalten der Schmelze, da die Phasenübergänge und somit die Temperaturmessung durch Fremdkörper, Inhomogenitäten und Veränderungen der Schmelze beeinflusst werden.
  • Die Temperatur, die am temperatursensitiven Element 23 gemessen wird, soll möglichst genau mit der Temperatur der Schmelze übereinstimmen. Ein Schutzrohr mit einem Durchmesser d, der kleiner als 1/16 der längsten Strecke . zwischen zwei Punkten auf der Oberfläche der Probe 9 ist, erfüllt diese Forderungen am besten. In Versuchen wurde ermittelt, dass ein grösserer Durchmesser des Schutzrohres 5 die Ankeimung der Primärphase der Schmelze negativ beeinflusst. Die Temperatur der Schmelze wird von Anfang des Analyseverfahrens an möglichst genau gemessen, wenn der Temperaturfühler 4 vor dem Einbringen der Schmelze vorgewärmt wird. Das Vorwärmen kann mit elektrischer Energie durchgeführt werden, weil die Temperaturfühler selber einen Widerstand für den elektrischen Strom aufweisen.
  • In den Fig. 14, 15 und 16 sind weitere Ausführungsbeispiele von Probengefässen für die Analyse von Schmelzen schematisch geschnitten dargestellt. In Fig. 14 ist eine Probenkammer 2 mit zwei parallelen Seitenwänden 3 dargestellt. An die parallele Seitenwand der Probe 9 kann eine Ultraschallsonde angekoppelt werden. Hiermit kann die Schallgeschwindigkeit des Metalls gemessen werden. In Fig. 15 weist die Probenkammer 2 eine längliche und mäanderartige Form, die sogenannte Viskositätsspirale auf. In die Probenkammer kann über der gesamten Länge ein Widerstandsdraht zur elektrischen Messung der Viskosität eingebracht werden. In Fig. 16 ist mit der eigentlichen Probenkammer 2 eine Vorrichtung 25 mit einer elektrischen Spule zur Messung des Wirbelstromes in der Probe 9 kombiniert.
  • In Fig. 17 ist ein Probengefäss 1 mit einer länglichen Probenkammer 2 dargestellt. In zwei Wänden 3, die sich auf den entferntesten Seiten der Probenkammer 2 befinden, sind zwei elektrisch leitende Drähte 26 zur Bestimmung der elektrischen Leitfähigkeit eingebaut. Die Drähte 26 sind verbunden mit einer Konstantstromquelle 27, einem Voltmeter 28 und einem Amperemeter 29. Während des Abkühlvorgangs kann der Spannungsabfall über der Schmelzeprobe gemessen werden und die elektrische Leitfähigkeit kann berechnet werden. Die leitende Drähte 26 sind so tief in die Probenkammer 2 eingelassen und soweit isoliert, dass nicht in der Randzone 30 der Probe 9 gemessen wird.
  • In Fig. 18 ist ein Probengefäss 1 mit einer Saugleitung 31 dargestellt. In der Saugleitung 31 ist, wie auch in Fig. 3 beschrieben, eine Membrane 10 ersichtlich. An der Saugleitung 31 kann ein Unterdruck oder Vakuum angelegt werden. Die Füllleitung 22 wird unter der Oberfläche der Schmelze S gebracht und die Probenkammer 2 wird von unten her, direkt, das heisst ohne Verwendung eines Zwischengefässes, gefüllt. Hiermit wird erreicht, dass die Schmelze S ohne Kontakt mit der Umgebungsluft in die Probenkammer 2 des Probengefässes 1eingebracht werden kann. Auch wird hiermit erreicht, dass die Schmelze mit der höchst möglichen Temperatur in die Probenkammer 2 eingebracht wird. Diese Arbeitsweise ist vor allem notwendig, wenn der Ort der Probenahme schwer zugänglich ist oder wenn die Schmelzebereiche sehr klein sind. Der Unterdruck wird solange aufrecht erhalten, bis die Schmelze S in der Füllleitung 22 eine so hohe Viskosität erreicht hat, dass ein Zurückfliessen unmöglich wird.
  • In Fig. 19 ist ein Probengefäss 1 dargestellt, das in die Schmelze S eingetaucht ist. Durch das Eintauchen in die Schmelze wird sich die Probenkammer 2 aufgrund des metallostatischen Druckes selbst füllen. In der Füllleitung 22 ist ein zusätzlicher Maximaltemperaturfühler 32 zur Messung der Schmelzetemperatur beim Einfüllen der Probenkammer 2 dargestellt. Die Füllleitung 22 weist einen Siphon 33 auf. Hiermit wird verhindert, dass die Schmelze S nach dem Einfüllen aus der Probenkammer 2 ausfliesst.
  • Mit der erfindungsgemässen Vorrichtung können gegebenenfalls weitere chemische oder physikalische Grössen während oder nach der Erstarrung der Probe gemessen werden. Die Vergleichbarkeit der verschiedenen Messverfahren wird verbessert, wenn möglichst viele Parameter an der selben Probe gemessen werden. Hiermit wird erreicht, dass der Vorgang der Probenahme selbst als mögliche Fehlerquelle bei der Analyse der Schmelze ausgeschaltet wird. Für die Messung können auch weitere Probenkammern 2 mit oder ohne Temperaturfühler 4 im gleichen Probengefäss 1 angeordnet sein. Wenn beispielsweise der Sauerstoffgehalt der Probe gemessen werden muss, kann eine Cr/Cr2O3 Elektrode als Referenzelement für die Sauerstoffpotentialmessung in die Probenkammer eingebracht werden.
  • Viele Werkstoffe haben im festen Zustand eine höhere Dichte als im geschmolzenem Zustand. Bei der Erstarrung kommt es deshalb in den meisten Fällen zu einer Volumenreduktion. Die Schmelzeproben neigen während oder nach der Erstarrung zur Bildung von Makro- und/oder Mikroporositäten, die als Dichteschwankungen gemessen werden können. Wenn die Probe zur Dichtebestimmung nach dem archimedischen Prinzip verwendet werden muss, ist die Geometrie der Probenkammer so zu gestalten, dass die Dichteschwankungen nicht am Rande der Probe auftreten. Dazu weist die Probenkammer im Querschnitt ein kreuzförmiges Profil auf, wobei das thermische Zentrum im Kreuzungspunkt von vier gleich langen Armen liegt. Die Lunkerbildung wird bei dieser Geometrie bevorzugt an diesem Kreuzungspunkt stattfinden. Wenn die Proben zur Dichtebestimmung optisch oder elektrisch vermessen werden, ist die Geometrie der Probenkammer so zu gestalten, dass die Dichteschwankungen am Rand der Probe auftreten. Hierzu weist die Probenkammer im Querschnitt ein V- förmiges Profil auf, wobei das thermischen Zentrum im Kreuzungspunkt der zwei Arme des V zu liegen kommt. Allgemein werden Dichteschwankungen in der Probe auftreten, wenn die Probenkammer keine Möglichkeit zur Dichtspeisung aufweist und wenn die Probe ein ausgeprägtes thermisches Zentrum aufweist.
  • Das Probengefäss 1 kann bereichsweise auch aus Werkstoffen mit einer von Sand abweichenden Wärmeleitfähigkeit und/oder Wärmekapazität hergestellt werden. Beispielsweise können bestimmte Wandbereiche auch aus Stahl statt aus Sand hergestellt sein.
  • Die Geometrie der Probenkammer 2 und das Volumen wird so gewählt, dass eine Aussage über den Zustand der Schmelze innerhalb von zwei Minuten gemacht werden kann. So können beispielsweise innerhalb von zwei Minuten gesicherte Aussagen über das Eutektikum gemacht werden, wenn das Probengefäss 1 Wände 3 aus anorganisch gebundenem Quarzsand aufweist, wenn die Probenkammer 2 sphärisch ausgebildet ist und einen Durchmesser von höchstens 32 mm aufweist. Die zu untersuchende Schmelze S hat dabei beim Einfüllen eine Maximaltemperatur von 1400°C, ein Eutektikum bei ca. 1100°C, eine spezifische Wärmeleitfähigkeit von mehr als 0.3 W/cm.K und ein Produkt aus spezifischem Gewicht und spezifischer Wärme von weniger als 5 J/K.cm3.
  • Das Probengefäss 1 wird vorteilhaft aus einem hitzebeständigen Material mit einem anorganischen Binder hergestellt. Organische Bindemittel entwickeln bei den hohen Schmelzetemperaturen Zersetzungsprodukte, die häufig gasförmig sind. Diese Gase wirken störend, da sie aus der Probe 9 entweichen müssen und andernfalls das Resultat der Analyse verfälschen würden. Die Zersetzungsreaktion ist endo- oder exotherm, so dass die Zu- oder Abfuhr von Energie zu falschen Werten bei der Temperaturmessung führt. Die Zersetzungsprodukte von organischen Bindemitteln sind häufig schädlich für die Umwelt. Organische Bindemittel enthalten meist Kohlenstoff, der zu einer Veränderung der Zusammensetzung der Schmelze führt. Anorganische Bindemittel enthalten keinen Kohlenstoff, bilden keine Gase und sind meistens umweltneutral.
  • Als Werkstoff für das Probengefäss wird beispielsweise Quarzsand mit einer Korngrösse von 0.3 bis 0.8 mm verwendet. Als Bindemittel wird dem Quarzsand 2 bis 3% Bindemittel, beispielsweise auf der Basis von Natriumwasserglas, zugefügt. Die Probengefässe 1 werden auf einer Anlage hergestellt, die ähnlich arbeitet, wie eine Kernschiessanlage in einer Giesserei. Nach dem Schiessen des Formstoffes in die Form mit einem Schiessdruck von etwa 5 bar werden die Probengefässe 1 aus der Form genommen und ausgehärtet. Die Aushärtung kann durch Trocknung, durch Begasung mit Kohlendioxid oder durch Selbstaushärtung geschehen, wenn als Bindemittel Zement verwendet wird.

Claims (36)

1. Verfahren zur Analyse von Schmelzen und den daraus entstandenen Festkörpern umfassend die Verfahrensschritte:
- Einbringen einer verhältnismässig kleinen Probe (9) der Schmelze in ein Probengefäss (1) mit mindestens einem Temperaturfühler (4), wobei das Probengefäss mindestens eine Probenkammer (2) mit Wänden (3) aufweist,
- Erfassen der Temperatur-Zeit-Kurve der Probenmenge während der Abkühlung,
- Auswertender Temperatur-Zeit-Kurve mit einem Computerprogramm und
- Bewerten des chemischen und physikalischen Zustandes der Schmelze,
dadurch gekennzeichnet, dass
- die Gasdurchlässigkeit der Wände (3) der Probenkammer (2) definiert eingestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Gasdurchlässigkeit über mindestens einen Luftkanal (7) mit mindestens einem Drosselventil (8) definiert eingestellt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Gasdurchlässigkeit über mindestens einen Luftkanal (7) mit mindestens einer Membrane (10) definiert eingestellt wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Gasdurchlässigkeit über in den Wänden (3) der Probenkammer (2) angeordneten Kapillaren (11) definiert eingestellt wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Wände (3) des Probengefässes (1) aus einem Werkstoff ausgebildet sind, der eine definierte Gasdurchlässigkeit aufweist.
6. Verfahren nach mindestens einem der Ansprüchen 1 oder 4, dadurch gekennzeichnet, dass die definierte Gasdurchlässigkeit durch die Anzahl und den Querschnitt der Kapillaren (11) eingestellt wird.
7. Verfahren nach mindestens einem der Ansprüche 1 oder 5, dadurch gekennzeichnet, dass die definierte Gasdurchlässigkeit über die Körngrösse und die Bindemittelzusammensetzung bzw. -eigenschaften des Werkstoffes der Wände (3) der Probenkammer (2) eingestellt wird.
8. Verfahren nach mindestens einem der Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die Gasdurchlässigkeit in unterschiedlichen Wandbereichen (12, 13) des Probengefässes (1) unterschiedlich eingestellt wird.
9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Probengefäss (1) derart ausgebildet ist, dass das Volumen der Probenkammer (2) vollständig befüllt wird.
10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein oder mehrere Hilfsstoffe mit einem definiertem Gewichtsverhältnis zum Gewicht der Probe (9) in die Probenkammer (2) oder in den Zulauf (15) zur Probenkammer (2) eingebracht werden.
11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Hilfsstoffe in Form eines Pulvers, einer Kapsel, einer Pille oder einer Beschichtung in die Probenkammer (2) eingebracht werden.
12. Verfahren nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Temperaturfühler (4) vor dem Giessen der Probe (9) in die Probenkammer (2) vorgewärmt wird.
13. Verfahren nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Probenkammer (2) des Probengefässes (1) aufgrund des metallostatischen Druckes gefüllt wird.
14. Verfahren nach mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Geometrie der Probenkammer (2) und das Volumen des Probengefässes (1) derart gewählt werden, dass die Aussagen über den Zustand der Schmelze innerhalb von 2 Minuten gemacht werden können.
15. Vorrichtung nach dem Verfahren von mindestens einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Probengefäss (1) mindestens eine Probenkammer (2) mit definiertem Volumen aufweist und bis auf eine Einfüllöffnung (16) geschlossen ist.
16. Vorrichtung nach dem Anspruch 15, dadurch gekennzeichnet, dass an mindestens einer der Probenkammern (2) ein Speiser (21) zur Dichtspeisung der Probe (9) angeordnet ist.
17. Vorrichtung nach dem Anspruch 15 oder 16, dadurch gekennzeichnet, dass mindestens einer der Temperaturfühler (4) in der Probenkammer (2) ausserhalb des thermischen Zentrums der erstarrenden Probe (9) angeordnet ist.
18. Vorrichtung nach mindestens einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass mindestens eine Probenkammer (2) sphärisch ausgebildet ist.
19. Vorrichtung nach mindestens einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass der Temperaturfühler (4) aus einem Schutzrohr (5) und einem darin angeordneten temperatursensitiven Element (23) ausgebildet ist.
20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass der Durchmesser d des Schutzrohres (5) kleiner als der 1/16 Teil der längsten Strecke zwischen zwei Punkten auf der Oberfläche der Probe (9) ist.
21. Vorrichtung nach mindestens einem der Ansprüche 15 bis 20, dadurch gekennzeichnet, dass die Probenkammer (2) und der Zulauf (15) eine Geometrie zur Verwirbelung oder zur Erreichung einer hohen Strömungsgeschwindigkeit der Schmelze aufweist, wobei eine bestmögliche Auflösung und Durchmischung der Hilfsstoffe mit der Schmelze bewirkt wird.
22. Vorrichtung nach mindestens einem der Ansprüche 15 bis 21, dadurch gekennzeichnet, dass das Probengefäss (1) Probenkammern (2) unterschiedlicher Anzahl, Grösse und Geometrie aufweist.
23. Vorrichtung nach mindestens einem der Ansprüche 15 bis 22, dadurch gekennzeichnet, dass das Probengefäss (1) aus einem im Wesentlichen anorganischen Formstoff, beispielsweise Sand, besteht.
24. Vorrichtung nach mindestens einem der Ansprüche 15 bis 23, dadurch gekennzeichnet, dass das Probengefäss (1) zumindest bereichsweise aus Werkstoffen mit einer spezifischen Wärmeleitfähigkeit oder -kapazität ausgebildet ist, die höher ist als die Wärmeleitfähigkeit oder -kapazität von Sand.
25. Vorrichtung nach mindestens einem der Ansprüche 15 bis 24, dadurch gekennzeichnet, dass die Geometrie der Probenkammer (2) derart keilförmig, kegelförmig oder stufenkeilförmig gestaltet ist, dass die Probe (9) an unterschiedlichen Stellen definiert unterschiedliche Abkühlgeschwindigkeiten aufweist, wobei die Temperatur-Zeit-Kurve durch die Temperaturfühler (4) erfassbar ist.
26. Vorrichtung nach mindestens einem der Ansprüche 15 bis 25, dadurch gekennzeichnet, dass die Probenkammer (2) derart ausgebildet ist, dass diese zur Messung weiterer chemischer und physikalischer Grössen, beispielsweise der Viskosität, der Schallgeschwindigkeit, des Klangspektrums, der Magnetisierung, der Wirbelstromleitung, der Gefügeausbildung, der Dichte, der Speiserfähigkeit und der Dilatation während oder nach der Erstarrung der Probe (9) verwendet werden kann.
27. Vorrichtung nach mindestens einem der Ansprüche 15 bis 26, dadurch gekennzeichnet, dass das Probengefäss (1) mindestens eine zusätzliche Probenkammer (2) zur Messung weiterer chemischer und physikalischer Grössen während oder nach der Erstarrung der Probe (9) aufweist.
28. Vorrichtung nach mindestens einem der Ansprüche 15 bis 27, dadurch gekennzeichnet, dass die Probenkammer (2) zur Messung der elektrischen Leitfähigkeit während oder nach der Erstarrung der Probe (9) ausgebildet ist.
29. Vorrichtung nach mindestens einem der Ansprüche 15 bis 28, dadurch gekennzeichnet, dass die Probenkammer (2) zur Messung der elektromotorischen Kraft in Bezug auf eine Referenz während der Erstarrung der Probe (9) ausgebildet ist.
30. Vorrichtung nach mindestens einem der Ansprüche 15 bis 29, dadurch gekennzeichnet, dass die Probenkammer (2) zur Messung der Neigung zur Ausbildung von Mikro- oder Makroporositäten während oder nach der Erstarrung der Probe (9) ausgebildet ist.
31. Vorrichtung nach mindestens einem der Ansprüche 15 bis 30, dadurch gekennzeichnet, dass mindestens eine Probenkammer (2) eine Füllleitung (22) und eine Saugleitung (31) zum Anlegen eines Unterdruckes aufweist.
32. Vorrichtung nach mindestens einem der Ansprüche 15 bis 31, dadurch gekennzeichnet, dass das Probengefäss (1) eine Hauptfüllleitung (22) für alle Probenkammern (2) aufweist, wobei die Füllleitung mit den Probenkammern derart verbunden ist, dass die Probenkammern gleichmässig befüllbar sind.
33. Vorrichtung nach mindestens einem der Ansprüche 15 bis 32, dadurch gekennzeichnet, dass das Probengefäss (1) eine Hauptfüllleitung (22) für alle Probenkammern (2) aufweist, wobei die Füllleitung mit den Probenkammern derart verbunden ist, dass die Probenkammern gleichzeitig befüllbar sind.
34. Vorrichtung nach mindestens einem der Ansprüche 15 bis 33, dadurch gekennzeichnet, dass die Füllleitung (22) ein Siphon (33) zur Verhinderung des Auslaufens der Schmelze S aufweist.
35. Vorrichtung nach mindestens einem der Ansprüche 15 bis 34, dadurch gekennzeichnet, dass die Füllleitung (22) derart angeordnet ist, dass die Temperaturfühler (4) beim Befüllen der Probenkammer (2) mechanisch oder punktuell thermisch möglichst wenig belastbar sind.
36. Vorrichtung nach mindestens einem der Ansprüche 15 bis 35, dadurch gekennzeichnet, dass in dem Probengefäss (1) mindestens ein weiterer Maximaltemperaturfühler (32) zur Messung der Maximaltemperatur der Schmelze S angeordnet ist.
DE10209427A 2002-03-05 2002-03-05 Probengefäß zur Analyse von Schmelzen Expired - Lifetime DE10209427B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10209427A DE10209427B4 (de) 2002-03-05 2002-03-05 Probengefäß zur Analyse von Schmelzen
AU2003233910A AU2003233910A1 (en) 2002-03-05 2003-03-05 Method and device for analyzing molten masses
PCT/DE2003/000722 WO2003074996A2 (de) 2002-03-05 2003-03-05 Verfahren und vorrichtung zur analyse von schmelzen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10209427A DE10209427B4 (de) 2002-03-05 2002-03-05 Probengefäß zur Analyse von Schmelzen

Publications (2)

Publication Number Publication Date
DE10209427A1 true DE10209427A1 (de) 2003-09-18
DE10209427B4 DE10209427B4 (de) 2006-01-26

Family

ID=27762649

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10209427A Expired - Lifetime DE10209427B4 (de) 2002-03-05 2002-03-05 Probengefäß zur Analyse von Schmelzen

Country Status (3)

Country Link
AU (1) AU2003233910A1 (de)
DE (1) DE10209427B4 (de)
WO (1) WO2003074996A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2565615A4 (de) * 2010-04-26 2017-01-04 Nissabu Co., Ltd. Container zur wärmeanalyse von gusseisen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207411B (zh) * 2010-03-31 2014-10-15 叶小舟 一种非接触式测温方法
JP2013140102A (ja) * 2012-01-05 2013-07-18 Denshi Rika Kogyo Kk 溶融金属の試料採取装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541806C1 (en) * 1985-11-22 1987-02-19 Mannesmann Ag Appliance for determining physicochemical characteristics of metal melts, especially of steel melts
US5031444A (en) * 1988-11-17 1991-07-16 Alcan International Limited Method and apparatus for the determination of gas concentration in molten metal and metal matrix composites
DE4125395A1 (de) * 1990-08-01 1992-02-20 Fuji Electric Co Ltd Schmelztiegelinduktionsofen mit einer schutzmassnahme gegen metalle mit niedrigem schmelzpunkt
DE69028214T2 (de) * 1990-05-16 1997-02-20 Metec Corp Verfahren zur beurteilung des kohlenstoffequivalents, des kohlenstoffgehaltes und des siliziumgehaltes in gusseisen und abschätzung der physikalischen und mechanischen eigenschaften sowie abkühlkurvenmesstopf für dieses verfahren
DE19517953C2 (de) * 1994-05-24 2000-07-13 Nippon Sublance Probe Engineer Probegefäß für die thermische Analyse von Metallschmelzen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE624414A (de) * 1961-11-14
US3455164A (en) * 1966-07-06 1969-07-15 Leeds & Northrup Co Immersion molten metal sampler
US3656338A (en) * 1970-08-06 1972-04-18 William J Collins Device and method for sampling molten metal
CH558526A (de) * 1973-02-28 1975-01-31 Feichtinger Heinrich Verfahren zum ziehen von proben aus schmelzen und probeziehkoerper zur durchfuehrung des verfahrens.
US3922916A (en) * 1974-07-15 1975-12-02 Leeds & Northrup Co Sampler for molten materials
US4046016A (en) * 1975-12-24 1977-09-06 Hackett Robert J Molten steel samplers
US4326426A (en) * 1980-05-13 1982-04-27 Falk Richard A Molded sand insulated sampler
DE3200010A1 (de) * 1982-01-02 1983-07-14 Klöckner-Werke AG, 4100 Duisburg Lanze zur entnahme von metallischen tauchproben fuer die spektralanalytische untersuchung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541806C1 (en) * 1985-11-22 1987-02-19 Mannesmann Ag Appliance for determining physicochemical characteristics of metal melts, especially of steel melts
US5031444A (en) * 1988-11-17 1991-07-16 Alcan International Limited Method and apparatus for the determination of gas concentration in molten metal and metal matrix composites
DE69028214T2 (de) * 1990-05-16 1997-02-20 Metec Corp Verfahren zur beurteilung des kohlenstoffequivalents, des kohlenstoffgehaltes und des siliziumgehaltes in gusseisen und abschätzung der physikalischen und mechanischen eigenschaften sowie abkühlkurvenmesstopf für dieses verfahren
DE4125395A1 (de) * 1990-08-01 1992-02-20 Fuji Electric Co Ltd Schmelztiegelinduktionsofen mit einer schutzmassnahme gegen metalle mit niedrigem schmelzpunkt
DE19517953C2 (de) * 1994-05-24 2000-07-13 Nippon Sublance Probe Engineer Probegefäß für die thermische Analyse von Metallschmelzen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2565615A4 (de) * 2010-04-26 2017-01-04 Nissabu Co., Ltd. Container zur wärmeanalyse von gusseisen

Also Published As

Publication number Publication date
AU2003233910A8 (en) 2003-09-16
WO2003074996A2 (de) 2003-09-12
WO2003074996A3 (de) 2004-03-04
DE10209427B4 (de) 2006-01-26
AU2003233910A1 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
EP0402638B1 (de) Vorrichtung zur Probenentnahme und zur Bestimmung der Liquiduskurve einer Metallschmelze
EP2438415B1 (de) Einwurfsonde
DE2754522A1 (de) Festes mischelektrolytmaterial sowie sauerstoff-messfuehler daraus und verfahren zu dessen herstellung
DE1648964A1 (de) Verfahren und Vorrichtung zum Messen der Liquidusphasenaenderungstemperatur geschmolzener Materialien
DE69837618T2 (de) Probennahmevorrichtung für thermische analyse
US3412325A (en) Electrical conductivity test method for determining active clay content in molding sand compositions
EP1183513B1 (de) Vorrichtung zur entnahme von schlackenproben
DE10209427B4 (de) Probengefäß zur Analyse von Schmelzen
DE19752743A1 (de) Vorrichtung zur Entnahme von Schlackenproben
DE2730813C3 (de) Vorrichtung zur thermischen Analyse von Metallschmelzen
DE4204952C2 (de) Tauchprobennehmer für Metallschmelze
DE4423720C1 (de) Vorrichtung zur Messung der Oberflächenspannung
DE1296834B (de) Vorrichtung zur Ermittlung der Sauerstoffaktivitaet von Metallen, Metalloxyden und Schlacken
DE2929693C2 (de) Vorrichtung zur Entnahme einer schmelzflüssigen Probe von Metall oder von Metallegierungen un zum Messen der Abkühlungskurve der Probe
EP0342154B1 (de) Vorrichtung zum Messen der Wasserstoffkonzentration in einer Aluminiumschmelze
DE19943861A1 (de) Heizvorrichtung ohne Wood-Metall, die die Flüssigkeitsmessung nach Noack einer Flüssigkeitsprobe eines Petroleumproduktes, hauptsächlich eines Schmieröls, erlaubt und Verfahren unter Anwendung dieser Vorrichtung
DE69533758T2 (de) Verfahren zur kontaktlosen kontinuierlichen temperaturmessung der aushärtung von metalllegierungen
DE10144392C1 (de) Verfahren und Vorrichtung zum Bestimmen des Gasdurchlässigkeitsvermögens von insbesondere aus Sand bestehenden Kernen
EP1109004B1 (de) Verfahren zum Untersuchen des Verhaltens von Bindersystemen von Sandkernen beim Giessen
EP1034420B1 (de) Vorrichtung zur entnahme von schlackenproben
DE3200991C2 (de)
DE1598943A1 (de) Verfahren und Vorrichtung zum Einfuehren einer Fluessigkeitsprobe in eine Verbrennungskammer eines Analysengeraetes
DE3031695C2 (de) Vorrichtung zur Entnahme einer schmelzflüssigen Probe
DE1473248A1 (de) Vorrichtung zur Bestimmung und Aufzeichnung des Schmelzpunkts von winzigen quantitativen Proben
DE1959923C3 (de) Verfahren zur Bestimmung des Kohlenstoffgehalts einer Stahlschmelze

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8364 No opposition during term of opposition
R071 Expiry of right